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■■ Todo debe hacerse lan simple como sea posible, pero sin excederse en ello.”

Álberl Einslein

El Cálailu 7 (de aquí en adelante abreviado como ÍTC7) es una obra diseñada 
tanto para los cursos de cspccialización en matemáticas como para los estu­
diantes cuyo interés primario radica en la ingeniería, las ciencias físicas y 
sociales, o los campos no técnicos. La exposición está adecuada a la experiencia 
y madurez del principiante. Las explicaciones detalladas, los abundantes 
ejemplos desarrollados así como la gran variedad de ejercicios, continúan 
siendo las características distintivas del texto.

En ningún otro tiempo entre ediciones sucesivas han ocurrido lantoj 
cambios en la enseñanza del Cálculo como en el periodo entre las ediciones 
sexta y séptima de este texto. Muchos de estos cambios son el resultado de la 
disponibilidad de la tecnología moderna en la forma de calculadora gráfica o 
graneadora manual Algunos otros cambios se deben al movimiento denomi­
nado reforma dcl Cálculo. He invitado a seguir este movimiento obserx'ando 
el pnneipio: REFORMA CON RAZÓN. Con el fin de apegarme acste principio, 

he aplicado las siguientes guías:

1. La tecnología debe incorporarse para mejorar la enseñanza y el apren­
dizaje del Cálculo, no para reemplazar las matemáticas o restar impor­
tancia a los lemas teóricos.

2. Las definiciones y teoremas deben establecerse formalmente, no in­
formalmente.

3. Los estudiantes deben estar concicntes de que las demostraciones de los 
teoremas son necesarias,

4. Cuando se presenta una demostración, debe ser bien motivada y cuida­
dosamente explicada, de modo que sea cnicndiblc para cualquiera que 
haya alcanzado un dominio promedio de las secciones anteriores dcl libro.

5. Cuando se establece un teorema sin demostración, la discusión debe au­
mentarse mediante figuras y ejemplos; en tales casos, debe enfatizarse 
el heclio de que lo que se presenta es un ejemplo ilustrativo de la propo­
sición del teorema y no una demostración dcl mismo.

6. Debe darse importancia a los modelos matemáticos de las aplicaciones 
de la vida real.

7. Debe destacarse la redacción en matemáticas.

Los catorce capítulos de EC7 pueden clasificarse en dos parles: capítulos 
1-9, en los que se estudian funciones de una variable y series infinitas; capí­
tulos 10-14, en los que se tratan vectores y funciones de más de una variable. 
En EC7 se han realizado cambios en las dos partes. En lodo el libro se mantiene 
un sano equilibrio entre un estudio riguroso y un punto de vista intuitivo, in­
cluso en las modificaciones.

Con objeto de alcanzar los objetivos planteados, se han incorporado las 
siguientes características;
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GRAFICADORA "ACTIVA"
lo I.iruo de l.i prcseniauon. LC7 iitili/a la ealuiladora gratlc.i o grantadoni 

manual tin volu <.omn un poderoso y fasLinanle msirumcnto para el apren­
dizaje. sino uimo un insimmenlo fundamental en la solueion de problemas Se 
lia integrado la grafieadorii direLlamenlc a la cxposiuon de aLuerdo a la filo- 
solia que he aprendido en mis tres seranos ton TICAP (Tethnologj, Inlensive 
Cakulus tur Adsanted Platemtnl) la cual se resume tomo sigue

1. Trabajar cinalititaiiHiiU’ (ton papel y lapi/j después apojar niinitrua 
\ iii’ufiLüinLiHL (ton la grafitadora)

2. Trabajar nuuicnui > f’iúfiíaiiitiilí, desputs confirmar aneililuomuHi
3. Trabaiar iiiiiiicncíi y i’rafuaiiicnlc debido a que otros nitlodos no son 

piiu lu os o posibles

MODELOS MATEMÁTICOS Y 
PROBLEMAS VERBALES
Los modelos malemalitos de situaciones prattitas presentadas tomo proble­
mas serbales surgen en diversos campos tomo fisita quimita. ingeniería, 
adminislration, economía, psicología, sociología, biología y meditina Las 
Iunciones tomo modelos malematitos se introducen primero en la sección I 3 y 
aparecen ton frecuencia en el resto del texto L.i sección 1 3 tontienc suge­
rencias para obtener una función como modelo matemático paso a paso

REDACCIÓN EN MATEMÁTICAS

A fin de completar la solución de cada ejemplo de un problema serbal, se 
presenta una londiision que responde a las preguntas de este El estudiante 
debe redactar una conclusión semejante, que consista en una o mas oraciones 
completas, para cada ejercicio similar Al final de cada grupo de ejercicios hay 
uno o dos de redacción los cuales pueden preguntar sobre ionio o por (¡iii 
lunciona un procedimiento determinado, o bien, pueden pedirle al estudiante 
que cli u nho. < xplupu ojiislifupu un proceso particular

EJERCICIOS
I os ejercicios, revisados de las ediciones anteriores y ordenados por grados de 
dillciill.id, proporcionan una gnin variedad de tipos de problemas que van des­
de cálculos y aplicaciones hasta problem.is teóricos para la calculadora y 
ejercicios Je redacción, como los mencionados anlerioniicnlc hstos aparecen 
al final de c.ida sección y conio ejercicios de repaso al final de cada capitulo

EJEMPLOS Y EJEMPLOS ILUSTRATIVOS
Los ejiiiiplos, cuidadosamente seleccionados, li.ihiliian a los estudi.intes en 
la resolución de los ejercicios, y ademas sirven como modelos para sus solu­
ciones .Se utiliza un ejunplo ihisiruino a fin de mostrar un concepto, defini­
ción o teorema particular, es un prototipo de l.i idea expuesta

PROGRAMA DE ARTE VISUAL (FIGURAS)
Todas las llgur.is se han vuelto a trazar para I.C7 Las gráficas trazadas en la 
graflcadora se muestran en una pantalla de graficadora enmarc.ida por un 
borde lie color mas oscuro a diferencia de las graficasdibujadas a mano Todas
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l.is huuras (ndimonsionalcs se )i.in generado mediante computadora con el 
tin de obtener precisión matemática Estas figuras, que son mas vividas que 
en las ediciones anlcnores, fueron creadas con la ayuda de Maiiiutiiua y 
\ilnht /llii\iruitir

ASPECTOS PEDAGÓGICOS

Cada capitulo comien/a con una introducción lilul.ida VISION PfiLUM/NAR 
Al final de cada capitulo se muestra una lista de sugerencias para su revi­
sión Juntos, estos aspectos sirven como una reseña de principio a lin dcl 
capitulo cuando el estudiante se prepara para un esamen

DESCRIPCIÓN DE CADA CAPÍTULO 

Capítulo 1 Funciones, límites y continuidad
I.os tres tenias del titulo de este capítulo conforman la base de cuiilcjuier pn- 
mer curso de Cálculo Se oponen lodos los teoremas de limites incluyendo 
algunas demostraciones en el texto, mientras que otras se esbozan en los 
ejercicios La sección I nueva en esta edición, presenta lai f inciunes 
como modelos matemáticos anticipadamente de su uso postciior en iplica- 
ciones bn consecuencia, estos modelos proporcionan al estudiante una vista 
preliminar de como se aplica el Calculo en situaciones reales La sección I 4. 
también nueva, utiliza la grafícadora para introducir el concepto de limite de 
una función

Capítulo 2 Derivada y diferenciación
Ln la sección 2 I se define la recta tangente a la gráfica de una función antes 
de estudiar la denvada. esto con el proposito de mostrar un av anee de la inter­
pretación getimclncade este concepto Las aplicaciones físicas de la deriv adaen 
el estudio del movimiento rectilíneo se presentan solo despucs de haber de­
mostrado los teoremas sobre diferenciación, de modo que dichos teoremas 
pueden emplearse en estas aplicaciones Ln la sección 2 7 se estudian las 
derivadas de las sets funciones trigonométricas y después se emplean 
como ejemplos para la presentación inicial de la regla de la cadena en la 
siguiente sección La derivada numcrica, lema nuevo en esta edición y pre­
sentado en la sección 2 "í, se ulili/.i junto con la graficadorti para apro- 
\ini.ir deriv.idas y par.i trazar sus gráficas En t.i sección 2 4 se simula el 
mov imiento de una particul.i sobre una linea recta

Capítulo 3 Comportamiento de tas 
funciones y sus gráficas, valores extremos 
y aproximaciones
l n este capitulo se presentan las iplicaeiones tradicionales de la derivada que 
implican máximos y minimus así como el trazado de una curva Los límites 
.il infinito y su aplicaciones para determinar asíntotas honzonlales se han 
cambiado .i este capitulo donde se aplican a fin de dibujar gráficas La grafica- 
dor.i se utiliza Irecucniemenle con el objeto de apoyar los resultados obtenidos 
de forma analítica asi como para conjeturar propiedades de las funciones, las 
cuales se confinnan después analíticamente Un aspecto nuev o de esta edición 
está relacionado con los ejercicios, donde se le pide al estudiante que dibuje
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1j grafu-i de utu tuRLiim a partir de la grállea de su derivada y viceversa Fn la 
sección final del capitulo se presenta la aproximación mediante la recta tan- 
jtenle junio con el método de Faylor y el de diferenciales

Capífulo 4 Integral definida e integración
Las dos primeras secciones tratan sobre anlidenvacion íu antidiferenciación) 
Se utiliza el termino antidenvación en lugar de tnii’iinicton nukfinulu. sm 
embargo, se conserva la notación estándar \fix)dK Esta notación sugerirá 
que debe existir alguna relación entre integrales definidas y antiderivadas, 
pero no veo perjuicio alguno en lo anterior, en tanto la presentación propor­
cione un panorama teóricamente apropiado de la definición de la integral 
definida como un limite de sumas Dichos límites se aplican primero para de­
finir el área de una regiiín plana y después se utilizan en la definición de la 
integral definida La capacidad de la graficadora para aproximar el valor de 
una integral definida se presenta antes de la demostriición del segundo teo­
rema fundamental del Cálculo, utilizado para obtener valores de integrales 
analíticamente Esta capacidad permite demostrar propiedades de l.i integral 
definida en una graficadora tal como se desarrollan La sección 4 4. sobre 
ecuaciones diferenciales separables, presenta aplicaciones sobre el mov imicnlo 
recnlíneo, donde el mov tmienlo se simula en la graficadora Otras apliCiiciones 
de los conceptos de este capitulo incluyen el estudio completo del área de un^i 
reglón plana así como el volumen de solidos, presentados posteriormente en 
la edición anterior La sección 4 '■) se mtciacon el cálculo de \ olúmenes mediante 
el método de rebanado, se continua con la detcTminación de v olumencs de solidos 
de revolución mediante los métodos de discos y de arandelas, considerados co­
mo casos especiales del método de rebanado En la sección 4 10 se determinan 
los volúmenes de solidos de revolución mediante el método de capas cilindricas

Capitulo 5 Funciones logarítmicas, 
exponenciales, trigonométricas inversas 
e hiperbólicas
En la primera sección se tr.ilan las funciones inversas, y las cinco secciones 
siguientes se dedican a las funciones logarítmica y exponencial Primero se 
define la función logarítmica natural y después la función exponencj.il natural 
como su inversa Este procedimiento permite dar un significado preciso de un 
oxponente irracional de un numero positivo Posteriormente se define In lun- 
cion exponencial de base a. donde a es positivo Las aplicaciones de estas 
liincioiies incluyen las leyes naturales de crecimiento y decaimiento, el creci­
miento limitado implica la curva de aprendizaje, y la tuncion de densidad de 
prob.ihilidad normal estandarizada Las tres uítimas secciones se dedican a las 
lunciones trascendentes (no algebraicas) restantes las luncioiics irigonome- 
tricMs inversas y las funciones hiperbólicas

Capitulo 6 Aplicaciones adicionales de la 
integral definida
En este capitulo se presentan las aplicaciones de la integral d finida, no solo 
las técnicas de m.inipulacion sino también los principios lundamentales invo­
lucrados La longitud de arco, una aplicación geométrica, se trata en la sec­
ción ó 1 Las otras cuatro secciones están dedic.idas a aplicaciones físicas, las 
cuales incluyen centro de masa de una barra y de regiones planas, trabajo y 
fuerza ciercida por la presión de un líquido En c.ida aplicación, se motivan
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V explican mluilnámeme las deriniuones de los términos nuevos Se han 
suelto a eNcribir todas las secciones y se han agregado ejemplos, en algunos 
de ellos se ulili/a la gralkadora para aproximarel salor de la integral definida

Capitulo 7 Técnicas de integración/ formas 
indeterminadas e integrales impropias
Las técnicas de integración constituyen uno de los aspectos más importantes 
de las operaciones del Cálculo Estas técnicas se estudian en las primeras cinco 
secciones, tratadas en ocho en la edición anterior Después de una motis ación 
introductoria, se explican los íundamentos teóricos de cada uno de los métodos 
El dominio de las técnicas de integración depende de los ejem­
plos. y se han utilizado como problemas ilustrativos que. seguramente, el 
estudiante enfrentará en la practica En la sección 7 4 se presentan otras dos 
aplicaciones de la integración' crecimiento logístico, que surge en economía, 
biología y sociología, y la ley química de acción de masas En la sección 7 6 
se estudian dos métodos numéricos para aproximar integrales definidas Estos 
procedimientos son importantes debido a que resultan muy adecuados para el 
uso de computadoras y graficadoras Lo,s temas sobre aproximación de inte­
grales definidas incluyen el establecimiento de teoremas acerca de las colas 
para el error implicado en estas aproximaciones Las cuatro secciones res­
tantes. que tratan acerca de las formas indeterminadas c integrales impropias, 
se lian reubicado en esta edición, preceden inmediatamente a los temas de se­
nes, en donde se aplican muchos de los resultados obtenidos Las aplicaciones 
de las integrales impropias incluyen la luncion de densidad de probabilidad asi 
como alguniLs otras relacionadas con geometría y economía

Capitulo 8 Aproximaciones polínomialeS/ 
sucesiones y series infinitas
Las secciones acerca de sucesiones y senes se han considerado en un solo 
capitulo y no en dos como en la edición anienor Todos los lemas se incluyen, 
pero aiguiiiis de las discusiones se han acortado sin sacrificar la integridad 
matemática Este capitulo es independiente y puede estudiarse en cualquier 
momento despucs de completar los primeros siete capítulos La primera sección 
trata acerca de aproxitnaciones polinomiales mediante la lonnula de Taylor 
Esta lórmiii.i se geiierali/a a la sene de 'laylor en la sección 8 d Las secciones 
S 2-8 ó se han dedicaiio a las sucesiones y senes infinilasdelerminosconstantes. 
y en la sección 8 ó se presenta un resumen de los criterios de convergencia 
pañi senes inlinit.is F'n las secciones 8 7-8 !í) se estudian las senes de tér­
minos sanables denominadas sera-, de potencias Los temas de este capítulo 
conducen por si mismos a la incoipoiacioii de la graficadora. no solo para laei- 
litar el estudio sino i|iie permite a los estudiantes t xaimnar e investigar l.i eon- 
vergencMo divergencia de una sene mlinila y de .iproxinuciones polmoimales

Capitulo 9 Ecuaciones paramétricaS/ curvas 
planas y gráficas polares
Los tres tumis de este capitulo se han agrup.ido para completar el estudio del 
calculo de una variable l,.is dos primeras secciones ir.it.in sobre ecuaciones 
paramelncas y curvas planas, coiisiiUiyen un requisito previo para el estudio 
de Vectores Ln tas dos secciones siguientes se estudian gráficas pohires. 
mientras i|iie en la sección final se presenta un tratamiento unificado de las 
secciones cónicas y las cauciones polares de las comeas la discusión de



Lis scccmtics cónicas en coordenadas reclan{iularcs aliora se estudian por lo 
j:eneral en un curso previo al Cálculo, en esta edición se tratan en el apéndice.

Capitulo 10 Vectores, rectas, planos 
y superficies en el espacio
Un esta edición, los vectores bidiinensionales y tridimensionales se estudian 
en el mismo capítulo y no en forma separada como en ediciones anteriores En 
la sección 10 I se dellnen los vectores en el plano. En la sección 10.2. antes 
de definir un vector tridimensional, se presenta el espacio numérico tridimen­
sional. el cual se denota por En el capítulo también se proporciona una 
introducción vectorial a la geometría anidíticu sólida al estudiar, en la sección 
10.4. rectas y planos en R^. y superficies en la sección lí).6,

Capítulo 11 Funciones vectoriales
De Igual manera que con los vectores en el capítulo 10. en este capítulo se 
estudian las funciones vectoriales tanto en el plano como en el espacio 
tridimensional. Las curvas en los dos espacios, definidas mediante una lunción 
V ectonal o por medio de un conjunto de ecuaciones paramétricas. a.sí como sus 
propiedades también se estudian simultáneamente. Las aplicaciones de este 
capítulo tratan acerca de geometría, lísica e ingeniería. En la sección 11 5. 
sobre movimiento curvilíneo, se utilipa la gratlcadora para simular en movi­
miento de un proyectil en un plano

Capítulo 12 Cálculo diferencial de 
funciones de más de una variable
Los temas contenidos en este capítulo se han reunido y condensado de dos 
capítulos de las ediciones anteriores, otra ve/, sin afectar la integndad mate­
mática. En las primenis cinco secciones se estudian límites, continuidad, deri­
vadas parciales, diferenciabilidad y la regla de la cadena para funciones de 
más de una variable. Las aplicaciones de estas secciones incluyen la delermi- 
naciiin de tasas de variaciiín y el cálculo de aproximaciones. La sección !2.ñ. 
sobre derivadas direccionales y gradientes, precede a una sección que muestra 
la aplicación dei gradiente en la deiermiiiaciiín de planos tangentes y rectas 
noniiales a superficies. Otras aplicaciones de las derivadas parciales se pre- 
.sentan en las dos lílliinas secciones y trat.in sobre problemas de extremos y 
multiplicadores de Lagrange.

Capítulo 13 Integración múltiple
El Calculo integral de tunciones de más de una vanable. contenido en las 
secciones 13.2-13.ó. es precedido por una sección en la que se estudian coorde­
nadas cilindricas y esféricas, reubicadas en esta edición, de modo que estén 
más cerca a los temas en que se aplican. Las integrales dobles de las fun­
ciones de dos variables se estudian en la sección 13.2 y en las dos secciones 
smuienies se aplican a la física, ingeniería y geometría.

Capítulo 14 Introducción al 
Cálculo de campos vectoriales
En las seis secciones de este capítulo final se presenta un estudio amplio del 
Cálculo vectorial. Este estudio incluye campos vectoriales, integrales de línea,
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d ii.-ori.-nia de Oreen, el leorem.i de la divergencia de Gauss y el teorema de 
Slokes l..i preseiilaeión de estos lema^ es inluiliva y las aplicaciones son 
acerca de lísica e ingeniería.

Apéndice
Los lemas de álgebra, trigonometría y geometría analítica, por lo común se 
estudian en cursos previos al Cálculo, ahora se presentan en el apéndice, de­
jando así el cuerpo principal del texto para lemas estrictamente de Cálculo. Esta 
mudillcación tiene como consecuencia el hecho de que las palabras con geo- 
iiií'lrfd aiwlílica no aparecen en el título de esta edición. Las secciones del 
apéndice pueden cubrirse en detalle, como un repaso o pueden omitirse por 
completo, dependiendo de la preparación de los estudiantes de cada grupo

Secciones suplementarias
Las secciones suplementarias ,se encuentran después del apéndice; estas .sec­
ciones contienen temas que pueden ser cubiertos u omitidos sin afectar la 
comprensión del materia! subsecuente. Estas secciones designadas mediante 
el número de la sección del cuerpo principal del texto, contienen discu 
siones teórica.s y algunas de las demostraciones más difíciles.

Lofis Ltmioi.0
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MATERIAL SUPLEMENTARIO PARA EL CALCULO*

Para el estudiante
An Ouíline for the Sliidy of Calcitliis (Un csbo/o para í;I csludio dd 
Cálculo) por León Gerber. de Saint John's Univcrsiiy y John Minnick. de 
DeAn/j College.

Para ayudar a lus estudiantes en su estudio de EC7, este maniia!. en tres 
volúmenes, contiene las soluciones detalladas paso a paso de lodos los ejer­
cicios cuyo número es divisible entre -1. Los manuales también contienen to­
dos los teoremas y definiciones importantes así como exámenes simples con 
•SUS soluciones para cada capítulo

Para el profesor
Inslniclor's Soliiíions Manual for THE CALCULUS 7 (Maniinl de solu­
ciones para el profesor) por León Gerber, de Saint John's Universiiy

Este manual, en dos volúmenes, contiene las soluciones para lodos los 
ejercicios de EC7

Test Generator/Ediíor with Qiiizinasfer (Generador de cxámcnes/ndílor 
con Quizmaster)

Este banco de exámenes computanzado está disponible en xersione-. para 
DOS y Macinlosh, y puede trabajarse completamente en redes. El Cciierador 
de Excímaici, escrito para EC7, puede emplearse para seleccionar problemas 
y preguntas al elaborar exámenes ya preparados El Editor permite a los pro­
fesores editar cualesquiera dalos preexistentes o crear sus propias preguntas. 
QiiiZJiiaUer permite a los instructores crear exámenes y cuestionarios del Ge­
nerador de Exáinenes y almacenarlos en discos de modo que puedan ser uli- 
li/udos por los estudiantes en computadoras personales o en una red.

También está disponible un banco de exámenes impresos que incluye 
lodos los problemas y preguntas del banco de exámenes computarizado

Libros auxiliares de interés para 
estudiantes y profesores de 
Cálculo publicados por 
Oxford University Press, Haría, México
Estos materiales se encuentran listados en la tercera de forros de este 
libro.

b. del R. Cmc (Tulcri j1 sólo csii disponible en inglés En un íuluni ptiWimo esta ediloríal tendrá el • Manual de resolut iones p.ira el protesor”



ASPECTOS HISTORICOS DEL CALCULO

Algunas de las ideas Tundamentales del Cálculo se rcmonian a los antiguos 
matemáticos gnegos del tiempo de Arquímedes (287-212 a.C) así como a 
los trabajos de los pnmeros años del siglo XVII realizados por René 
Descartes (1596-I650), Fierre de Fermat ((1601-1665), John Wallis 
(1616-1703) e Isaac Barrow (1630-1677) Sin embargo, la invención del 
Cálculo se atribuye a Sir Isaac Newton (1642-1727) y Gottfríed WUhelm 
Leibniz (1646-1716) debido a que ellos imciaron la generalización y umñ- 
cación de estos conceptos matemáticos Asimismo, otros matemáticos de los 
siglos XVII y XVIII intervinieron en el desarrollo del Cálculo, algu­
nos de ellos fueron Jakob Bernoulli (16S4-I70S), Johann Bernoulli 
(1667-1748), Leonhard Euler (1707-1783) y Joseph L. Lagrange 
(1736-1813) No obstante, no fue sino hasta el siglo XIX en que se estable­
cieron los fimdamentos de las nociones y de los procesos del Cálculo por 
matemáticos tales como Bernbard Bolzano (1781-1848), Augustin L. 
Caueby (1789-1857), Karl Weierslrass (1815-1897) y Richard Dedekio 
(1831-1916).



PREPARACION PARA EL ESTUDIO DEL CALCULO

\pr».ndcr CjIcuIh puede ser unj de les evpenenujs cduceunnales mus 
cstimulanles > exuluntes Pura que esto sea asi, usted debe inieiar su eurso 
de Cdleuli) eon el eniinumiento de tierlos uinceptos de matemaUc.is eoncer- 
niLiiies a alpcbra. peometría ingonunietría > geomein.i analítica

Los temas de algebr.i, Ingomimelna j gcnmeina analítica de especial 
importancia se presentan en las secciones A 1-A 11 del apuidice al llnal del 
libro Las propiedades especificas de los números reales asi como algunas 
notaciones básicas se presentan en la sección A 1 Debe lamiiiariparse con 
estos temas antes de iniciar el capitulo I Rellcrase a las secciones A 2-A 8 j 
A Hl para resisar los temas de geometría analítica Cn la sección A 9 se es­
tudian las funciones trigonométricas Tal \ez necesite estudiar la secuon 
A II. donde se presentan las Iracciones parciales antes de tratar la sec­
ción 7 4 sobre integración de lunciones racionales

I a Msiiali/acion mediante gráficas juega un papel imporlanlc en el es­
tudio del Calculo Lstas gráficas se obtendrán en dos jornias a mano > me­
diante un dispositno de gratlcacion automático de alta \elocidad como las 
gralltadoras > computadoras con el ui/íiuir{ apropiado Lsios dispusimos 
tuiicionan de manera similar, pero p.ira el estudiante resultara mas practico 
utili/ar una gratlcadora (¡ue una computadoia personal Pii consecuencia, en 
el texto se empleara la graficadora

ruando se trate de una gráfica reali/.ida a mano se us.ira la termino 
logia (/(/mjí 1(1 fimtlui. > cuando deba emplear un dispositno electrónico en su 
elaboración se indicara tuit i la g/o/íi o Las gráficas ira/adas en una gralica 
(lor.i están rcpresciiiadas por liguras que imiestr.in una p.intalla de gralicado- 
ra ciimarc.idi por un rectángulo > las ecuaciones de las gralicas mostradas 
se indican en la parle intcnoi de la pantalla Las gi.ilicadoras no son estric­
tamente .lUlniiiaticas debido a que requieren (le un opciador (una persona que
l.is lug.i luiicioiiiin que presione ledas especificas sin emliargo, como estas 
teclas ilcpciulcii dcl tabriiaiile \ del modelo de la gratlc iiior.i, deberá con­
sultar el manual de liincionaimenio pai.i obtener mloimauon sobre conio 
le.ili/ai operaciones especificas

Con los coiHiumieiilos b.isicos pieliniin.iies esta usted preparado pala 
iniciar su eiiiso lie C alculo, (|ue es el liuidameiUn p.iia mía has de las runas 
maiciii.iiic.is j p lia la m.iNoii.i de los cunocimienios del mundo moderno
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Funciones, límites 
y continuidad

\\S\ON

11 Funciones y sus gráficas
12 Operaciones con funciones 

y tipos de funciones
13 Funciones como 

modelos matemáticos
14 Introducción gráfico a los 

límites de funciones
15 Definición de límite de una 

función y teoremas de 
límites

16 Límites laterales
ly Límites infinitos
18 Continuidad de una función

en un número
19 Continuidad de una función

compuesta y continuidad en 
un intervalo

1.10 Continuidad de las funciones 
trigonométricas y teorema 
de esíricción

^1 ndudablemente habrá trabado funciones en sus 
cursos anteriores de matemáticas. / debido a que 
son fundamentales en Cálculo y sirven como un 

concepto unificador a lo largo de este texto, se dedicarán 
los dos primeros secciones a su estudio lo sección 13 está 
designoda para proporcionarle práctica en la obtención de 
funciones como modelos matemáticos de situaciones del 
mundo real osl como pora mostrarle algunas aplicaciones del 
Cálculo

Las dos operaciones motemáticas fundomentales en 
Cálculo son la diferenciación y la integración Estos 
operaciones implicon la determinación de la derivada y de la 
integral definida, cada uno con base en la noción de /imite, 
probablemente el concepto más importante en Cálculo Se 
inicia el estudio de límites en la sección 14 mediente una 
introducción gráfico o los límites de funciones Primero se 
proporciona uno fundomentación paso o paso de la noción de 
límite, la cual comienza con el cálculo del valor de una función 
que se aproxima a un número y termina desarrollando una 
noción intuitiva del proceso de límite la definición formal de 
límite y los teoremos sobre límites se introducen enlo sección 
15 para simplificar cálculos de límites de funciones algebraicas 
elementales En las secciones 1 ó y 17, se extiende el concepto 
de límite para incluir tipos de funciones adicionales y límites 
infinitos
Probablemente lo clase de funciones mós importante 

estudiadas en Cálculo seon los Ivnciones continuas Lo 
continuidad de una función en un número se define en lo 

sección 18 mientras que la con'inuídad de una función 
compuesto, la continuidad en un intervalo y el teorema 

del valor intermedio son temas de la sección 19 El 
teorema de astricción se presenta en la sección 110 
y se aplica ohi pora determinar el límite del cociente 
de sen f conforme t se aproxima a cero Este 
resultodo es importante al estudiar la continuidad 
de las funciones trigonométricas en esto misma 

sección



2___ CAPÍTULO 1 FUNCIONES, lÍMITES Y CONTINUIDAD

1.1 FUNCIONES Y SUS GRÁFICAS
Cnn frccucnciu. en |J^ aplicacinnes prácticas el valor de una variable depende 
del valor de otra Por ejetnpli>. el salano de una persona puede depender del 
nüinero de horas que trabaje; la producción lotal de una fábrica puede de­
pender del número de máquinas que se utilicen, la distancia recorrida por un 
objelo puede depender del tiempo transcurrido desde que salió de un punto 
especíllco. el volumen del espacio ocupado por un gas a presión constante 
depende de su temperatura; la resistencia de un cable eléctrico de longitud 
lija depende de su diámetro; etc La relación entre este tipo de cantidades sue­
le expresarse mediante una fiimióii Para fines exclusivos de este texto, las 
cantidades involucradas en estas relaciones son números reales

Una función puede considerarse como una correspondencia de un con­
junto .V de números reales .v a un conjunto l'de número', reales _v. donde 
el número v es único para cada valor específico de a.

FIGULV 1

Tabla I

t 1 = 1'

I I
T ‘j
: '4
4 ló
(j o

-I I

- -1 á
-4 10

En la figura I se muestra la representación de una correspondencia de 
este tipo. Se puede establecer el concepto de función de otra manera; considere 
intuitivamente que el número real y del conjunto Y es una función del número 
.t del conjunto X, si existe una regla mediante la cual se asocia un solo valor 
de y a un valor .r. Esta regla se expresa frecuentemente por medio de una 
ecuación. Por ejemplo, la ecuación

y = .1^

define una función pani la cual .V es el conjunto de todos los números reales 
y fes el conjunto de los números no negativos. El valor de v asignado al 
valor de a se obtiene al multiplicar x por sí mismo. La tabla 1 proporciona 
algunos de estos valores y la figura 2 ilustra la correspondencia de los núme­
ros de la tabla.

Para denotar funciones se utilizan símbolos como/. g y h. El conjunto ,V 
de los números reales indicado anteriormente es el (hminio de la función y el 
conjunto Y de números reales asignados a los valores de .r en X es el conira- 
tioniinin de la función. El dominio y el coniradominio suelen expresarse en la 
notación de intervalos deseriia en la sección A. I del apéndice.

r EJEMPLO ILUSTRATIVO 1 Con notación de intervalos, 

el dominio y contradominio de la función definida por la ecuación

V = .V-

es (-00. +00) y el contradoimmo es [0. +oo).

,Y' lodos los }•; núinenis no
mimeros reales negativos [ . EJEMPLO ILUSTRATIVO 2 Sea/Ia función definida por 

riGL’RA 2 >■' '-ciiación

y = s A - 2

Como los números se han restringido a los números re des, y es una función 
de .r sólo si a - 2 > O debido a que para cualquier t que satisfaga esía de­
sigualdad. .se determina un solo valor de y. Sin embargo, si .v < 2. se
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tiene la ral/ cuadrada de un numero negativo. > en consecuencia, no se obten­
drá un numero real \ Por tanto, se debe restringir x de manera que x ^ 2 
De este modo, el dominio de/es el intervalo |2. +co) y su coniradommio 
es (0 +00) ^

EJEMPLO ILUSTRATIVO 3 Sea g la funeum definida por
la ecuación

\ = - y

Se observa que \ es una función de x solo para t S 3 o r < -3 (o sim­
plemente. {(| >3). para cualquier r que satisfaga alguna de estas desi­

gualdades. se determinara un solo valor de v No se determinara ningún valor 
real de > si r esta en el intervalo abierto (-3. 3). ja que para estos valores de 
V se obtiene la raí/ cuadrada de un numero negativo Por tanto, el dominio 
de g es í-oo,-3| U [3.+«), y el contradominioes [0,+oo) ^

Se puede considerar una función como un conjunto de ¡uirí\ orüuia- 
do\ Por ejemplo, la función definida por la ecuación v = x- consta de todos 
los pares ordenados ir, v) que satisfacen la ecuación Los pares ordenados de 
esta función proporcionados por la tabla 1 son (1 I). ( IJ). (4, 16). (0. 0), 
(-1. l),(-í. 4Íy(-4, 16) Por supuesto, existe un numero ilimitado de pares 
ordenados de esta función, algunos otros son (2. 4). (-2. 4). (5. 25). (-5, 25). 
(^3. 3).etcétera

EJEMPLO ILUSTRATIVO 4 La tuncion / del ejemplo
ilustrativo 2 es el conjunto de pares ordenados (i. v) para los cuales
V = t - 2 En símbolos esto se expresa como

/= (ft. vj I V = rr^2\

Algunos de los p.ires ordenados de f son (2, 0). 1). (3, I), (4. %2).
Í5. /3),(6. 2). (II, 3) ■ ◄

[ '■ EJEMPLO ILUSTRATIVO 5 La función g del ejemplo

ilustrativo 3 es el conjunto de pares ordenados (v. \) para los cuales
V = X* - '), es decir,

g = {(i, V) I V = i- - 9|

Algunos de los pares ordenados de g son (3 ()|. (4. % 7). t5 4|. (-3, ü), 
(-sl3, 2) ◄

A continuiicmn se establecerá formalmente la definición de función 
como un conjunto de pares ordenados Al definir una función de esta manera, 
y no como una regla de correspondencia, se hace mas preciso su significado

L T. 1.1 Definición de fancion
Una función es un conjunto de pares ordenados de números 11, v) en los 
que no existen dos pares ordenados diferentes con el mismo primer
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nümcru [il uinjunii» iic todos los vulorcs admisibles de.( se denomina 
dominio de la función, y el conjimio de todos los valores resultantes 
de V recibe el nombre de conlradominio" de la función.

Hn esta dellnición. la restricción de que dos pares ordenados no pueden 
tener el misnui primer número asegura que y es único para cada valor especí- 
I1c<» de X. Los símbolos x y y denotan variables. Debido a que el valor de y 
depende de la elección de x, x denota a la variable independiente mientras 
que V representa a la variable dependiente.

Si/es la lunción tal que los elementos de su dominio se representan por 
.c. y los elenienlos de su contradomimn se denotan por y. entonces el símbolo 
fl r) (léase ’/de a”) denota el valor particular de v que corresponde al valor de 
.r. La notación f(x}. denominada valor de función, se debe al matemático y 
físico sui/o Lconhard Euler (I707-17H3)

EJEMPLO ILUSTRATIVO 6 I-n el ejemplo ilustrativo 2.
/ = {(v. V) I y = v.r - 2}. De modo que 

J(x) = '.X - 2

A continuación se calculará/{r| para algunos valores específicos de x.

/(.3) = S.3 - 2 f(5) = - 2
= 1

Ji6)= -.6-2 
= 2

II 
II

,y-2
.7

Cuando se define una función, debe indicarse el dominio implícita o 
evplícitamenle. Por ejemplo, si/está definida por

Jix) = 3.t- - 5i + 2

la función tiene un valor si .r es cualquier número real, por tanto, el dominio 
es el conjunto de todos los números reales. Sin embargo, si/está definida por

f(x) = .3t- - 5r + 2 1 < A S 10

entonces el dominio de /consta de todos los números reales entre I y 10. in­
cluidos éstos.

De manera semejante, si f; está definida por la ecuación

está implícito t|iie .v -4, debido a que el cociente no está definido para 
i = -4; en consecuencia, el dominio de n es el conjunto de todos los núme­
ros reales escepto -4.

Si h está definida por la ecuación

= .4 - \-

el dominio de li es el intervalo cerrado |-2, 2| poique .4 - x- no es un 
número real para A > 2o.t < -2. El contradomimode/i es jl), 21 •

• N. del T. paljbrj inelesa ram¡r se tu Udducul» pcncralmfnlc unnn runno. y torrespomlc al mimbre del L-unjiiiilo de \ .dures asijiiudns a la 
variable dependiente de una íuneiCm Oli<ts mniibrcs pura cslc ennjunm sun rccomdo (prtco empleado en cálculo); úmhiln (termino niu> recien­
te para este concepto); imagen (muy empleado en álgebra y icoiía de toiijimloO, rango tmuy emplc.ido en calculo)



1.1 FUNCIONES Y sus GRÁFICAS 5

^ EJEMPLO 1 Üddo i|ue/cs la lunción derintda por
/fx) = X- + 3x - 4

dcMi-Tminc’ (a) /(O), (b) /(2); (c) /(/i), id) f(2h), |c) /<lx): íf) /(x + /i); 
ÍM' /!') + /(/')

Solución
(a) J(()} = 0- + 3 • 0 - 4 (b) J(2) = 2~ + 3 2-4

= -4 =6

(c) jOi) = Ir + 3/j - 4 (d) /(2/i) = (2/í)- + 3(2/i) - 4
= 4/r + 6/j - 4

(e) ydi) = (1\)- + 3(li) - 4
= 4t^ + 6x - 4

(f) /(\ + li) = U + /j)-d-3(i + //) - 4
= .X- + 2/a + Ir + 3x + 3/j - 4 
= X- + (2/í + 3)x + ilr + 3/í - 4|

(fíi /III 4 /(//) = n~ + 3x - 4) 4- (Ir 4- 3/i - 4(
= X- + "ív 4 (Ir + 3/j - 8) ◄

n(;LK\3

Cí'mp.irc los L.ikulo. xL-i iuliso (I) y (g) dcl ejemplo 1. En el inciso (f) se 
re.ili/a el cjIluIo de )(\ In ipie es el \ alorde la lunción para la suma de r y 
li En el inciso (g). en d'iide‘c L iluila/(X) 4 _/(/i). se obtiene la suma de los 
dos valores de la fiincnin /(x)i('i)

En el capitulo 2 se re(|uerira calcular cocientes de la forma

Este cociente se presenta como la pendiente de la recta que pasa por los pun­
tos (x, f(\)) y (x 4- li.fix + //)) de la gráfica de la íunción dellmda por 
\ = /(x) Consulte la figura 3 En caso de que al efectuar el cálculo aparezca 
en el numerador la dilerencia de dos radicales, se racionaliza el numerador 
como en el muso (b) del ejemplo siguienie

► EJEMPLO 2 Determine

H\J^li) - f(\)
/i”

donde/i (),si(u)/l.u = 4i- - 5x + 7;(b)/(x) = Vx

Solución
fix + l¡) - f( I) 4( X 4 h)- - 5( X + /j) 4- 7 - (4.X- - 5.x + 7)un ■'--------- ------------—----------------------------------------------------------------

4x“ 4- S/ix 4- 4/i- - 5x - 5/i 4- 7 - 4.x~ 4- 5x - 7
/i

8/i.x - 5/t 4- 4/í-
It

= 8x - 5 4- 4/j
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X

I-

. /■< I + li) - A-O .'A + h - V.v 
h “ h

(\.X + l¡ - , r)f -■ .t + /» + ■ -t) 
ll(^.'x + h + -/a )

_ {x + h) - X 
/i( •. X + h + %lx J

_ _______ h_______
/i{ /.t + h + '.X)

I
V.r + /j + -7 a

\ I ’

HGIR\4

M - 2

MGIRA5

En d >vegundi> paso dd inciso (bj de csla solución, se multiplica d 
numerador y d denominador por d conjugado üd numerador pura racionali­
zar el numerador, de donde se obtiene un factor común de h en d numerador y 
en el denominador ^

El concepto de función como un conjunto de pares ordenados permite 
enunciar la siguiente definición de firújica de iiiui ftiiinón.

1.1.2 Definición de gráfica de uno funcióií
.Si/es una función, entonces la gráfica de f es d conjunto de todos los 
puntos (.r, y) dd plano R- para los cuales (a, y) es un par ordenado de/.

De esta definición, se deduce que la gráfica de una función/es la misma 
que la gráfica de la ecuación y = fix).

La gráfica de la función dd ejemplo ilustrativo 1 es la parábola dibujada en 
la figuni 4. La gráfica de la función/de los ejemplos ilustrativos 2 y 4 y dibujada 
en la figura 5 es la mitad superior de la parábola. La gráfica de la función g de 
los ejemplos ilustrativos ? y 5 está dibujada en la figura 6; está gráfica es la mitad 
superior de una hipérbola

Recuerde que en una función existe un solo valor de la vanable depen­
diente para cada valor de la variable independiente dd dominio de la función. 
En términos geométricos, esto significa que’

riGl'KA (,

* I = .1
.s i

Una recta vertical intersecta la gráfica de una función a lo más en un 
punto

Observe que en las figuras 4, 5 y 6, cualquier recta vertical intersoclará a 
cada gráfica cuanto más en un punto.

1' EJEMPLO ILUSTRATIVO 7 Considere el conjunto 
|i\. y) I X- + V- = 2.‘>J, cuya gráfica es la circunferencia, de radio 5 y 

>, entro en el origen, dibujada en la figura 7. Este conjunto de pares ordenados no 
es uiu función porque para cualquier a en el iniervdo (-5. 3), dos pares 
ordenadíis diferentes tienen a x como primer número. Por ejemplo. (.1, 4) y
i3. -4) son dos pares ordenados del conjunto dado. Además, obsene que 
cuali|uier recta vertical cuya ecuación sea .t = u, donde -5 < o < 5. mter- 
secta a la circunferencia en dos pumos. AFIGIRA 7
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r EJEMPLO 3 Dctonninc el duminio de la lunción dcnniiJa por 

\ - 2)

Apo\e 1.1 respuesta tra/.indo la grállca en la yraficadora.

Solución Como .. A(.r - 2) no es un número real euando .i( v -2) < 0, 
el dominio de la fiineión fi consta de los valores de .v para los cuales 
i(v - 2) > 0 Esta desigualdad se satisface cuando se tiene alguno de los 
dos casos siguientes. .V > 0 y .v - 2 > 0; o si .r < 0 y .v - 2 < 0.

Caso l .\ > 0 y .V - 2 > 0 Esto es,

-V s 0 y t > 2

Amhas desigualdades se cumplen si x > 2, lo cual equivale a que .x esté en 
el intercalo (2. +co)

Caso 2:.\ <, 0 y x - 1 < 0. Esto es,

.r < 0 y t < 2

s’it) . «11 - 2i

FIGURA 8

Las dos desigualdades se cumplen si r < 0. lo cual equivale a que .x perte- 
ne/cü al intervalo (-oo, ()|

Las soluciones de estos dos casos se combinan para obtener el dominio 
de jg. el cual es (-CO, (1] U |2, +oo).

La grállca de .g se muestra en la figura 8 Esta gráfica desciende desde la 
i/quierda hasta v = 0, asciende hacia la derecha a partir de x = 2. y no con­
tiene puntos cuando .x está en el intersalo abierto (0. 2) Por tanto, la gráfica 
apoya la respuesta. M

Como se vio. el dominio de una función puede determinarse me­
diante la definición de la función. Con frecuencia se detennma el conlrado- 
minio a partir de la gr.ifica de la función, como en el ejemplo siguiente en el 
que se trata una liim lóii dcjliiitla a lro:os. la cual se define empleando más 
de una expresión

I - l SI . 3
oo - |s st I = 1

12i . I SI .1 •' t

FKSUKA ')

► EJEMPLO 4

/■(G
X - I 

2x + 1

.Sea / la tunción definida por

SI X- < .3 
SI X = 
si < X

Determine el dominio y el coniradominio de/, y dibuje su gráfica

Solución El dominio de i es t-cc. +oo). La figura 9 muestra la gráfica 
de/. consta de la poición de la rectay = x - I para la cual .v < 3. el punto 
(3, 5( y l.i parle de la reciay ■= 2x -i- 1 paralacual3 < .v Los valores de la 
(unción son números menores que 2, el número 5 o números mayores que 7. 
Por tanto, el contr.ulominio de f es el número 3 y aquellos números en 
(-00. 2) U (7. +CO). Á

Las funciones definidas a iro/.os serán de gran utilidad en el e.siudio de 
límites, continuidad y derivada, como ejemplos y contra-ejemplos de funcio­
nes que poseen ciertas propiedades. En el caso de la gráfica de la función del 
ejemplo 4, se rompe en el punto donde .x = 3 lo que. como aprenderá en la
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í

sctuiin 1 K. niuc^lra que l.i lunuon es <//^^ oiitiiiiia para ese valor de c Hn el 
eiemplu sigiuenie se nene una lunuiun dediuda a iro/os cuja {irafica no se 
rompe en el valor de (. en el que cambian las expresiones que la deilnen en 
este caso en 1 = 1

i ~

^ EJEMPLO 5 Sea I» la luncion delinida por

I3i - 2 SI X < 1
1 X- SI 1 < \

Determine el dominio > el coniradoininio de i». > dibuje su gradea

t : 1« < 1
1 11 I

Solución Bl dominio de ir es (-00. +oo) La gradea umuene la parte de 
la recta \ = l.r - 2 para la cual i < 1 y ta porción de la parabola \ = \- 
para la cual 1 < \ La gradc.i se muestra en la figura II) El contradominio 
es(-oo, +«3) A

1 K.l K\ 10

^ EJEMPLO Ó La lunuon/i esta dellnida por

Determine el dominio j el contradnminio de /;. y dibuje su grádea

\\ Solución Como h(\) esta definida para lodo i. excepto 3. el dominio de 
h es el conjunto de números reales excepto 3 Cuando \ = 3. tanto el nume­
rador como el denominador son cero y 0/0 no está dedmdo

Al lacton/ar el numerador como (i - 3)(i + 3)seobliene

/ ' '

o/i(i| = i + 3. teniendo en cuenta que r 3 En otras palabras, la lunuon 
li puede definirse por

/it l) = l + 3 M X i¡t t

Mu ' ■'

l a gradea de li consta de lodos los puntos de la reeia x = x + 3 excepto 
el punto (3. (o v se muestra en la figura 11 El contradommio de li es el con­
junto de todos los números reales excepto 6 A

[H.IR\ II 1 n el eiemplo ó l.i gradea tiene un ‘liojo” o • agujero' en x = 3. donde 
/i(3) no esta dedmdo En el ejemplo siguiente, también la gradea tiene un 
agiijeio en x - 3. pero el valor de la luneión en 3 si esta dellnido

^ EJEMPLO 7 Sea // la luneioii dehiuda por 

,, i X + 3 SI X 3
//(X) =

! 2 si X = 3

Determine el dominio > el eontradomimo de II > dibuje su gradea
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12

Solución Como // L‘sl.1 dormida para todo r, ^u dominio es (-co, +oo) 
La eralka de II se muestra en la lljiura 12 El eontradaminio de ÍI es el con- 
liinlo de Iodos los números reales, dilerentes de 6 A

^ EJEMPLO 8 La tuncion/está definida por

11- SI V 2 

s,r=2

Dclsnnme el dominio > el umiradominio de/ y dibuje su gráfica

Solución Como/esta definida para todo su dominio es (-oo. +coj 
La grallca, mostrada en la figura 13, consta del punto (2, 7) \ todos los 
puntos sobre la parahola \ = x- excepto (2, 4) El contradoininio de /es 
[0 +oo) A

Ji'i ' \ si t » ;
7 o » = :

IKURM3

La luncion del ejemplo siguiente se denomina función valor absoluto.

^ EJEMPLO 9 Determine el dominio y el contradominio de la 
luncion J para la cual

/ío = hl

y dibuje su gráfica

Solución De la definición de |i|.

fix) =
SI X S 0 

SI V < 0

El dominio es (-co, +coj La gráfica de / consta de dos semireclas que pa­
san por el origen > están por arriba del eje x, una tiene pendiente 1 y 
la otra tiene pendiente -I Consulte la figura 14 El coniradomimo de/es
¡0, +CO) A

La luncion x.ilor absoluto se ha implcmentado en las grafieadoras y 
usualmeiile se denota por/1//S Otra luncion con que cuenta la graficadora es 
la función inaxinio entero cu>os valores de función se denoten por [Irl| y 
están definidos por

|)x|| = /I si » ¿ X < /I + I. donde » es un entero 

Esto es. lixll es el masiino entero menor o Igual que X En particular. [II ]] = 1.
III 3|| = l.yo^ü = (1 11-4211 = -,‘i> ll-SII = -K

La gradea de la luncion máximo entero está dibujada en la figura 15 
Su donmiio es el conjunto de lodos los números reales j su contradomimo 
t-onsisie de lodos los numero', enteros En muchas grafieadoras se denota la 
luncion máximo entero por ¡^ í

^ EJEMPLO 10 Dibuje la función G definida por

G(x) = llxli - X

I iiiitiun nuMtiui cnltii'

I Kfl’RA IS

y determine su dominio y su coniradominio Apo>c su respuesta trazando su 
gr.illca en la graficadora
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-4 -< ;

\\\\\\\V ^
(im - fl iB - I

IKÍLRA 16

I-5, 51 por [ 2.21
í/(i] /%T( ii - .[

Solución Como 0' está definida para todos los valores de su dominio 
es (-00. +00). A panir de la dellnieión de ||\[1 se obtiene lo siguiente.

SI -2 < .t < -I. Il.vll = -2;
SI -I i < 0. Il.xll = -I;
SI O < t < I. H.tII = 0;
SI I < .t < 2. Il.ill = I;
SI 2 < .t < 3. Il.vll = 2:

por tanto. Gí.vj = -2 - t. 
por tanto. C(.x) = -I - .v. 
por tanto, GY.r) = -.v. 
por tanto. C(.x) = I - .r, 
por tanto. C(.v) = 2 - .t,

y así sueesisamente De modo más general, si n es cualquier número entero, 
entonces

SI n < r < /I + i. Il.vll = n: por tanto. C(.v) = n - x

Con e.stos valores de fiinciiín se puede dibujar la gráfica de G. mostrada 
en la figura 16. A partir de la gráfica se observa que el contradominio es 
(-1, 01. Al trazar la gráfica de C(.v) = /ATt.v) - .v se obtiene la figura 17. lo 
cual apoya la respuesta A

FIGLR V 17

En lin i’jcn ici<i\ I a 4. ílvicrmiiii' \i el uinjiíiito es una fiimión. 
Si es lina fiiiu ion <¡etermine ui ilonunio.

1. tal (tv. s) V = ..V - 41

(b) liv.M s = ^'.s- -4)

(c) {(».\) s = %4 - V-)

tdl 1(1.V) .1- + V- = 4|

2. (a) (li.s) S' = % V 1

(b) (IV.s) s = ^ V- - 11

(C) (ll.S) \ = nA'-* 7-1

(d) [tv. \) r- + s- = 11

3. tul 1 (r. \) \ = i-| Ib) K\. \)
le) {Iv.sl j = i’l (d) itv. s)

4. la) |(v. \| V = (s - 11- + 2|

(b) l(i.s) V = (V - 2)’ + 1|

te) (ii. V) V = íi s 2)’ - i|

(d) (u..\) t = IV + li‘ - 2|

y]

5. f)ada/(U = 2i - 1. deleriiiiiie
(a) A.'í); (b)/i-2l. (e)/it)). Ul)/i<i + ll:te)/(i+ h; 
(f) A2v»; (R| 2 JIM. thl /IV + //). (i) /n) + jV».

tj, ^ u

(,. Dada Au = calcule (u) Ali: (b) A-3): (c) 7<6);
1

(d) /I ;i. M /(^J, (f) Igl (li) A' - 3).

7. Datia/(s) = 1\-+ 5r - 3. determine la)/(-2). 
(b)/l-l);(t(/U)Mcl)yi3).(f)/i/i + D.tn/ilv-);
(Riyív-- 3);(li)ytr + /n;(i)/(v) + flli}.

(j)
8. Dada.elv) = 3v- - 4. calcule (ii) .i’(-4); (b) i>( i). 

te) (-(r-); (d),e(3v* - 4).(e),e(v - /;l. (f),i,-(v)‘-

9. DadafYv) = % .v + 9 , encuentre tu)/'(v + 9);
(l))fls- - 9).IclFlv"’ - 9).(d)/=■!»* -s fuj.

(o/'iv-' - fvv-i.iri ^ ,, ^ o
li

10. DadaCtv) = \4 - i. deierminea) G(4 - .v);
((b) Q4 - t’i, (c) Q4 - .C). (d) G(4v - .r);

(eK;!-»-* - 4v-).tr) ^ o
li

En ¡os ejvn icios lia 46. tlihnje a mano la i>riifiea lie la fiin- 
t ifi;i \ ileierniine sii Joniinio \ sit conlra¡loininio

(j)/(v) -/I3).lj)
/(.V + /i ) - ft .V )

. /l 7= o

11. /i VI - 3.V - I
13. ft i) = Zv’

15. ,v’(.v) = 3 - V-
17. G(v) =
19. /(V) = yp - 4 

21. g(v) = %/9 - V*

23. h(\} = |v - 3|

25. F{\) = |3v + 2[

,v- - 25

12. g(v) = 4 - .V 

14. G(i) = .T- + 2 
16. /(.r) = (T - I)' 
18. Fii) = >/9^ 

2t). 1,’tv) = \4 - .V' 
22. /ivl = v'.v- - I 

24. His) = |5 - r| 

-X- - 4

27. //(V) V + 5

26. 6 VI =

28. f{\) =

X -2

2.V- + 7.V + 3
.V + 3
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2V. „u = r 3».

j -4 su < -2
.'2. u»i -I si-2 í r S 2

( ^ si2 < V

3.L sm -
Ii - 1
0

si t :t 2
SI r = 2

34. f‘U + 2 SI 1 « 1
SI l = 1

35. lix) SI » * 3
SI i = 4

36. Í7(U j9- u 
i4

SI r » -3 
sM = -3

37. (.'ít) fl-u 
i 3t + 1

su < 0
siO í3 T

38. fui = 1*^-4 
Ir - 1

M t < 3
SI 3 S i

39. i.'UI 6t + 7
4 - t

SI 1 S -2
M -2 < X

40. fl\l H í - 2
r + 1

SI t S 0
SI 0 < t

1 + 3 SI » < -5
41. llíx) = J 25 - r • SI-.5 S r £ S

5 - a SI 5 < r

1 + 2 SI » £ -4
42. IHxi = 16 - » • SI -4 < c < 4

2 - 1 si4 r I

43. f-tx) -2r^ 44. 6'U)i - 2
45. lt\l = flt ' 411 46. 1,'ÍO
47. (j| Diliujc l.i ¿iralU.i de la fiiiH ii'm < \nilim lii uilltii iiniiu- 

lio dLíiniada por U > dcllimia por

iJi'lira (..ida una de las siymcnCcs liinuoncs a iro/os > di> 
Inijc sus {.'rafitas (bl í'(» ll.(c|/'uj- l.(d)í'(x)
f'i\ - h

48. Ddln 1 (..id i una de las sij!un.tiles limuones a iro/os > di- 
i'U|e sti. pralicas donde I l. I.i limuion cstalon iiiiK.irio 
düinida en el cjcruelo 47
(a) \ fIli) + I) IM\ ■* 11,
(CMI 4 1) í/n + 11 - » IJ(\)

A'), (a) |Jil)U)e la [rrahea de l.i Jiiiu ion denul.ida por spn 
) delmida por

(1 SI i < (I
j (I SI I I)

1 I M 0 < »

syn(0 se Ice "si^no de Deliti i e.ida una de las simúlen­
les funciones 4 iro/os y dilnije sus {¡rafitas (l>) » s^nl i). 
(c)2 - t spiiít). (d) t - 2 sjjnl»)

50. Defina cada una de las siguientes funuunes a trozos don. 
de sgii es la función signo definida en el ejercicio 40 l.il 
sgnti + l).(l)»sgnu - l);(c)sgn(r + 1) - sgnti - 1»

La gráfica de la función J de la figura se parece a la Icir.i 
ll Defina/( t) a Irozos

\

#(-2.2lV
(2 2»_\/-Y" 1

1,1 grafic.a de la función / de la figura se p trece a la letra 
M Delina/(r) a trozos

>
2\

_Z^
11.2)

-2 -1

53. Ln la figura, la gradea se parece a la letra .V > es la gradea 
de dos funciones > f, ira/adas en el rect.ingulo inspec- 
uunde|-I. l|por|-l. I| Defina/,li) > f.(i>

54. I.Msieii tres tmiciones/,./. ) ty cuyas grílicas trazadas 
siimitlaiicaiiiciilc en el rcct.ingulo de ins|Kcuon de |-I, 11 
[lor I 1 1| se patecen a la Lira / Ücliti.i /,(\l./4\)
>Al'l

l.n Im Ijt n o im <i ^.S', lin\;,i lo mi’iiu itu (ol lU lino lo fiin 
I ion o liozm sin t/;i/i/i<ir los luirios ilf uitor ohsolulo. f/d ili- 
Iniji lo iiniliio lU loJinn ion ihlinnlo tiitl im mo rol. (11<>/>i>t4 
tm n s/nit'Uos ii los imnor lol \ {hl ini.oiiJo ¡o lirolnu ilf hi 
lililí ion

55. Jl\) 11- - I I 56. cu) I» - I
57. eul |i| |.s »| 58. /tu |(| \\ 'I

sgii »
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hi los e)eruno\ ,5y \ (/j/i/y, ¡a f'rafiííi Ji la fuiuitm \ ih

tinruiif MI Jnminiii \ jii. tiiitrailnniinio \pn\c Mn n \piu Mas 
irazunJn la f¡ráfita di la funLinn

59. /)(j) = - 1[»[| f,(|. /!,) = t + []«H

61. Las gráficas Je las luncmncs Je los ejerettios 51 > 52 pa­
recen Ictra-i del alfabeto Delitij otras dos lunuones tusas 
gráficas se paruvtan a Jos letras dilerenles > dibújelas

62. Ln esta setcuin se ulili/artm los sinihol(is/,/(«:| y s = f(x) 
Lonteniienles a una luntiun partitular. los cuales tienen 
significados dilerenles lixpliiiue lo (|ue significa cada no­
tación. iitsenle una función y utilícela pani distinguir los 
tres símbolos

63. Explique por que la gráfica de una luncion es consistente 
con la definición de la función como un conjunto Je p.ires 
ordenados En su explicación utilice un ejemplo especifico

1.2 OPERACIONES CON FUNCIONES Y TIPOS DE FUNCIONES
Se pueden lomur nuexas tuneiimes a partir de funciones dadas mediante adi­
ción. sustracción, multiplicación y división de sus valores De acuerdo con 
esto, las nuexas funciones se conocen como la suma difiTvnua. produciii > 
íouenlt’ de las iunciones onginales

1.2.1 Definición de ía suma, diferancta, producto 
_____y cociente de dos fundones________
Dadas las dos Junciones/y j*:

(í) su suma, denotad.i por/ + es la Junción dellnida por 

(/ + í,'Kr) = /(X) -t- i*íx)

(lí) su diferencia, denotada por/ - es la función dellnida por 

(/ - ifHD = f(y) - vft)

(ili) su producto, denotado por/ • .i». es la función definida por 

{J ■ A'Jd) = /(V) ■ vfx)

(iv) su cociente, denotado por//i*. es la luncion definida por 

jyA’ií'l = /'íD/aMu t;(r) 0
En cada caso, el doiiwiio de la función resultante consta de aque­

llos valores de x comunes a los dominios de / y í>. con el requen- 
miento adiciona! en el caso (ix) de (¡ue se excluyan los \ alores de x 
para los cuales/[.'(x» = 0

^ EJEMPLO 1 Dado (|ue / y ,1* son las lunciones definidas por

jix) = X -t- I y j,'(x) = X - 4

defina las siguientes funciones y üelermine el dominio de las junciones resul­
tantes (a) /■ -f v. (b) í - ii: (c) f ■ g. (d)y/g

Soiución
(a) (/ + .i*)(U = X + I + \ X - 4
fb) [J - ji,'Kx) = X + I - x^r^4

(c) {f- i-l(x) = c X + I • V.r - 4 

y X -I- I(d) (//,(.')(X)
\.x - 4
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J imir
iL‘ i;

l-ldominio(Jc/'es[-l, +oo) y d dominio de i* es |4. +co) Así, d dominio 
de Lis tuncioncs rcsiilumlcs cu los incisos (a). (b)y (c)cs (4. +oo) End inciso 
(d). d denominador es cero mando i = 4. por lo que 4 también se excluye y 
se ohliene como dominio (4, +co) ^

Gira operación entre [unciones es la obtención de la Junat'm compuesta 
de dos I unciones dadas

1.2.2 Definición de funcfeacpiypu^IcSr"

Dadas las dos hinciones / y n, la función compucsla, denotada por 
/ o t». esta dellmda por

y el dominio de J ° es el conjunto de lodos los números .r dd do­
minio de n tales que eí') en d dominio de/

/
•.miiruliaiiimu 

Oc I

k.1 nirjJnmiimidi. i’

Esta ddlniLión indica (jue cuando se calcula (/o pninero se
.iplica j,' a \ y después se aplica J a i;(v) Para visualizar este calculo Consulte 
la figura 1 La lunción g asigna el valor g(\) al número t dd dominio de i; 
La lunción /asigna el valor/(g(v)) al número g( v) del dominio de f Obser­
ve que en la llgura I el conlradommio de ¡i es un subconjunlo dd dominio 
de J y que el conlradomimo de f ° i; es un subconjunlo dd conlradomi- 
mo de f

i' EJEMPLO ILUSTRATIVO 1 Si y > gestan ddlmdas por 

/(i) = ^ \ y = Iv “ "í
entonces

l/o ,é)(0 = /(;,’('))
= /{1\ - 

= .2\ í

1.1 dominio lie i* es {-oo. roa) y el dominio de / es |0. +co) Por tanto, el 
dominio de ° i; es el eon)unto de números reales v para los cuales 
2i - ^ • 0 o. cquivalenlemenle. [ !. ico) A

► EJEMPLO 2 Sean

H\) ^ V A-IG I '
V ..

Ghteima (I “ i,'M ') mediante dos métodos tu) eakiile \ utilice este mí­
melo p.iia deleimmat /t i;( í)l. (Ii> calcule (/ o glt G \ emplee el tesiiltado para 
di leiimiiai I / ’ i.’K i)

j( I) I I (in (1 cim /(eut)

/ nz\ I 11
s

(úv • h :

nh

7 J ’ I 1

Solución
til) i't G

Asi

/(i'Hl)
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Por tiinU)

(/ ° =
2(T) - 1

= I

► EJEMPLO 3 D.i(Jo que/ y ? están clennidas por

f(x) = r > v(r) = - 1

cjLule (a) f ° f. (b) )> o (c)/ o id) )> o f También dLiermine el do­
minio de cada luneion compuesta

Solución D dominio de/es [0. +oo) y el dominio de i; es (-co +co)

(j) (/■ o f){xi = J(flx)) 

= /( M

(b) (g o g)(x) = g(g(\))

= t;(i- - I)

= (x~ - l)= - 1 

= - 1\-

E1 dominio es [0, -i-oo) El dominio es (-co -i-oo)

(c) (/ o g)(0 = /íi,Mí))

= f(r- - 1)

= -1
El dominio es

td) (g o /)(í) = g(/(\))

= g( S V )

= ( . r)- - l 
= r - 1

(-00 -|| U [I. +00) El dominio es (0. +oq)

En el ineiso (d) observe que aunque i - 1 esta definido para todos los valo­
res de V. el dominio de g ° J, por la dennieión de luneion compuesta, es el 
eonjunio de todos ios números \ de! dominio de f t.iles que f(\) esta en el do­
minio de g De donde, el dominio de g ° y debe ser un subconjunto del domi­
nio de J

Observe en los resultados de los incisos (c) y (di del ejemplo T que 
ty o g )i I) j (g o _/)(\) no son necesariamente ijiuales

Un teorema importante en Cálculo, llamado la rtg/<í de li¡ uiJtiui. que 
se estudiara en la sección 2 8, trata sobre funciones compuestas Cuando se 
aplic.i la rejzla de la cadena es necesario considerar una luneion como la 
composición de otras dos funciones, tal como se muestra en el ejemplo ilus­
trativo siyuienic

EJEMPLO ILUSTRATIVO 2 si /kd = (4v^ + h\ h se
puede evprcs.ii como la composición de las dos tuiiciones f ^ g pura las cuales 

/(V) - t’ > glU = 4\’’ t 1 

debido a (jue

{f o gilí) := /(g(x))
= /l4t- + 1)
= (4\- + 1)' ◄

L.i luneion li del ejemplo iliisiralivo 2 laminen puede expresarse como la 
composición de olio par de luneioiies Por ejemplo, si

/(\) =s (4v + n’ > 0'(\) = v“
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cntiíiiLCs

if o gh\) = r{G(\i)
= nxh
= (4\- + i)'

► EJEMPLO 4 D.<du

"i s

/HJ -

riGl'R\2

IlÍK) =---- --
. X- + 3

exprese h comí) la Lomposicion de dos funciones f y ^ en dos formas (a) la 
función/conliene el radical, (b) la función e coniiene el radical

Solución
(a) f(x) = ^J-_

\ + 3

i-ír) = X-

EiUonces

íf o íKO =/(«{!))

= n^-)

___ I___

\ \ - +3

(b) fix) = i
I

^-(r) = . i- + 3 

Enlonces

(/ o A’)U) = /(A’(0)

= + 31

I
.1- +3

J__

S’lu = -4

I IGL U \ 3

k

JU) 21 <)

Una lunción cuyo conlradoniinio consla de un solo número recibe el 
nombre de fundón constante. De esie modo. si/(i) = t, y c es cualquier 
numero real, enlonces / es una lunción consume y su grállca es una recia 
hori/ontal a una dtslancia dirigida de < unidades a partir del eje x

EJEMPLO ILUSTRATIVO 3
(a) L.i lunción dellnida porf(\) = 5 es una lunción conslanie, y su gráfica, 

mostrada en la llgura 2. es una recia hori<'oni.ii situada .i unidades so­
bre el eje i

(b) 1.a lunción dellmd.i por gil) = -4 es una lunción consiaiiie cuya gr.ifica
es una recia liori/onlal ubicada a 4 unidades debajo del eje i Consulte la 
figura 3 A

Una función liiieiil se deliiie por 

l(\) = iin + h

donde n¡ y h son consianies y ni 0 Su grallca es una recta cuya /i£/ji//i7i- 
í< es ni y su ¡iilfKffn ion x u ouUiHuId al oniii'ti es h

EJEMPLO ILUSTRATIVO 4
/(i) = 2i - b

La lunción dellnida por

◄I IGGKA 4 es lineal Su griillca es In lecia mosiraila en la figura 4
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l

ful = t 

H(,LR.V5

La lunuun lineal parliLular dcnnida por 

yu) = t

se denomina función identidad. Su gráfica dibujada en la tigura 5 es la recta 
que hisccia los cuadrantes primero y tercero

Si una función/se define por

J{X) = d„\" + Ü/i-lt"-' + ■ + + í/|r + 0()

donde 0|. . a„ son números reales (a„ ^ 0) \ n es un numero entero
no negatno, entonces recibe el nombre de función polinomial de grado n 
Así la función dellnida por

fix) = + Ix - ]

es una función polinomial de grado 5
Una función lineal es una función polinomial de grado 1 Si el grado de 

una función polinomial es 2, entonces se le llama función cuadrática, y si el 
grado es 1, entonces recibe el nombre de función cúbica.

Si una función puede expresarse como el cociente de dos lunciones 
polmomiales entonces se denomina función racional.

Una función algebraica es aquella formada por un numero finito de 
operaciones algebraicas sobre la función identidad y una función constante 
Estas operaciones algebraicas incluyen adición, sustracción multiplicación 
división potenciación (elevación a una potencia) y radicación (extracción de 
una rai7) Las funciones polmomiales y racionales son tipos particulares 
de funciones algebraicas Un ejemplo complejo de una luncion algebraica 
es aquella definida por

/(r) =
(r- - + 1)'*

+ \

Además de las funciones algebraicas, se consideraran las fuitacmL"; irai 
LeníienU\ ejemplos de estas funciones son las funciones trigonomctncas, 
discutidas en la sección A ‘J del apéndice, y las funciones logarítmica y expo­
nencial estudiadas en el capitulo 5

Una JiiiiLion ¡>ai es aquella cuya gráfica es simdrica con respecto al eje 
V. y una Junuon iiiiinir es aquella cuya gradea es simétrica con respecto al 
origen A continuación se presenta la dcdniuon formal de estas lunciones

1.2.3 Definición cié función par y función impqr
(1) Una luncion/es una función par si para cada t del dominio de f.

n-\) = AO
(ih Una luncion/es una fundón impar si para cada t del dominio de

! /(-O = -Jlx)

En los dos incisos (i) y (ii) se sobrentiende que -t esta en el dominio 

de/siempre que v lo esté

Las propiedades de simetría de las lunciones pares e impares se deducen 
de los criterios de simetría dados en la sección A 2 del .ipendiee
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EJEMPLO ILUSTRATIVO 5
(d) SWU) = i- ontoni.cs/’(-o = (-i)- Porlatuo _/(-v) = /(x) j critonse- 

Liicnuj / es una lunuon par Su graliea es una parabola siiHLlru.a Lon 
rcspctlo al Lje \ Vta la ligura 6

(hl Su’ÍU = r'. cnlonLCs g(-u = (~u' Coning(-v) = cnlonLLs;!'

es una lunuon impar Ligrafitade^' mostrada ui la figura 7 es smiLlri 
ea Lim rLspvtIo al origen ^

r EJEMPLO 5 Trase la grafiea de la (iinLion > a partir de la gra- 
tiea Lonjeture si la luneion es par. impar o de ninguno de estos dos tipos, des 
pues confirme la conjetura analíticamente

(dt ft\) = - 1\~ + 7

(b) g( i| = - 4i^ - Hl

(O /j(i) = ii ‘ + 7i' - i- + y

Solución
Id) La gráfica de / ira/ada en la figura K parece simdrica con respecto al eje

\ Por tanto se sospecha que la lunuon es par F\ira probar este hecho
analíticamente, se calcula /(-i)

/(-O = ■?(- d’ - 2(-D- + 7 
= ^x■* - li- + 7 

= /(i)

Comoyt-r) = yti). entonces/es par

I S .|(„rlli |U| 
/III *í - 2i s 7

IK.IIUK I IGLU\ y

(bl La figura H muestra h gralica de la lunuon i> la cu il parece sinietnc.i 
con respecto al origen Por tanto se sospech i que la lunuon es impar 
Al calcular gl-D se ohliuic

ifl-O = í(-v)’’ - 4(-u'' - H(-U 
= + 4i' + Hl

= - 4i"' - 9u
= -gil)

Como gt-i) = -g(i), entonces se ha demostrado analíticamente que la 
lunuon g es impar
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p"rI '0. Hl| 
:t* - 7i’ I- •*

I IGl lU 1(1

(c) Como la jiráfica de li. mostrada en la figura 10. no es simétrica con res­
pecto al eje \ ni con respecto al origen, la fuiiuón no es par ni impar. Al 
calcular se obtiene;

= 2(-u‘ + 7(-i)’ - (-U‘ + y
= le-* - 7t’ - i- + y

Como /i(-1) ^ l¡{ t) y /i(- r) ~li(x), se ha confirmado que l¡ no es par 
ni tampoco impar

► EJEMPLO 6 Sea

F(\) = |.v + 3| - I r - 3|

tu> Defina Rx). sm las barras de valor absolult). a iro/os en los intersalos 
siguientes: í-oo. -3); |-3. 3); (1. +<»), (I» Apoye la respuesta gráfi­
camente trazando la gráfica de f- a partir de la ecuación dada, (c) De la 
gráfica del inciso (b) establezca si /■' es par. impar o de ninguno de estos 
dos tipos, (d) Confirme la respuesta del inciso (c) analílic.imeme a partir 
de la ecuación.

Solución
(u) A partir de la definiciún del \ alor absoluto de un número

1 \ + 3 [ = <
í r + 3 si .r + 3 > 0
l-(.i + 3) si .1 -I- 3 < 0

y
1 .1 Jf .V - 3 si .t - 3 > 0

i-(r - 3) si .r - 3 < 0

Esto es

|.c + 3| =1í .t + 3 si > -3
l-.T - 3 si .1 < -3

y
=jí .V + 3 

i-.\ + 3 > > A IV

.Si .\ 6 (-00, -3). I.V + 3| = -X - 3 y \x ■

secuencia

|.t + 3| - |.t - -1| = -X - 3 - (-.\ +
-6

Si V e 1-3. 3). i -i- II .1 -1- 3 y 1A - 3

|r.3| - 1 t -3| = + 1 7 +

1\

Si i G |3. + oot. 11 .\ -1- 31 = .\ + 3 > 1 -V -

1 .\ + 3 1 - |,v- 3| = + 1 1

Con estos resultados, se define /•'( U a trozos de la siguiente Iorina

/■(.V)
-6 si .\ < -3 
It si -3 á .r < 3 
6 SI 3 < X
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hw h • M i» ' M

[K.un II

(li) I .1 llgurj 11 muestra la grafiLa de / Ira/ada a partir de la ecuaemn L.i 
grafie.i apo>a la respuesta del muso ía)

(c) Comí) la jirállea de la figura 11 es sinielne.i con respeelo al origen, la tun- 
eion / es impar

(d) Al eakular /(-i) a partir de la eLuacimi dada, se tonfirma la respuesta 
del muso (t)

/( i) = |-r + l| - |-t - 3|
= |-hr - 3)1 - |-(t + 3)|

=|i-3| - |r+3|
- -Rx.)

por tanto, se ha demostrado analítieamenie i]ue Tes impar A

Hr3i|:|:t«lt«IW

En loi íjíti uios ¡ o 10. Jijinii /in wi,'í//t/i/< s fimanin \ \ tlcttr- 
iiw.i il ilinniiuo Jt la finn ion nsiiliiinit (aif + k. (I¡lf - u 
u it e '‘¡>i¡í;. (i ) ¡:/j

1. )(U = V - S.gti) = r - 1

2. fix) =

3. /•u) =

i* + 1 

e(í) = -

I í.’(U
t 4 I 
r - 1

4. /i tj = i. vi») = 4 - r-

5. /(ri = t. s’tt) = r - I

(i. Jíi) = I r |. (,'U) = ( r - 3 I

7. f(rt - r + l.g(i) - 3\ - 2

K. A«) = , > - 4. gí XI - r - 4

!
y. Ar)

X + 1

III. /u) = X-. eit) =

^'l'» =

I

I n lin i jen u un 11 o 14 ¡uiru hn fiiiu unu xfxf'xil iiiimi n> 
I (/o e)(t I'm./í(;ii/< ihn imímlin tuluiUiik e(‘)
\ iililiii íUt nimurii ¡iiini ikUniuiuu (h) Di It nnini
(/o XI mpkc i\i \iilor ¡líini I uk iikir (f o a’H< )

11. f{\) = 3»- - 4i el») = 1\ - 3,< _ 4

12. /(t) = t- - 36 g(x) = r - 3» , = <)

1
X - I 

2\ i f 3

13. /(u

14. /II)

-. e(u
i- + 1

-. i;i») 2i 1- 3 
.4 • -2

Ln kn ijiniiiin /s ,i 24 ikjniii ki\ uemt/iíi' Jiiiuioiux \ 
JiUniiiiif ti .kminio tk ki fiiiiiioii Wi; (ii) f ° /;
'M? o/. Itlf o o ^

15. yiu = r - 2 ^’(i) = I + 7
16. /II) = 3 - li. i*(i) = 6 - ,3i

17. Las luiKioiies del ejerucio I
18. Lis liinuoncs del ejcrtiLio 2
]'J. Ar) = >. X - 2. q(i) = r - 2

20. ;(\) = I- - = 1

21. Jix) = i,í,'(r) = Vt
X

22. /(r| = .,,r. c(r) = - i
\

23. fíx) = I T|.^»ft) = h + 2|

24. f(x) = -Jx- - 1 .«(r) = % i - 1

En kn cjercuio'! 25 \ 26 ikfuiii lu\ xu;uuiUn finuuinLX x 
iktíniiiiu ti(k'iiiiiuo(le knfiiiu iDiiex reMilliinies (/i)
[/lx)|- (< )í/o/)lx), (</K/o/)(-i)

25. /(X) = -Jx 26. /(U = I
I -

En kn cjcrucun 27 a 32, mpreu. h (omu i ompuxit uní ik kn 
líosfuni unu s/> i’ tn do\funmn

27. /i(r) =

2‘). hix) =

V X' - 4 28. /i(x) = (0 4- s-f-

f ' í
3». /i(r) = 4

l i - 2) l xV 3

(X- 4- 4x - S)-" 32. /l(X) = VM + J

! n kn tjiriuun IRi tN ¡nin m ki f;riifhtuluru ki f;nifuti di 
ki fililí uní III purlir di ki f;riifu ¡i i iniji liin \i ki fiini ion i x par 
iiiipiir o di niiif'iuio dt i \lin ikn ¡ipnx Dixpiux loiifiniii \ii 
i iniji liirii tiiiiililu (Uiii lile

33. (a) /(U 2i-* - 3i- 4-

34. (a( /(t) - X- + 2i + 2

35. (a) /(r) = .‘•x’ - 7x

.36. (u) /(X) = Jx' + 3,'

37. (a) /(T) = ^x

38. (a) /(X) =-

(I» «(\) = 4 I

(I» elx) = x" - 1

(I» e(x) = M

(I» >;(x) = x’ 4- 1

(h) i-íi) = 5x* - 4

(b) i-(U = 2|a| 4-3

¡M ¡OS ejiTLiiiin 30 x 10. ikiiniiuH <míi/iííií(»k/iít’ w tu fuin 
(uní es par, impuro di niiuiunn di istin din lipux

r- - l39. (u) f(x)

(c) /(X)

x' + 1

X* 4- 1

<b) elr)
r-
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III. lUI /lUl

icl /n)

i
(bj

I - I M t • II
I I slO -- t

hn />n rjcntii‘’\ 4t u 44. lutM i» (al ilffnui {i\}.
/ij\ barras de xalar ab\i<!uu>. < ;i los inli nulos iiuliuulos Ihl 

la u xjhu'suidi I iiu is<iuil t;»u/7i aimuh ¡razando la vra- 
fí> a del lilla vralli iiiloriiapailirdt hin iiai mudada UlAl’ar- 
iir de la a di l im md ihi. i siahh zi a \i la Iniu ion es ¡nir. 
iit¡¡'arode niniziinodi islos dos n/>m id> Coiijinne la res/iin s- 
la del aniso (el analitii ámente a ¡uiriir di laiiaaiion dada

•II. IMJ - —-l-co. Ol. (II, -»|
i

•12. /lu = » [ 11.1 -«.(11. |(l. -H»)

•13. fui - ¡X - 2| - |x - 2¡: 
i-cc. -2(.| 2. 2).12. *c«i

l-cc. -I). (-1, 0), lll, 1|. ( 1. rCCI

45. , Ls ummuiaiiva la >.nnipiiML'iun Jt* dos luiiunncs' T.s ilc- 
Lir. M f > i; Min iti's fun».iom;s uulesquiora. ,son ijiualirv 
1/o cim ) It; o jt\u' JusIiI'kiuc --u respuesta propor- 
eiiinanLlii un cjemplu.

Si t I .V son dos Jani iones tales //««■ (f o uMr) = \ x' 
U' MI il - X. í7i/()fi(< V se lia e i¡iit f \ n son inursas tina de 
la otra f.'ii los iji nn ms 40 a deimn sire i/iie / x i; son ni- 
sersas iithi di la olía

46. /IX/ = 2i - 3 y i;iu = ¿4-

47. ^ - i-pl

4X. Mu = j*. X & II. > 1,’lx) = \x
49. /(u -- ( <: 0, \ ei-x) ^ -/x
5(1. HM - (i - 11* y el U - I f \ \

51. IaI liinciún escalón uiiiiano I' y la liincioii siuno spn se 
dellnicnm en los ejercicios 47 y 49. rcpecliv.imeiile. de 
la sección I 1 luí lJetiii.i sjinií'íxi) j dibuje la yr-ífica 
ih) iJeriiu rispni ui > dibuje la ttralíca

52.

53.

54.

55.

56.

57.

5K.

59.

60.

61

Ueiiiuesiie (|iie si /y e son funciones impares, entonces
ly +• e) > ( / - y.) laiiihieii son liinciones impares, mien-
trasque/ • ;■ y^/i,'son (imcioiie% pares
determine si la tunenín uimpiiésla / '• y es par o iinp.ir en
cada uno de los casos sipuienies (ai f y y son impares, (bi
y es p.ir y y es impar, (ei y es par
íincuentre lórimdas p.ira (/ i;i(»i 'i

/(XI
(I SI r < 0
2r siO X r 1
0 SI 1 < X

>

«(XI
I SI r < 0
■ir SI I) •' X
1 SI 1 < X

l

Dibuje las traficas de/.«>/'• y.

r.ncuenlre foriiuilas parali; ° f H U a partir de las liinciones 
del cjerciciii 54. Dibuje la gr.ifica de c' - /.

Si fl\i = ¥ Zr * 2. cncuenirc do> íiiiiLiones e p.ira •
lascuatesi/c. ,y|(u = f - 4x ♦ ,5

Si /(u = X', enuieiiire dos limciotics e para las cuales 
ly '.-Kx) . 4x- - 12x f •>

Demuestre i|iie si /y « son dos Uinciones lineales, cnlon* 
ces/ o e es lina tiinchín line.d

l:\iste una tuiicion cuyo donumo es J conjunto de todos 
los números reales que es :i l,i \e/ pare impar , (’u.il es esa 
luncmn ’ Deimicsire que es única esta (unción.

Suponea que /Ix» = —, i;Ix) - — \ /i(x» = - x Dc-
X xr '

muestre x|iie (/ ° «Kxl- (e '/Kxiy explique por i|uc 
/ '• « t'i « “ f son la niisnia que li

l'r.ice en la yratlcadora las urálicas de las dos runciones 
I y (1 delliiid.is por

/iti % .X + I 
s X 4

y í»ixi /.X + I 
\.x - 4

|Ob-er\e que / es la inisiii.i linicion que //« del ejemplo 
Itili] Lxpliqiie porque las (jralicasde /■ y íínosoii l.is mis­
mas \. conseciiemcmenle, las I une iones no son ijm.ilcs

1.3 FUNCIONES COMO MODELOS MATEMÁTICOS
I-.n las apliLMciuiics del Calculo, se necesita expresar tina siiuaeión del miiiulo 
leal en (énninns de una rertieión limcional. denominada inmlelo niulemútico 
de la situución.l'.sia.sección esiádesiinada a proporcionarle práeticaen la oblen- 
ctxin de funciones etmiti modelos maleinálicxts j al niisino (tempo para mosir.irle 
.ilgunas de las aplicaciones ijue encontrará posieriormcme.

Aniu|ue no siempre .se emplea un méloduespceitlcopara obtener un tmicielo 
matemático, a eoniiiuiiiuón se le preseiUan algunos paMts i|ue le proporcionarán 
un procedinucnio posible que deberá seguir Conforme estudie los ejemplos, 
refiérase a estos pasos para \er cómo se aplican
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Sugerencias ^aia resolver problemas*
uria.funfiiéji^qinp jnp.^Jp. jnafenir

1. lea d prt)blema uiKladt)samcn[c liasi.i que Id cnliemJa Pura com- 
prenilerlit. con trccuonua es úlil inventar un cjeniplo especifico 
que involucre una snuacion similar en la que las caiiluJades son 
conocidas Otra avuda es dibujar un diaurama si es posible, como 
se muestra en los ejemplos 4 y ‘i

2. Determine las cantidades conocidas > desconocidas Llldice un sím­
bolo diyanios \. para la variable independiente y un símbolo, por 
deeir J. para la luitción que se obtendrá entonces/(\) simbolizará el 
valor de luncion Como v y/U) son símbolos para representar nú­
meros, sus deliniciones deben indicar este hecho Por ejemplo, si la 
variable independiente representa longitud y la longitud se mide en 
pies, entonces si \ es el símbolo para la variable, t debe definirse 
como el numero de pies de la longitud o, equivalentemente, x pies 
es la longitud

3. Anote cual(|uier hecho numérico conocido acerca de la variable y 
del valor de la tiincion

4. A partir de la inlormacion del paso 1. determine dos evpresiones 
algebraicas en temimos de la variable y del valor de la luneión De 
estas dos expresiones loniie una ecuación que defina la luncion Aho­
ra y.i se tiene una luncion como modelo ni.iiem.ilico del problema

5. A lin de terminar el problema una ve/ que se lia aplicado el modelo 
matemático, par.i determinar l.is cantidades desconocidas, vuriha 
una iiiiu lti\iíin. la cual consista de una o mas oraciones, que respon- 
d.in a las preguntas de) problema Asegúrese de que la conclusión 
contenga las unidades de medición correctas

^ EJEMPLO 1 til volumen ile un gas a presión constante es di­

rectamente propofcioii.d a la temperatura absoluta y a la temperatura de 175 
el gas ocupa 100 m' (:0 látciientre un modelo matemático (jue exprese el 
volumen como una función de l.i icinperaltira (b) ,Ciial es volumen del gas a 
una tempei.iturii de I 10 '

Solución
(nt .Sea /(i) metros cúbicos el volumen del gas cuva temperatura es \ grados 

I ntoiices. por la definición de varuicion directamente proporcional

l{\) - k\ (1)

iloiide k es un.uonsi.iiiie Como el volumen del gas es 1(K) m' a lalempera- 

tuiade 175 . se sustituye t por 175 y /ntpor llKlen (11. de donde se obtiene

lOU = A(I75)
^ = í

Al sustituir este valor de A en 111. se obtiene 

/(O = Jv

(b) A partir de la expresión para/(v|. se obtiene 

/tl40) = j(140)

= KO
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Coticlnsíón: A una icmperaliira do 140 . l*1 volumen del gas es de
80 m' <

I l(>t K\ i

^ EJEMPLO 2 Un mayunsia vende un produUo por libra (o frat- 
Lion de libra), si se ordenan no más de 10 libras, el mayorista eobni S2 por li­
bra .Sin embargo, para atraer ordenes mayores, el mayorista cobra sólo SI 80 
por libra si se ordenan más de 10 libras (n) Iincuentre un modelo matemático 
que exprese el costo total de la orden como una lunción de la cantidad de libras 
ordenadas de) producto (h) Dibuje la gráfica de la lunción del inciso (a) (c) 
Deteniiine el costo total de una orden de 9 5 Ib y de una orden de 10 5 Ib

Solución
<a) Sea Or) dólares el costo total de una orden de x libras del producto 

Entonces,

Ox)
Ix siO < r < 10 

I Hv si 10 < X

tb) La grállca de la (unción C se muestra en la figura l 
íc) Cív) se obtiene a partir de la ecuación Cíi) = licuandoO < \ < lOy 

de la ecuación Gr) = 1 Sxcuando 10 < x PortaiiU),

C(9 5) = 2(9 5) GI0 5)= (l 8)(I0 5) 
= 19 = 1X90

roncliisión; El costo total de 9 3 Ib es SI9 y el costo total de 10 5 Ib 
es SI8 90 ◄

Observe en el muso (b) del ejemplo 2 que la gráfica de C se rompe en el 
puntodonder= 10. locual indicaque la tunción C esí/nxominiiíien x = 10 
Se esludi.irá esta propied.id en la sección 1 8 Por alu>ra. note que debido u esta 
discontinuidad de C. sería más \ entajoso incrementar el tamaño de algunas iir- 
denes de compra para obtener un costo total menor En particular, sería im­
prudente comprar 9 5 Ib por S19 cuando se pueden comprar 10 5 Ib por SIS 90

I.n el ejemplo siguiente se tiene una lunción compuesta como un modelo 
matemático

^ EJEMPLO 3 En un bosi|uc un depredador se alimenta de su 
presa, y para las primeras 15 semanas a partir del fin de l.i temporada de ca/a. 
la población de depredadores es una lunción J de t. el número de presas en el 
bosi|ue, la cual a su ve/, es una lunción g de i. el número de semanas que lian
p.isado desde el fin de l.i temporada de ca/a .Si

f(\) - X' - 2x 4 50 y gtn =. 4f + 52

ilonde 0 < í < 15. h.iga lo siguiente (a) Encuentre un modelo matemático 
que exprese l.i población de depredadores eximo un lunción del número de 
semanas a partir del fin de la temporada de ca/a (b) Determine la población 
de depredadores 11 semanas después del cierre de la temporada de ca/a

Solución
(a) La pobl.icion de depredadores t semanas después del cierre de la tempora­

da de ca/a está dada por (/o g)tí). doinle U < / < 15

(í ° nHi) = /(«(/))
= /(4í -I- 52)
= + •‘52)- - 2(4/ + 52) -I- 50
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(h) CiMiidní = 11 se llene

(7 o Í,'HI)J = - 2(%J + SO
= SO

( niKlnsíon; Once senujus después del uerre de l.i temporada Jl ca/a 
la pohiaeion de depredadores es 50 A

'lo 2npiilr' 
10 pul,

I K.LR\ 2

ik;ik\.s

ii ro. <ii, I,

i i(>l K \ 4

Ln la seetton 2 8 se eonsiderará la siUiaeion del ejemplo S y se determi­
nara la lasa a la cual creció la población de depredadores 11 semanas después 
del cierre de la temporada de ca/a

r BJEMPL0 4 Un fabricante de cajas de cartón desea elaborar 
cajas abiertas a partir de pie/as de cartón reclanfiulares de 10 piily por 17 pulí, 
cortando cuadrados iguales en las cuatro cscjuiiMs > doblando lucia arriba los 
lados (:il f^ncuentre un modelo matemático i|ue exprese el volumen de la caja 
como una tune ion de la longitud del lado de los cuadrados que se cunaran |i>) 
(Cual es el dominio de la ítineion obtenida en el inciso (a) Me) Cn una granea­
dora dcicniune. con aproximación de dos ciiras decimales, la longitud del lado 
de los cuadrados que se cortaran de modo que la caja tenga el volumen m. •> 
grande postble , C'ual es el volumen máximo ’

Solución
4:i) Sea i pulgadas la longitud del lado de los cuadrados que se cortaran v sea 

l'(i) pulgadas cúbicas el volumen de la caja Fn la llgura 2 se presenta una 
picva de cartón daday la figura .1 muestra l.icaja obtenida a partir de la pie­
za de cartón El numero de pulgadas de las dimensiones de la c.ija son 
10 - 2i y 17 - 2i Por tanto.

\ív) = UlO - - lo
= I70v - 54r +

(li) IJe la expresión para Vír) del muso (a), se observa que l'(0) = 0 y 
l'(5) = 0 A partir de las condiciones del problema se sabe que x no pue­
de ser un numero negativo m tampoco ma)or que 5. En consecuencia, el 
dominio de Pese! intervalo cerrado [0, .5)

(c) 1 a grallca de la lunuon V trazada en el rectángulo de inspección de |0. 5) 
por |0. 200| se muestra en la figura 4 Se observa que V tiene un valor 
máximo en su dominio La coordenada x del punto mas alto de la gráfica 
proporciona la longitud del lado de los cuadrados, los cuales deben cor­
larse para obicncT la c.ija de volumen máximo, y la coordenad.i v pro- 
[loruona dicho volumen Fn la gralicaüora se determina que el punto mas 
allocs(20L I560M

(Imuhisinn: l.a longitud dcl lado ile los cu.idrados debe ser de
2 (H piilg para obtener l.icaja cu>o volumen máxime* es I5íi 03 pulg’ ^

I II la sección 3 2 se aplic.irá el C alculo para conlirmar .maliiieamenie l.i 
respuesta dcl e|ciiiplo 4(c)

r EJEMPL0 5 Una envase cenado de lio|.data. cuvo volumen es 
de tiOpiilg^, tiene la lormade un cilindro circular recto (ii) Delerimiie un mode 
lo maleiii.itico x|iie exprese el arca lie la superllcie lol.d del envase como una 
Iunción ilel i.idio ile la b.ise (h), Cual es el dominio de la lunuon obk mda en
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r

I k;i k \ 5

L'i iiicisii ij)' (c) lúi iiiKi yratlc.iilor.1 dclorimnc, (.on aproximación üc dos ci- 
lr.is declínales, el radio de la base del eiuase si se emplea la canlidad mínima 
de Imialat.ien su elahorauiin

Solución
luí Observe la rijiura 5. ésta niuestia el envase cilindrico domle r pulyadas 

es la loneiliid del radio de la base y li es la altura. Se empleara la cantidad 
mínima de hojalata cuando el áre.i de la superllcie total sea un mínimo. I£1 
arca de la superllcie lateral es 2ftrh pule*. \ el área de cada una de las 
dos tapas es nr- piilg- Si S pulgadas cuadradas es el área de la superficie 
total, entonces

S = 2nrh + 27tr- (2)

Como ni~h pulgadas cubicas es el \oiumen de un cilindro circular recto > 
el volumen del envase es de óO piilg^. se tiene que

nr'lt = ÓO

Al despejar h de esta ecuación y sustituirla en t2», se obtiene .9 como fun­
ción de r :

SUh^
- ^ 

+ 2!zr-

... 1 •U - T *
Sin = — -h 2nr- 

r
(bl Para obtener el dominio de S. observe en la ecuación que define ai't/i que 

r no puede ser cero. Sin embargo, teóricamente r puede ser cualquier nú­
mero pttsiiivo Por tanto, el ditinmio de 5cs (0. -i-oo). 

íc» La figura (> muestra la gráfica de .9 trazada en el rectángulo de inspección 
de (0, 10) por [0. 2()0|. La coordenada r del punto más bajo de la gráfica 
proporciona el radio para el área de la superficie total mínima, lin la gra­
neadora se determina t|ue el punto más bajo es (2 12. H4 84)

(-'nndtisítm: .Se empleaiá la cantidad mínima de hojalata en la ela-
bor.ición del envase cuando el radio sea de 2 12 puig. ^

jo. io|p„r|n 2001 Kn la sección 3 se confinnara analíticamente la respuesta del ejemplo
^ 5(c) como una aplicación del Cálculo

^ EJBMPL0 ó 1:11 una comunidad de 8 000 personas, la velocidad 
con la que se diliinde un rumor es conjuniumenie proporcional al número de 
personas que lo han escuchado > .il número de personas que no lo han escuchado. 
Cuando 20 personas han escucliado el rumor, éste circula a una velocidad de 
2(K) personas por llora, (a) Encuentre un modelo matemático que exprese la 
velocidad a la i|ue se esparce el rumor como una función del número de perso­
nas que lo han escuchado, (h) ,.Qué tan rápidiv circula el rumor cuando lo 
lian escuchado .900 personas'Mc) En la graficadora. estime cuántas personas han 
escuchado el nnnoi cuando éste corre con la mav or v eíocidad

Solución
ta) Sea/u) el número de personas por hora la velocidad a la cual corre el ru­

mor cuando lo han escuchado a personas. Entonces, por la dcnnición de 
variación conjuntamente proporciona).

í(x) = A-.r(S()00 - Aj (3)
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donde k es una tonslanle Como el rumor circula ,i la velocidad de 200 
perM>nas por hora cuando 20 personas lo han escuchado, se susliiuve \ 
por 20 > /(í) por 200 en obteniéndose

200 = A(20)(Ü000 - 20)

Al sustituir k por este valor cii C?). se tiene

f(x)
t(8 000 - X)

19H

(b) Üe la expresión anterior para_/(\), se obtiene

(0 Hl)001p<r|0 isDOOi

/MI
WHOQl) - 1 I

7<Jíl

I lí.t R \ 7

r(5{)0i = <K)0 - 500)
^ 708

= 4 600 2 S

rontliisión El rumor se difunde a una tasa de 4 600 personas por 
hora cuando lo han escuchado 500 personas,

(el La figura 7 muestra la gráfica de/trazada en el rectángulo de inspección 
de [0. 8 000| por |0, 25 000] Se determina ijue el punto mas alto se obtie­
ne cuando i = 4 000

C’uncliisión; El nimor se difunde a la mavor velocidad cuando lo han 
escuchado 4 000 personas, la mitad de la población

En las secciones 3 2 > 7 4 se considerará la situación del ejemplo 6 para 
ilustrar dos aplicaciones diferentes del Cálculo En la sección 3 2 se confir­
mara analíticamente l.i respuesta del inciso (c) Después, en la sección 7.4. se 
obtendrá un modelo que exprese el numero de personas que han escuchado el 
rumor como función del tiempo que el rumor lia sido esparcido^de modo que 
se puede determinar cuántas personas han escuchado el rumor en cualquier 
momento particular Aprenderá que la gráfica de este modelo recibe el nom­
bre de (lina ch ¡ niiinieníd lot;¡\iuo También se probará en la sección 74 
i|Uc, linalmente, la población completa escucliara el rumor

EJERCICIOS 1.3
/ /II a¿iii t h n u Id iihit nvii iiiIíI liiiu ii'ii i umi) itn mmlt lo niali 
iiiuUi ii i/( lililí \iiiui, uní iiiiiUi.iiliii Mili líos íli < slin iiioiltliis 
<i¡hirit I itin ¡losh riiiniit lili ui ti uuii tiiiiiulu si opluiiu il 
Culi iiloii !ii siiiuii mu l)t lililí la uiruihlo imhluiiilii iilt \ il su 
lor i!i lii líiiu mu < oiim iiu iiiiiiu lo i iiiiluiiit las iiuiilaiU s ih 
iihiliium III iili;iiiiiis ilt los tjfiiiiios la Minahli iu¡li¡uu 
JiiiiH pnrtitliiui loii pin ilf npn \tUíiír uu uiiuiuo uo lu i'tili 

¡’or tjiiiiplo iii il fjmum I si x rtpnsiuia ti uiiuu'io ilf 
liíihíiiiiiliirts, i/itoiiits X ilihi- ui iiu uiinuro lUUro im iiti'ii 
in o 11, iiiU s tjtii II IOS para salisjui < r los n c/iu nmu iilos ih 
louliiuiiJiul 11/111 la i;raliiuuo u loiii/ia) musarios /¡ara 
apiñar ti Caliiilo piistirmniiiiirc. lousuUn i/iu la uinahii 
iiiili/uiiiliiiUi ri/irtunla un niiiiuro nal na lU/ítilisa, Na al- 
\ itlf I oiiiplt lar il ijiiiii m > o riliit lula una t om liman 

1. I.j nuniiiia de p leo diario de una cuadrilla es direct.imcnle 
proporsioiial j1 numero de tninajadorcs. ) una cnadnila de 
12 tiene una nomina de 5K1D (a) Enciienitc un modelo ma-

tutijiico que exprese la ilumina de p igu diario como una 
lunuon dcl numero de iiabajadoies ib), Cual es la luimi 
na de pago diario p ira un i LUadriil.i de 15 trabajadores ’

2. 11 peo aproMiiiado del cerebro de una persona es direc- 
i.imciiit proporciona! al peso de su cuerpo j una persona 
que pesa i 50 Ib lidie un cerebro uno peso aproximado es 
de t Ib tal Lncuenlre un niodekf nuieni.idco que exprese 
el peso aproximado del cerebro como un.i lunuon del peso 
de i i persona tli) Uelennine el peso aproximado del ce 
rcbni de una persona que pe^a 176 Ib

3. 1:1 periodo (lienipo para una oscilación eomplelal de un 
péndulo es directamente proporeioiial n Li raíz cuadrada 
de la longitud del péndulo, y un péndulo de 8 pie de lon­
gitud nene un periodo de 2 s (ul Enuiemre un modelo 
malcmalico que exprese el periodo de un péndulo como 
una función de su longiiud (h) Deiemiine ef penodo ce un 
páiidulu de 2 pie de longitud
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A. Para mu tucriia i|uc vihr.i. l'I iiunicrn de \ibrautmcs c-> 
dircaamcnic pnifHiruoiul a la raí/ cuadrada de la len 
Muii de la cuerda,) una cuerda particular ubra veces 
por se^'undo bajo uiu luición de 24 ku (a) Lnciieiiire un 
modelo nuleiiiaiico ijue exprese el numero de vibracio­
nes «.omi* una luiiLion de la tensión (bl Determine el nu 
mero de vibraciones |>or segundo bajo una tensión de 
(' kg

5. l os cargos de embarques se basan frecuentemente en una 
tormula que propiuciona el cargo mínimo por libra conlor- 
me el cargamento se incrementa Supongaque los eargos de 
embarques son los siguientes $2 2(J por libra si el peso no 
excede 5t) Ib, S2 II) por libra si el peso es inajor que 50 Ib 
pero no excede 2(N) Ib. 1-2 0^ por libra si el peso es ma^orque 
2<H) Ib (a) hiicuentre un modelo tnalemaliuiqueexprese el 
costo total de un embarque como una lunuun de su peso Ib) 
Dibuje la gratica de la lunuón del muso (a) (el Determi­
ne el costo total de un embarque de 5() Ib. 51 Ib. 52 Ib. 54 Ib 
200 Ib. 202 Ib 204 Ib \ 206 Ib

íi. Fn l'iys. el porte de correo para una cana de primera clase 
se calculo como sigue 32 centavos p.ira l.i primera on/a o 
menos, x 23 centavos poron/j (o Iraecinn de onAi) adicio­
nal para las siguientes 10 o/ (al Encuentre un modelo 
matemático que exprese el pone de correo para una cana 
de primera clase, que no pese mas de 11 o/, como una lun- 
cion de su pc'ii (h) Dibuje la gráfica de la función del 
inciso tal tci Deiennine el pone de correo para una car­
ta de primera clase que pesa 1 0 o/. 2 o/. 2 I o/. 8 4 o/ 
> I 1 07

7. 11 costo de una llamada telefónica desde Mendocino a San 
Francisco durante e! lioranu de oficinas es 40 centavos por 
el primer minuto ) 30 centavos por cada minuto o fracción 
adicional (a) Encuentre un modelo maleinalico que expre­
se el costo de una llamada telelónica. que no dura mas de 
5 mm. como una tiincioii de la duración de la llam.id.i Ib) 
Dibuje la gráfica de la luneioii del inciso (a) (c) Delenmne 
el costo de una llamada (elelúnicMqiie dura 0 5 iiiin. 2 mm. 
2 “v mm, 3 mm. 3 .5 min > STTiin

H. El precio de admisión regular para un adulto a una deter­
minada lunuon en el Co.ist Cinema es de S7. mientras que 
p.ira un niño menor de 12 años de edad es de S4 > el pre­
cio p.ira aduilos de por lo menos 60 años de ed.id es de 
S5 (a) Lncuenire un modelo in.ilem.itico que exprese el 
precio de admisión como una timeióii de la edad de la 
persona (b) Dibuje la gráfica de la lunuón del muso t.i)

y. Lademand.ide un juguete en cierto almacui es una lunuon 
y de/>, el numero de dolares de su precio, el cual es a su vcv 
una tunuoii g de f. el número de meses desde que el juguete 
llegii al almacén Si

Ifpi
5 000

r y x'(n 2(/' 5

llaga lo siguiente (n) encuentre un modelo in.iteinaliui 
que exprese la demanda como una lunuon del mniicTo de 
meses desde ijue el juguete llego al almacén (b) Determine

la duiiaiida unco meses desde que el juguele llego al 
almacén

III. En un lago, un pe/ grande se alimcn(a de un pe/ mediano 
> l.i pobl.icmn del pe/ grande es una función /de v. el nu­
mero de pecevde laiiuno mediano en el lago A su \e/, el 
pe/ mediano se aliiiienla de un pe/ pequeño, j la pobUiuon 
de peces medianos es una función g de n. el numero de pe­
ces pequeños en el lago .Si

/(V) = - 20 r + 150 y g(n| - „ -i- 5 000

haga lo siguiente (u) encuentre un modelo matemático 
que exprese I.i publ.icion de peces grandes como una lun- 
eioM del numero de peces pequeños en el lago (b) Duer 
mine el numero de peces grandes cuando el Ligo conllene 
0 millones de peces pequeños

11. El arca de la superficie de una esfera es lunuun de su ra­
dio ,Si el radio de una estera mide r ceniimeiros \ .Ur) 
cenimielros cuadrados es el arca de la superficie, entonces 
/Ur) 4;rr’ Suponga i|ue un globo mantiene la forma 
de un.! esfera conforme se inlla de modo <]ue el radio cam­
bia a una tasa constante de 3 un/s Si fU) centímetros es 
el radio del globo después de / segundos, haga lo siguien­
te (u) calcule (A o /)(f) e interprete su resultado (h) De­
termine el area de la superficie del globo después de 4 s

12. El volumen de una eslora es lunuon de su radio Si el ra­
dio de una eslora mide r pies y \'(r) pies cúbicos es su 
volumen, entonces l'(r) = Suponga que una bola
de nieve de 2 pie de radio comen/o a derretirse a una tasa 
constante de 4 5 pulg/min Si JU) pies es el radio de la 
bola de nieve después de r nmuilos, haga lo siguiente (a) 
calcule (V' ° f)U) e interprete su resultado (b) Determine 
el volumen de l.i hola de nieve despucs de 3 mm

13. A un campo de forma rectangular se le colocaron 240 m 
de cerca (a) Encuentre un modelo matemático que expre­
se el área del terreno como una luneum de su longitud 
(b), Cual es el dominio de la tunción del muso (al ’ (c) Al 
(ra/ar la gráfica de la luneion del muso tai en la grafica- 
dnra. estime, con aproxiiiiacum de metros, las dimensiones 
del campo rectangular de ma>or urea que pueda cercarse 
con 240 m

\A ■

14. En un jardín rectangular se eoloearim con 100 pie de cer­
ca (a) Encuentre un modelo m.ilematieo que exprese el 
area del jardín como una funciim de su longitud (b) ,Cual 
es el dummio de Li lunuón del inciso (al ’ ic) .M (r.i/ar !.i 
gráfica de la fuii..um del muso (a) en la grafieadora. esu- 
me, con aproxiiiueion de pies, las diinciisiones del jar-
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(lii) rc«.ljnuiiLr do nia>or aa'.i qiii pilada (.LKjrvc (.en 
HH) pie

15. Kcjtii.e ct cjercKio H (.nnMd>.rjndii aluirj que un lado 
del lerremi csu subru la onila de un no, por lo que nene 
una limile naiural. > el malenal para cercar se empleara en 
liT'. otro> ires ladoN

A ' .

16. Realice el ejercicio 14 considcrandoaluinuiue el jardín esta 
situado de modo que el lado de una casa sirvo como limite 
V el material p.ira cercar se cinple.ini en los otros tres lados

17. l’ii lahricanle de tajas de hojalata ahierlas desea emplear 
pie/as de lio|alata con dimensiones de H piily por 1^ piiljt 
cortando cuadrados ijuiales en las cuatro esquinas ) do 
hiaiido liacjii arriba los lados la) liiciunue un modelo 
mateinalico que eeprese el volumen de la cuja como una 
liiiKioii de la lonpitnd del lado de los cuadrados que se 
corlaran Ih), Cual es el dominio de la lunuoii del inciso 
tal' Ici Dcicnmn en la jiralicadoia. con aproMinacion de 
decimos de pilleada la lonpiiud del lado de los cuaiirados 
tjiie se coitaian de modo (|ue la caja lenpa el volumen más 
jtraiidcpo ible ,( nal csel volmncii inavimo apmvimado a 
pulpadas culiica.’

IK. l'n fahncatile de cajas de cartón hace i qas ahieilas a p ulir 
de pie/as cuadradas de cartón de 12 un de lado, corlando 
cuadrados l•>uale> cii las cu.ilio esquinas y dolilaiulo los 
lados hacia amh.i <a) 1 ntiicnlie un modelo inalenialico 
que exprese el volumen de la caja como una luiicion de la 
lonpiluddel ladode los cuadradoscpiesecotlar.íii (li)|Cu.i1 
es el dominio lie la Imicion del muso tu)' (e) Determine en 
la praluadora. con a|)rnviiiuuon de centíinelros. ],i lonpi-

lud del lado de los cuadrados que se corlaran de modo que 
el volumen de la caja sea máximo ,.Cua) es el volumen 
máximo aproximado a cenlfmclros cúbicos'

19. Realice el ejercicio 17 considerando ahora que el fabrican 
le elabora las cajas abierta.s a partir de pie/as de hojalata 
rectangulares de dimensiones de 12 pulp por 1S pulp I n el 
inciso fe), deleniiine la lonpiiiid del lado de los cuadrados 
que se con.irán y J volumen .iproxim.ido con dos cifras 
decimales

20. RcmIicc’el cjerauo IH considerando ahora que el labncan- 
Ic elabora las cajas abiertas a pamr de pie/js de canon 
rectangulares de dimensiones de 40 cm por SO cm En el 
inciso (c). determine la lonpilud del lado de los cuadrados 
que se cunarán y el volumen aproximado con dos cifras 
decimales

21. Para el envase de hojalata del ejemplo 5, suponga i[ue el 
costo dcl material para las lapas es dos veces el costo del 
malenal par.i los lados (u) Duermiiie un modelo m.itema- 
liu) ipie exprese el costo total del malenal como una tuii- 
cmndel radio de la base del envase Ib), Cual es el dominio 
de la luncion del muso (a)' le) Deleimne en la grillcado- 
ra. con aproximación de dos cifras deemialcs, el radio de la 
base para el cu.il el costo total del m.iien.il es el mínimo

22. Realice el ejemplo S considerando .iboni que el envase es 
abieno en lugar de cerrado

2.1. Una pagina impresa contiene una región de impresión de 
24 pulg*. un margen de 1 S pulg en las partes superior e 
mienory un margen de ] pulg en los l.ulos ui> Encuentre ur 
modelo nuicm.nico i[ue exprese el area total de la pagm. 
como una luneion del anciio de la región de impresión Ib 
, Cual es el dominio de la función del muso la)' (e) Deter­
mine. en la graficadora. con aproximaeion de centesimos 
de piilg.ida. las dimeiisuiiies de la pagina mas pequeña que 
satisface estos requenmienlos

r
l 1 pulí I

Á

^ ‘m i pul

24. Un almacén ipie tiene iiii piso rcUiiiu'iil.ir de 11 2(H) pie'. 
scuinsini>e de minio (pie tenga pasillos de 22 pie de ancho 
en el trente y en loiido del .ilmaceii. y p.isillos de 11 pie de 
ancho en los l.ulos (ii) l■Ilcuelll^c iin miulelo m.ilemalico 
ipie exprese el arca total del terreno doiule se consimira 
el aliiuccii > los pasillos como iiii.i iimuon de la loiigiiiid 
(kl Ireiilc* y dcl loiulo dcl .ilmacui (b), C'u.il es el dmiiinio 
de l.i liiiK ion del muso (a) ’ (el Deieimme en I ■ giatlcado 
la. con .iproxmuuon de centesmios de pie. las diinen-
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sioncs Jol (i'nomi qui' tionv el .ucj tnimnu en il ui.il lMc 
jlnu<.en ‘■c mn'tniirj

22 pi.

25. Supi'nj’j quj üeNca uliii/ar un SLr\Mn de torreo partu.ul.ir 
para en% lar un paquete que tiene íonnade caja retlangular con 
una scttiun transversal cuadrada tal que la suma de su 
longitud > el penmeirude la sección transversal es KXlpulg. 
el mavinui permitido por el sen icin la) Lncuenire un tnode* 
lo rtiaieniatao que exprese d volumen de la caja cuino una 
lunuondesu longitud lili, Cual es el dominio de la 1 unción 
del inciso la)' It) Üeltmiirie en lagrullcadora. con aproxi­
mación de pulgadas, las dimensiones del p.iquete que nene 
el inavor volumen posible que pueda enviarse por este 
sen Icio

^••niieaie

20. hn un ainhiciiie limitado donde \ es el numero uptimu de 
bacterias soportado por el ambiente, la tasa del creeimien- 
lu bacteriano es conjuniamenle proponrionat al numero 
presente de badenas v la dilercnua entre d > el nume­
ro presente Suponga que el numero oplimo soportable por 
un ambiente particular es I millón de bacterias, y que la 
tasa Je crecimiento es de M) bacterias por minuto cuando 
se tienen 1000 bacterias presentes (a) Lncuenire un 
modelo matemático que exprese la tasa de crccimienlo hac 
tenano como lunción ild niiniero de bacterias presentes

(li), Cual es la tasa de crecimiento cu,indo están pres.'iitc. 
I(HMKH) b.icicrias' (e) Uelennine en la gralic.idnra c<m 
.ipíoxiin.icion de miles, cu.tnia. bacterias e tan presentes 
cu.inJo l.i i.is.j de crcumiciilo es iin m iximo

27, I (irt IJr.igg en el norte de ( .ililornui, es una ciudad pcquciia 
con ^ (MIO liabilanlcs .Suponga que la tasado crecimiento de 
una epidemia (la lasa de variación del numero de perdonas 
inlccladas)cn í nn Bragg es conjimiaiiienlL proporción il al 
numero de |K’rsonas inli.ct.idas j el numero de personas no 
mfcciadas Cuando U)() personas están mfect.idas Kicpidc 
lili 1 crece a una lasa de ‘J personas por día lu) I-ncuciiUc 
un modelo itlalem itico que exprese la lasj de crecimiento 
de la epidemia como una tuncion del numero de personas 
no infcciad.is (b), Que tan rápido es el crecimiento de la 
epidLinia cu.mdo 2ÍH) persoiKis están inlecl.ida ’ (c) I-n 
la gratlcadora. dclcnnme cuantas personas esi.m miccl idas 
cuando la tasa de crecimiento de lacpidLini.ies un máximo

28. l'na tienda de campana con fomia de pirámide cuadrangu 
lar se constnive a partir de una pie/a cuadrad.i de niaienal 
de 5 m de lado Cn la base de la pirámide, sea \ metros la 
dutancia desde el centro a uno de sus lados Rcfier.ise a 
la ligura (ni Lncuenire un modelo inalemalicii que 
exprese el volumen de la casa de c.impana como una tun 
Clon de r Siigtrurno 1^ lormula para el volumen de una 
pirámide es I' = \Wi. donde l'. U \ li son. rcspcciiva- 
mentc. las medidas del volumen, el area de la ha'C v la 
altura (1)1 Delcmime el volumen de la pirámide cuando 
\ = 0 8 (c) Uelcmiine en la grade.idora con aprovima- 
cion de centesimos de metro el valor de i p.ira el cual el 
volumen de la pirámide es un inavimo

■< m ►
k

^ III • I —

T

1.4 INTRODUCCIÓN GRÁFICA A LOS LÍMITES DE FUNCIONES
1:1 primer cüiitaclo enn líiniies concierne a liiiuic', tic fiimtoiu-\ Para dar una 
idea intuitiva del Itniiie de una luncnm se dedicará esta scedión a una inter- 
prelación grállea. los resultados de esto se confirmarán analílicamente ai em­
plear desigualdades La discusión desarrollada aquí laeilitara el camino para la 
definiuón preseniada en la sección I .‘5

Se comen/ará con una función particular

/ÍQ =
2r- + .X-Í

\ - I
(1)

Observe que esta luneion no está definida cuando \ = 1. esto es. 1) no exis­
te Sin embargo, la luneión está definida para cualquier otro numero real Se 
investigarán los Viilores de la función cuando .t se aproxima a 1, pero iin He-
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^jr .1 Ncr i. L'mcJ piicilc prcjiutiijrsi: por t|uc su dcsc.! ctinsidvrjr csUis valores 
de Uiiiuon l.l sii;uieiile ejcniplo iluslrali\o oncnl.ir.í esa prcjjunta

EJEMPLO ILUSTRATIVO 1 lü pumo p{\. 2) csiá sohrc
1.1 i>ur\a (juc llene eomo ecu.ieión 

V - 2i* + 1-1

i K.l U V 1

I i<;i K \ 2

¡ahln J

' II tt ' ’ ■

11 V
II ;s V s
MI 1
il7.« 1 s
IMl 1 H

1 1»^
H'l+> 1
II >1 hl'l J 'l'l'IS
II t 'l'fW.S

TubUt 2___________________

’i- - • \
. 1

7
1 '“i os
1 “i 0 0
1 s s
1 t >2
1 OI Sii2
1 >-ll s m:
1 lynit sooo:
I 00001 SOIHMIJ

Sea(>n. 2\* s- \ - 11 oiro pumo sobre esta tur\a. diferente de/^ Cada una 
de las figuras 1 > 2 muestran una porción de lu gráfica de la ecuación y la recta 
secante ijiie pasa por (J \ /’. donde Q está cerca de ¡’ En la figura 1. la coorde­
nada V de Q es menor que 1, y en l.i figura 2 es ma>or (|ue 1 Suponga t|ue 
/(il es la pendiente de l.i recta/■’C^ Emonces

/tx)

4- t - 1) - 2
i - 1

l\- + \ - 3 
I - I

l.l cual es la ecuación 11) Además, x ^ I porque P y Q son puntos distintos. 
Contorme \ se aprosinian cada \cv más a I los valores de (i.\) se acercan cada 
\e/ más al número que se definirá en la sección 2 l como l.i pendiente de la 
recta tangente .i la cursa en el punto P ^

Considere otra se/ la lunción definida por la eeuacii'm (I) \ calcule f(\) 
cuando s toma los valores O, 0 25.0 5(1. D 75.0.9. 0.99.0.999.0.9999.0 99999. 
) así sucesivamente Se están tomandxi valores de .v cada ve/más cercanos a I 
pero menores que I: en otras palabras. I,i variable v se aproxima a I a través 
de números c|ue son menores que 1 La tabl.i 1 proporciona los valores de la 
liincion par.i estos números.

Ahoraeonsiderequelav.in.ible se aproxima a I .i través de mí meros que son 
nunorcs i)ue 1. esto es. i toma los valores 2, 1 75. 1.5. 1.25. 11.101. l.OÜl.
1.0001. 1.00001.etc Los valores de la función par.iestos números se muestran 
en l.l t.ibl.i 2

Observe i|ue en l.is dos l.iblas conlorme v se aproxima cada ve/ más a I. 
/t VI se .icerc.i m.is j más a 5: \ cuanto más cerca esté v de 1, mas cerca esta­
rá /(V» de 5 por ejemplo, de la t.ibl.i 1. cuando v = 09. /(v) = 4.S. esto es. 
cuando vesmenorque i porO.I. /(v(esmenori|ue5por0 2 Cuandvi v = 0 999. 
I(\) - 4 99.S; es decir, cuando V es menor vjue I porOOOl. /(r) es menorque 5 
por 0.002 .Además, ui.indo V = 0 9999. fivi = 0 4999X; esto es. cuando ves 
menorque 1 por 0 0001. /( u es menor ijiu 5 por 0 0002.

I.a t.ibl.i 2. muesir.i tpie cuando .V = l 1. /tr( = 5.2: esto es. cuando .v es 
ni.nori|ue I porO I. /< v) es mayor que 5 por 0 2. Cuando .i = I 001. fiv) = 
s 002; es decir, cuando \ es mayor que I por 0.001. /(vi es mayor que 5 por 
0002 Cii.indo V = lOOOl. /(v) = 5 0002, esto es. cuando v es mayor que 1 
por 0 0001. /(\l es m.iyorque 5 porO 0002.

Poi tanto, de las dos tablas se observa (¡ue cii.uulo .\ difiere de I por 
± 0 001. (esUies V = 0.999ov = 1 001 )./t i(difierede5 por± 0 002 (esdectr 
/(v( = 4.99.S v> fiu = 5.002). Y cuandu \ difiere de I por ±00001./(vi 
difiere de 5 por± 0.0002.

Ahora. enfocMiido la situación desde otro punto de vista, se considera­
rán primero los v.ihvrcs dey(v). í:s posible hacer que los valores de J(\) estén 
tan cercanos a 5 como se desee, si se toman valores de .v suficientemente cerc.i- 
nos a I. esto es. [ytvi - 5| puede hacerse tan pequeño como se desee hacien-
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r - I

FKU'RA í

di) j r - I I lo siidcicnlcinenit: pequeño. Pero ieng.i presente i|ue .r nunej 

loma el valor I.
Esta eondieión puede escnbirse en l'onna más preeisa empleando dos 

símbolos para las diferencias pequeñas Los símbolos empleados usualmente 
son las letras griegas e (épsilon) y ó* (delta) De modo que se establece que 
para cualquier número positivo € existe un número positivo 6, seleccionado 
adecuadamente, tal que si | v - I | es menor que 5y |.v - I ¡ 0 (esto es.
t ^ 1). entonces \f(.x) - 5¡ es menor que € Es importante señalar que pri­

mero se elige € y que el valor de ¿depende del valor de € Otra forma de 
expresar esto es: proporcionado cualquier número positivo € . puede lograrse 
que j/U) - 5| < € tomando j.t - I | lo .suneientemente pequeño; es 

decir, existe un número positivo ¿lo suficientemente pequeño tal que

SI 0 < ¡t - l| < ¿ entonces \j(v) - 5| < f (2)

Observe t|ue el numerador de la fracción en (1) puede facinri/arse de 
modo que

/■(O = (2t + 3)(.t - 1)
^ .V - 1

Si .r 1. entonces el numerador y el denominador pueden dividirse entre 
X - 1 para obtener

/(\) = 2\ + .1 -V 5* I (3)

M(J|lRA4

. IH > V S?

La ecuación (.1). junto con la indicación de que x ^ I. es tan adecuada como 
la ecuación (1) para una definición de/(.t).

Abora se verá el significado geométrico de todo esto para la función 
particular definida por las ecuaciones (1) o (.1) La figura 3 ilustra el significa­
do geométrico de f y ¿. Observe que si .r, en el eje hori/ontal, está entre 
I - ¿ y 1 + ¿. entonces f(\). en el eje vertical, estará entre - e j 
5 + e . o a|uivalentemente,

SI 0 < |.v - 1 I < ¿ entonces |/(v) - 5| < €

Otra manera de establecer esto es la siguiente; /(\). en el eje vertical, puede 
restringirse a que esté entre 5 - € y .‘s + f obligando a que en el eje 
liori/ontal, esté entre I - ¿ y 1 + ¿.

A conlinUiicii')ii se iiiostr.irá gráficamente cómo elegir una ¿ adecuada 
para una C daila La llgur.i 4 muestra la gráílc.i de la fimcnín J trazada en el 
rectángulo de inspección lie (0. 4,7| por |4. fi], La gráfica tiene un • agujero" 
en el punto (I. .‘i), el cual puede o no exhibirse en la graticadnra. esto depende 
del modelo de la j'ralic.idor.i y del rectángulo de inspección elegido 
.Suponga t|ue C ■ 0.2; se desea restnngir /(t). en el eje vertical, de modo 
(jue esté ende .*> • 0.2 y .‘i ^ 0 2 o, ei|ui\alentemente. entre 4.S y .^.2. Se tra­
zan las recias v 4.K y v .^.2 y l.i gr.dica de / en el mismo lectangtilo 
lie inspección, como se innesiia en l.i lignia *) Se observ.i que las lectas 
inteisectan a l.i gi.itica de / en los puntos donde t (),ó \ \ II, respecti- 
V ámenle De modo que paia í 0 2. se toma ¿ 0 1 y se esi.iblece que

,si 0 < |\ l| < 0,1 entonces |/(i) .S | < l»2

LaI.i es la proposkion (2) con í 0.2 y ¿ O I. lo cual esta de acuerdo 
con lo observado en las tablas l y 2 Si su gialicadot.i tiene lacaiacleiistica ile 
.umthhi Iv/ifít/e), se podiá tener iipoxo giatico al ti.i/ai la giallc.i de I. el lec 
láng.iilo hoii/onlal sonibieado entie las ícelas v 4.S y v ."i,2. > el
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rfLl.iiiiüilo \L'nii..il somhrtMdi) iriilro í.is rcLt.is \ = OV \ \ = 1 I un el rcL- 
l.ingiilo lie m^peeeiDti ile |0. 4 7] por (4. 6[ tomo se mucslrj en la l'igiira 6

\hor.i siiponiia i|ue f = 0 02 y irace la gráfica de /"> las rectas i = 4 OX 
> \ = 5 02 cti el rectángulo de inspeceu'm de (O 0. I 11 por |4 9, s 11 como 
se imiesira en la figura 7 Se observa que las rectas intersectaii a la gráfica de 
/ en los puntos donde V = 0 99 y v = 1.01, respectivamente l’or tanto, para 
€ = 002.se tomao = 001 y se establece que

SI 0< |v- ij <001 entonces |^iv)-5| <0 02

I
1 - V <2
..•) , I I

IK.i u\r.

■ I
t'is c I S((2

]|(.l i(\7

l‘<- . Sil’

I <1 . . |0|

IK.I U\K

I.sta es la proposición (2) con € = 0 02 v t> = 0 01 lo cual esta de 
acuerdo con la inlormacion de las tablas 1 j 2 Otra ve/ se obtiene apoyo grá­
fico adicional de la figura 8. la cual muestra el rectángulo hon/onial som­
breado entre las rectas \ = 4 98y V = 5 02. el rectángulo vertical sombreado 
entre las rectas \ -r 0 99 y » = | 01 y |.i gráfica de f en el rectángulo de 
inspección de (0 9. I 11 por [4 9. 5 11

Se puede dar como f cualquier numero positivo pequeño y detennmar 
un valor adecu.ido para 0 tal ipie si |i - l| <D \ \ ^ I (esto es. 0 < 
I V - I I < O), entonces [/(i) - .S [ sera menor que € übsene que los 

valores de f se eligen arbitr.irumente y puede ser tan pequeño como se desee, 
y que el valor de independe del valor elegido de € También debe señal.irse 
que a un valor pequeño de € le corresponderá un valor pequeño de <5 Como 
p.ira cualquier f > 0 puede determinarse un í > 0 i.il que la proposición 
(2) se cumpla, se establece que el limite de /tvl contomie v tiende o se apro­
xima a 1. es Igual a fi. o expres.ido con símbolos

lim H\) = 5
.-.I

Observe que en esta ecuación se tiene un nuevo uso del símbolo "iguar Aquí 
ningún valor de i hace que/i\) tenga el v.iloi 5 El símbolo "igu.il' es apro- 
piadodebido a que el l.ido i/quieido está escniocomo lim f[\)

De (ó) es evidente que puede lugiarsc que l(x) este tan cerca de 5 como 
se ilesee. lomando v suficienleinente cerca de I. por lo que esta propiedad de 
l.i función J no depende de que f este definida cuando \ = 1 Este hecho 
piopnicion.i la dilerciici.i cutre lim /(vi y el valórele l.i tunción en 1. es decir 

lim /IV) = 5. i>i in /111 no < vivr< l n consecuencia, en l.i proposición t2l. se 
escribe 0 < | v - 1 | debido a i|ue solo nos interesan los v.ilorcs de /Iv) 
par.i V ciic.i de 1. peio no para V = I

EJEMPLO ILUSTRATIVO 2 Sea e la tuncion definida por

12v I ^ si » í l
^■""l7 .,.-1

La gí.ilica de c' ‘c mucsii.i m l.i ligiira “ Excepto en v - 1. la función c tiene 
los mismos v.iImic-s de l.i iuiicion / definida por la ecuación il) l-n coiisc- 
ctieiu'la como el hecho de qne hm /(«).= 5 n > licite nad.i que vci con lo 

que ociiiie en v I. se |uade a|dicat el .irguiiiculo .inicrmr a la luiicion c 
y coiichiii que paia cualquier i > U existe, un li > U tal que

SI U < I V 1 I i'' entonces ¡i-tv) - .sj < t

lie mi do qiii limg(v) *1 Nolcqueelll - 7. por lo que pai a esta Unte ion

el limite ile la luneion v el valoi de la tmiuoii existen pata v ^ I pero no 
son ij'iiiiles ^
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'i • ’ s| í * i 
•11 = 1

IKilRW

l-ICl lU II

EJEMPLO ILUSTRATIVO 3 StM/iLtliinaonddlimlapor 

l¡{\) - 1\ + ^

L.i t'rafit.i de It consUi de lodos l(ts punios de la recta y = 2i i- 3. mostr.idj 
en la fiyuTii 10 Otra ve/, cxcepio en .i = I. se tiene una luncn'm con los 
nn^^1os valores de la función /. dellnida por la ecuación (I). así como de la 
función f" del ejemplo ilustrativo 2. De este modo, se puede aplicar una ve/ 
más el mismo argumento y concluir que para cualquier € > 0 existe un 
(5 > 0 tal que

SI 0 < |r - i| < á entonces |/i(t) - 5| < €

demodoque liin/;(vj = 5 Sin embargo, en esta ocasión, el valor de la fun­

ción V el límite existen y son iguales para = I Una consecuencia de este 
heclio. como se verá en la sección l.H. es que la función li es coiiiintui en 
V = I. Observe que la gráfica de h de la figura 10 no tiene ningún agujero 
en .r = 1. considerando que las gráficas de f y g de las figuras 3 y 0, respec­
tivamente. tienen un agujero en r = 1 lin la sección 1 S aprenderá {]ue las 
funuonesy y g son í//sro/ifm»<iv en .r =1. A

^ EJEMPLO J Sea/la tunción defimd.i por 

/(.TI = 4t - 5

(a) Utilice una figura semejante a la figura 3 para c = 0 I con el fin de 
detennin.ir una <5 > 0. tal que

si 0 < |.t - 2| < ¿ entonces |/(,\) - 3| < 0 l

(hj Apoye la elección de ó'del inciso (a) con el uso de la gral'icadora

Solución

(a) Rellérasc a la figura 11 y observe (|ue los valores de la lunción crecen 
conlorme v se incrementa. Así. la figura indica que se necesita un valor 
de i| tal que/(V|) = 29 y un valor de ii l‘d 
se necesitan Xf y X2 lales que

4v, -- 5 = 29 4i: - 5 = 3.1

7.9 S 1
M = T A 2 4

.V, = 1.97.3 \2 = 2 02.3

Dehulo a que 2 - I.OTÍi = 0.02.‘s y 2,02.‘> - 2 = 0.02.S. se elige ó = 
0 Q2f> de modo (juc se tiene la proposición

•.I 0 < |v - 2| < 0 02.S entonces |jui - 3| < o |

(b) Un la graneadora se ira/a la gráfica de f y las rectas v = 2.0 y v = 3 I 
en el rectángulo de inspección de [0. 3j por |<). 4) como se muestra en la 
llgura 12. Con la operación de init r\t i«ion Uiiicneiitiini o las de nisirco 
Unicc) y iiinntniíi (:oi>iu) de la grallcadora. se determina que la reiia 
V = 2.9 intersecta a la grátlca de./ m v = 1 973 y que la recta y = 3.1 
intersecta a dicha gráfica en .r = 2 U25. lo cual apoya la elección de 5 
efectuada en el inciso (a). ^
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» ;\ 1 11 

I k;ik\ 12

hn d ejemplo siguieme se uiili/a el símboU» ^ por primera ve/ La f?e- 
dia => significa iiiiplim También se emplea la doble flecha «=j. lo cual sig* 
nilka que las proposiciones precedente > siguiente son eqtinalviues

^ EJEMPLO 2 Conllrme analíticamente la elección de S en el 
ejemplo 1 utilizando propiedades de las desigualdades

Solución Se desea determinar una ¿ > 0 tal que

SI 0 < |r-2|t< ¿ entonces |/(t) - 3| < 0 1

<=> SI 0 < |v-2|1 < 5 entonces |í4\ - 5) - 3¡ < 0 1

<=5 SI 0 < |t-2| < ¿ entonces 4 1 T - 2 1 < 0 1

SI 0 < |v- 2|1 < d entonces 11 - 2 1 < 0 025

Esta proposición indica que una elección adecuada de 6 es 0 025 Con esta 5. 
se tiene el argumento siguiente

0 < I r - 2 I < 0 025 
4 11 - 2| < 4(0 025»

=> |4t - H¡ < 0 I

=> |(4r - 5) - ■<1 < 0 I
=> |/(r) - 3¡ < 0 I

De esla manera, se ha confirmado analíticamente que

SI 0 < |t - 2| < 0 025 entonces |_/t\) - 3| < 01 (4)
4

En los ejemplos I > 2 cualquier número positivo menor que 0 025 pue­
de utilizarse en lugar de 0 025 como la ¿requerida Observe este hecho en la 
llgura 11 Ademas, si 0 < y < 0 025 y si se cumple la desigualdad (4), en­
tonces se tiene que

SI 0 < |r - 2| < y entonces |/'(r) - 3| < 0 I

ya (|ue cuali|iiier miinero \ que s.itislaga la desigualdad 0 < | r - 2 | < y 
también satistacc la desiguald.id 0 < |v - 2j < 0 025

I.as soluciones de los ejemplos I ) 2 consistieron en determinar 
una ¿para una C es|K‘cifica hn la sección 1 5 aprenderá que si para cualquier 
C > 0 se puede determinar un.i ¿ > 0. tal que

SI 0 < I» 2| < ¿ entonces |(4i - 5) - 3| < f

entonces se babra estableuüo que lim (4\ - 5) = 3 Esto se hara en el 
ejemplo I de la sección 1 5

^ EJEMPLO 3 Sea/ la luncton delmida por

JÍM - X-

(ii) Utilice un.i figura con € 0 3 par.i delemiinar una ¿ > 0 t.il i|ue

SI 0 < |v - 2¡ < ¿ entonces |7(\) - 4| <. \)3 

(h) Apoye la elección de ¿ilel inciso (a) con el uso Je la gralicadora
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o 1 
(I i

í IGl KA 13

/II) I
^7 ) > -5 ^

I i(,lH\ 14

Solución
líi) l .1 li^nn I 3 mucslr.i iin.i porctun dt l.i ^rallta de* j en mu \Lundad del 

pumo í2. 4) Si \ > 0 los valores de la tunuoii crei.en eonlorme d va­
lor de i se mcremenla Por lanío, l,i tlj/ura indita que se neeesitj un valor 
positivo i| lal que/ÍV|) = un valor posilivo \^ tal que /(\ii = 4 3. 
esto es, se necesitan V| > 0 y ti > 0. t.ilesque

\ l' = 3 7 = 4 3

V|= 377 \i= .43

T| = I 92 \2 = 2 07

Entonces 2 - 1 92 = 0 OS y 2 tl7 - 2 = 0 07 Debido a ijiie 0 07 < 0 OS, 
se eliee 5= 0 07 de modo que se tiene la proposición

SI 0 < |i - 2| < 007 entonces |/(\) - q| < 0.3

Cualquier numero positivo menor que 0 07 puede tornarse como la 5 re­
querida
(b) ( a figura 14 muestra las gr.dlcas dey y de las redas v = .3 7 \ \ =43 

trazadas en el rectángulo de inspección de 11 91, 2 091 por [ 3 6 4 4| En 
la grallcadora se determina que la rect.i \ = 3 7 mterseda a la gráfica 
de y en V = I 92 \ que la recta \ = 4 3 mterseda a dicha gráfica en 
i = 2 07, lo cual apoya la elección de 5del inciso (a) A

^ EJEMPLO 4 Conllrme analíticamente laeleccion de 5del oiem- 

plo 3 emple.indu propiedades de las desigualdades

Solución Se desea determinar una 5 > 0 tal que

si 0 < [v - 2| < 5 entonces |/(i) - 4| < 03 (5)

SI 0<|v-2|<5 entonces | v* - 4 | < 0 3
o si 0 < 11 - 2 I < í) entonces |v 2||\+2j<0 3

Observe en el l.ido derecho de esta pro|iosicion ijue ademas del lactor 
|r - 2|. se tiene el l.ictor | \ i- 21 Por tanto, se necesita obtener una 

desigualdad c|ue contenga a ¡ \ -t 2 | l’ara hacer esto, se lestiinge la ¿que se 
reiiiiiere Considere ijiie oc. menor que o igual a 0 I. lo cual paicce razonable 
P.ntonces

0 < i V -” ^ 1 ó > ó *1 0
0 < 1 V 2 1 < 0 l

> 0 1 < V j 0 1
-> 39 < V t 2 < l l
-> 2 1 1 1

Asi

0 < 1 \ :!í < ó y 5 ti

- j 0 • I \ :í1 < ó > I' • ’
> 1 V 2 1 t 1 2 1 < 5( 1 11

< l l

Kei iii’iiic que el objetivo con* isie en ohienei la pioposición r>) De iiiodii ijiie, 

debe |)eiiiise ijilc

OI l I) ,03 <-> o • II
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Mmr.i se llenen dos reslritumies sobre t) í *' 0 I y ¿i í p.irn que ambus 
resirieeioiiLs se tuniplaii se torna <) = el menor de los dos números 
Mediante el uso de esta ci. se nene el artuiiULnlo stjuiienie

' - 2| <

. - 2| < ;, j |i + 2| < 41

w i ' - 2 I I i + 2 ¡ < ’ (4 I)
=- |x' - 4¡ < 1)3

Por lanío, se ba delerminado una 6 de inmio que la proposiuon (5) se 
cumple Puesto que - 0 07 se ha conlirmado la elección de ó del 
ejemplo 3 ^

Ahora se aplicaran los conceptos anteriores a fin de determinar como 
debe medirse aproximadamente una cantidad para asegurar una aproxima­
ción especifica de la medición de una seituiula cantidad (¡ue depende de la 
primera

I) < 

=s>

r EJEMPLO 5 Para la situación dcl ejemplo l de la sección I 3 
, cual debe ser la temperatura del jras si este ocupa un \olumen entre 70 5 m’ 
> XO .3 in ''

Solución Ln el ejemplo 1 de la sección I 3 se obtuvo el siguiente modelo 
matemático de la situación

/(U = U

donde /(u metros cúbicos es d volumen de un gas cuja temperatura es r 
grados Como /i 140) = XO. el gas ocupa XO m' a una temperatura de 140 
Se desea delermm.ir que tan cerca debe estar v de 140 para que f(x) no este 
.1 mas de 0 3 de XO, esto es. para € =05 se desea determinar una ¿ > 0 
tal tjue

SI 0 < i = A 6 entonces |/(i) - X0| < 0 5

SI 0 < 1V 140 1 < Ó entonces 1 jv - X0| < 0 5

SI 1) < 1 A ó entonces J 1 Jv - XOj < J (0 5)

si 0 < 1 V - 140| < ó entonces 1V - 14(11 < 0X75

Por tanto, se loma 6 = 0 X75. j se tiene el argumento siguiente 

0 < IV I 10| < 0X75

=? I 'v - S0| < (15

Pn consecuencia.

SI 0 < I i - 1401 < 0 875 enli'iices |/(\) - 80 | < 0 5 

Coneltisióii; Par^i i|ue el gas ocupe un volumen entre 70 5 \ X0 5 m^ su 
temperatura debe estar entre 139 125'y 140X75

^ EJEMPLO Ó La eubierta circular de tin.i mesa tiene un .irea 
que ditlere de 225.rpulg- en menos de 4 pulg^ , Cual es la medid.i .iproxi- 
iiiada del radio ’
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■ i

\ fe .Tf

ri(;i [u 15

Solución Observe lu ílgiir.i 15. Si la Inngilud üel radio de la eubicila de
l.i mesa es de r pulgadas y Mr) pulgadas cuadradas es el área de la cubierta, 
entonces

Mr) = nr~

ni área es 225;rpulg- cuando el radio mide 15 pulg Se desea determinar qué 
t.in cerca debe estar r de 15. de modo que /\(r) no esté a más de 4 unidades de 
225n’ Esto es, SI C = 4, se desea determinar una <5 > 0. tal que

SI 0 < I r - 15| <(5 entonces |--Ur) - 225;r| < 4

« SI 0 < |r - 15¡ <5 entonces | ;rr- - 225./: | < 4

c» SI 0 < I r - 15 ] < 5 entonces |r-15||r-rl5|<— (6)
K

Debido a que se tiene el tactor |.v + 15 | del lado derecho de la proposición 

l(i). se necesita una desigualdad que contenga a este factor. A fin de obtener 
dicha desigualdad, se restringe Ó de modo que 5 < I Entonces

()<|r-l5|<5 y 5<l=i«()<|r-15l<l 

=3 -I<r-I5<l => 14<r<16
=> 29<r+l5<31^ |r+15¡<31

Por tanto.

si0<|r-l5| <5 y¿5l entonces |r - I5||r + i5|< 5(31) 

Como se desea que la proposición (6) se cumpla, será necesario (|ue

5(31) < i « 5s -f- 
/: 31;:

Ahora se tienen dos restricciones sobre 5. 5 < 1 v 5 < Se elige 5
3 Iff

i;| iiiL-nor de estos dos números. Con esta 5 se tiene el siguiente 
31/r 

argumento:

0<|,-15|<^

^ I, _ |5| < y jr + I5| < 31
31/:

|r- l.q|r ^ 15|<

=> ;r I / ’ - 335 I < 4

Poi tanto.

si 0 < 1/ - 15 I < entonces l.-llri • 225;: | < 4
' 31;:

Como ~ = ().04l.selicnelasigiiienleconclusi ui
31;:

Conclusión; El radio de laciibier'a de la m-sa debe estar entre 14 959 ¡nilg y 
15.041 pulg para que dicha cubierta teng.i un área (]ue difiera de 225;: pulg- 
por meno.5 de 4 pulg*. ^
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EJERCICIOS 1.4
/ II hn t'jt ii ii un I \ 2 u- propuri itiiuiii f(x), a, /„ £ y una Jh 
i:iira t punir ,lc la fii;urt¡ ll•lmllu• S > II. tul i¡iif

M 0 < ]i - ij| < fnt(ini;cs |/IU - /.[ < €

1. /itl - 2» - 5.a . ^.l. = \ £ = (12

2') 3 1

2. /til = 2 - 3r,íi - -I./. = 5. € - Ofi

Lnlii'tjer(nia\.Ui ¡4. \c priipnn iiiiiíiii/t\). it. L\ £ liijUli- 
lue una Jiviiru \iiiu-jímiu a lii Je los ejermios l \ 2 \ el 
ijemplo I, V iir^iiiiiunios siniilares ¡J Jtl ejemplo I pina Je- 
tenmnür lina S > 0 lal ipie

M 0 < |i - ,i| < timmccs |/(tj - /-I < £ 

lln.\po\elailutioiuU thhlini isoluiiisanJoiimi i!rtiJ¡iiiJoia

3. /■(t) = I - I. <i = 4./, = 3 e = (HJ3

4. f(\i - X f 2..i = 3./, ^ 3. e = 002

5. /Itl . 2\ + 4.tt _ 3 /. = 11), € = 1)01

(e Jixi = 3i h.i = 2./. = 5; f = I) I

7. Jix) = 5» - 3.<f = I./. = 2. e = 005

H. fix) = 4i - 5.U = 2.1 = 3. e = 0 001

•}. /U) = 3 4i.,i = -1./, -le- 1)02

1». í(\l = 2 + 5i.<» = -2.1. - -H. £ = 0(H)2

11. J(x) =-- 2L2LÍ.„ = -2.1. = -4. £ = (I.OI
r + 2

12. fix) = = i./. = 2. f = 001
3i - I 3

13. fix) = -i./. = -4. € = 0 03
2 t + I 2

14. f(.x¡ = 3.5:. ■ = 3./^ = lO; e = 0U5
r - 3

l‘ara los ejcnicios 15 s Ifi. sii;a las iniunas insinuiiones 
ipiepura los ejeniuos I \ 2

15. f(x) = r + l-(i = -2. /. = 5. e = l

16. /(i) = H - r.(j = 2.1. = 4, f = 05

i

l.n los ijenuios 17 a 24. se proporíioiuin fix). a, 1. y € («t) 
lliilii e una figura st nu'janie a la Je los ejen leios 15 \ 16 i Jel 
ejiiiipio.t, v«ri;»//«/ií/n siniilansalJeiste ejemplo para Jeler- 
minar una ñ > 0, tiilipu

K¡ 0 < [\ - </| ‘f Ó cmoiices |/(ii - /.j < í

17. yii) = i-;.i = .3./. = 0. f = 0.5

IK. fix) = .1-;.! = 0.5./. = 025. e = O I

I'/. Jix) = x-.a - \.l. - !. f = 02

20. /(i) = I' - 5,« = 1./. = -4. r = o 1.5

21. fix) = i- - 2i + i:.t 2 / - > 1.4

22. fix) = i* 4 4i ♦ 4..I - -I./ = 1. é - iM'.-.
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i?, /m • Si ♦ <.,i - / - <p; f - (Hi

24. fui '«■ 7i . 2 ,i - I / 2, f - (il

/.II /iM í (1 íi iKi'* 2S ./ <f}. ti‘iitnini i|7m/iií. uiiuiiii- U mpluuiíln 
prt'l'ii i i/i /iM lA \i¡;iiiilíliuU M hi I li 11 iihi <tv Ó tA I fjrr- 
I hh' ¡n.lii >..!■•

25.

27. I i.Tiu-ii'7 

2V, r|i,*i^K-ii' \ ^ 

.M. I i»uui<i )7 

5.^. HjL'rcikio 21 

55. 1-jlTi.ii.io 2.'

2A. I |caii.ii< -l 

28. IjiTi-iao S 

i.jcrucio 14 

.^2. hicrciL'iti 18 

.54. r;jcfi.ii.ni 22 

56. l-jcrai.io24

£'»; lt'\ i7rr«i(.íí»i .í*" ¡i 44. ¡mnu ro ttiui Jiint ton i nmn
mniA'Ai nMUnhiHio ilf la ufiwtiívi. Prjliut lii uiruihlf «A'/n'/i- 
tluniv V i¡ xiiliir ih fuiu iiíit i i‘nui iiiinuTm. e imUiiuc An um- 
Jiiclcx ilf im¡lii4iiii. \'ii i'hiilf iowpicuir ti cjcnuio ton tiiui 
it'iu liiuím.

.57. uiij pcf'Ofu que guna S15 por hur.i .se le pagj sóli) piir 
el lienipt* real de trabajo ,.Que tan cerca de K horas debe 
trabajar una per'ona para que su salario difiera de SI2D en 
no mas de 2.S centasos'

58. Para la situación del ejemplo I de la sección I 5. «.cují 
debe ser la temperatura del gas si éste ocupa un volumen 
entre 74 y5 m'j MHl.Sin'’

54. Se uinstruve una terca alrededor de un jardín de forma 
cuadrada ,Qiic tan prósima a 10 pie debe es|.ir la longi­
tud de cada lado del jardín p.ira que la longllud loial de la 
terca este entre 54 % y 40 (M pie ’

41). Se tonsiru)e mía seílal tirtular de modo que la loneilud de 
su ciruinfcreiiLia difiera de 6;r pie en no m.ís de 0 1 pie. 
, ÍJiié t.in terca de 5 pie debe medir el r.idio de la señal ’

41. P.ira el jardín del ejercicio .59. ,qué tan cercana a 10 pie 
debe esl.ir l.i longitud de cada lado del jardín para i|ue el 
área de dicho jardín ditlera de UH) pie* en no más de
0 5 pie*.'

42. Para la señal del ejercicio 41)., qué l.iii cercano a .5 pie debe 
medir el r.idio de la señal para c|ue el .írea de dicha señal 
difiera de 9n’pie* en no m.is de 0 2 pie*’'

45. 1:1 mimerode pies que cae un cueipoa partir del reposo en/ 
segundo-, c.iria direclamcnle como el cuadrado de 1. \ un 
cuerpo c.ie .1 partir dcl reposo (>4 pie en 2 s ^.Qué tiem­
po cercano .1 5 s le lomará a un cuerpo caer eiUfc .59S v 
41)2 pie?

44. f:l número de libras por pie cu.idrado de la fuer/a del \ icn- 
10 sobre una superficie planacuando la velocid.ul del Mcnlo 

es I millas por hora, varía dircclamcnlc como el cuadrado de
1 Suponga que la luer/.icsde 2 Ib/pie' cu.indo la velocidad 
dcl viento cs de 20 nii/ii. ,,Quc tan cerca ile 50 mi/h será la 
velocidad dcl vicnio cu.indo su fucr/a sobre una superficie 
pl.ina esiá entre 4.45 Ib/pic* y 4 55 Ib/pie* '

1.5 DEFINICION DE LIMITE DE UNA FUNCIÓN
Y TEOREMAS DE LÍMITES

Aliuru hc presentará la definitiiin fnrm.il de límite de un.i función. La defimeión 
emiliene l.i piopnsieión que implieu las desigualdades con la notación € -5 
mostrada con frecuerieia en la secenin 1.4.

1.5.1 Definición de limite de uno función
Seu J una i'uncit'm deliitida en cada número de algún intervalo abierto 
que contiene a a. excepto posiblemente en el número a mismo. Hl 
líinile lie J{.v) conforme x se aproxima a a es A, lo i|uc .se escribe 
como

lím/U) = A

si la siguiente ¡)rt>pt)sieion es verdadera:

riada cualquier € > 0. no import.i cuan pequeña sea. existe una 
S > 0 tal que

si 0 < |v - í/| < tS cnlonces ]/(vl - Z.| < € (II
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/ I •

l •

I ■ < •

ii

< /iii

♦ ♦ — ♦ ► I
ii ii ii il

I K.l U\ I

a ~ i'i « li ii * <)|

I k;i iu 2

I:n p.iluhr.is. cst.i Jctlnición cst.ililccL‘ que los vjlorcs de (unción/ir) se 
.ipnismun a! Iimile /. umlnrinc r I» luce al números si el \:ilor absoluto de la 
dilerencia eiUre /I») > L puede hacerse lan pec|ueña como se desee lomando i 
Mifiuenleiiiente certa de a pero no igual a it

Ob-,er\e que en la detlnición no se nieneiona nada acerca del valor de la 
luncion cuando i = a Recuerde, como se señaló en la sección 14. lalunción 
I ni> necesita eslar dellnida en </. para que el lim /(\) exista Más aún. si/ 

csiá dellnida en ti lini J(\} puede existir sin que tenga el mismo valor que 

Hii) como en el caso de la función del ejemplo ilustrativo 2 de la sección I 4 
Una inlerprelacion geométrica de la dellnieión de limite de una función/ 

se muestra en l.i llgura 1. la cual presenl.i una porción de la gráfica de/cerca 
del punto donde x ~ a Como / no está necesariamente definida en a. no 
existe un punto en la gráfica de/ton abscisa o Observe que si x. en el eje 
hori/ontal. esta entre « - ó, \ <i + 5,. entonces/í\). en el eje vertical, estará 
entre/- - € ¡ y I. + € ¡ fin otras palabras, al restringir x. en el eje hon/onial, 
de modo que esté entre a - 5, y ii + 5[. se restringe a/(x). en el eje verti­
cal, lie manera que esté entre /- - f | > /- i- Asi.

SI 0 < 11 - o ¡ < 5j entonces \fix) - l.\ < f ¡

La figura 2 muestra como un valor pequeño de € puede requerir una elec­
ción dilcTcnte para 8 En la figura se .iprecia que < €|. y que el valor 
i)i es demasiado grande, esto es, exisien v.dores de x para los cuales 
0 < I X - íí I < (V pero |/’(x) - /. | no es menor i|ue Por ejem­
plo, 0 < |T — o I < 5|. pero |/(T) - /-I > l’or esta ra/ón debe 
elegirse un valor & más pequeño, como se muestra en la figura 3. tal que

SI 0 < IX - rt| < 5-> entonces |/‘(x) - ¿| < C;

Sin embargo, para cualquier elección de € > 0. no importa que lan pequeño 
sea.eMslep> 0 tal i|ue la proposición (I) se cumple Porlanto. Inn^tx) = L 

En el primer ejemplo de esta sección, se vuelve a tratar la lunción mos­
trada en los ejemplos I v 2 de la sección 1.4

r EJEMPLO 1 Utilice la definición de límite par.i demostrar que 

lim (4x - .*>) = ?>

Solución El primer lequisito de la dellmcion I íl.l es que 4x - 5 esté 
definida en cada número de un intervalo abierto que contenga a 2. excepto 
posiblemente en 2 Puesio que 4i - .x está delinid.i para todos los números 
reales, ciulquier intervalo abierto que conteng.i a 2 salislace este requisito 
Ahou se dciie demostr.ir que paia cualquier f > 0 existe una 5 > Dial que

SI o < [x - 2| < ó' entonces |(4x - 5l - 3 ¡ < € (2)
c» SI 0 < |x - 2| < i) entonces 4 |.x - 2j < f

es- SI 0 < |x - 2| < (5 entonces |x - 2| <

Esta proposición denota que ' f es una <5 satislactoria Con esta elección de (5 
se tiene el argumento siguiente

0 < IX - 2| < 5

=» 4 IX - 2 I < 4ó
=> |4x - X| < 4iS



=> |(4x - ‘i) - -í[ < 4ó
» |(4> - 5) - 3j < € lpori)uo Ó = \€)

Por lamo, sclia cslahlcuiJoc|uc si á = ^ f .entontes se tuinple la propositan 
(2i bsto demuestra (¡ue lini (4\ - 5j =

Ln partitiilar si f = 0 I. entontes se loma 8 = ',(0 Ij, es detir. o = 
0025 Lste valor de ó'torresponde al valor determinado en los ejemplos 1 y 
2 de la seteion 1 4

Cuak|uier número positivo menor que puede emplearse también 
tomo la (5 requerida ^

Ein el suplemento de esta settión. al final del .ípendite se proportiona un 
ejemplo que muestra tiimo aplitar la dellnition 1 5 I para demostrar que 
liin V- = 4
*'A fin de ealtular limites de maner.i mas lacil que tuando se uiili/a la 

definition se emplean teoremas, tujas demosirationes están basadas en la de- 
llnition Estos teoremas, así eomo otros que apareten en secciones posieno- 
res de este capitulo, están señalados ton la etiqueta leoremi de limtk s
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l«5t2 Teorema 1 cte limites Umtfe de ú'na fúnclón lfneali*^
Si III y h son dos constantes cualesquiera, entontes 

lim liiix + h) = imi + h

Demostración A partir de la definición de limite de una función, se 
debe demostrar que para cualquier € > Oevisie una ó* > 0. tal que

SI 0 < |v - «I < 5 entonces \iiin + h) - (iiui -i- /?)| <€ 13)

Oiw ! III 0Como |(//jv + h) - (iiui + />) I = I I IV - (11. se desea enton- traruna5> 0 para cualquier € > 0. tal que
si 0 < 11 - íi I < (5 entontes [hi| • j r - o | < e 

ocomo/;i ^ 0.

SI 0 < j i - íj ] < t) entonces \\ - o | < S—

II
Esta proposición se cumplirá si 8 = (/\iii\, por loque se puede concluir que

SI 0 < IV - íi| < ¿ V 8 = —^ entonces |(nu + b) - iiiui + M| < €
|/n]

I-sto dtiiiiieslra el teorema para el caso 1 
(\i\(i2 III = 0

Si m = (1. entonces |(/;a + h] - Uiui + /)»| ^ 0 para lodos los valo­

res de i De modo que se toma 5tomo cualquier luimero positivo, cumplién­
dose asi la proposición (3) Fsio demuestra el teorema para el caso 2 ■

EJEMPLO ILUSTRATIVO 1 Del teorema l de limites, 

lim l U + 5) = 3 2-1-5
• -*- I. .
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1.5.3 Teorema 2 de límites Límite de una función- 
constante

,Si (• es una i. nnslantc. entonces para cualquier número a 

lim c = r

Este teorema .se deduce inmediatamente del teorema I de límites toman­
do m = 0 y h - c.

Este teorema también se deduce inmediatamente del teorema 1 de límites 
tomando iii = I y /; = ()

EJEMPLO ILUSTRATIVO 2 Del teorema 2 de límites, 

lim 7 = 7

> del teorema 3 de límites,

lim .r = -6 ^

Si lím Jlx) - L y lim = M. entonces

lim lj{x) ± .1,'U)] = L ± M

La demostración del teorema 4 de límites se presenta en el suplemento 
de esta sección. En el enunciado del teorema, el hecho de que lim f(.x) = Z-y 

lim .lílt) = A/ indica que los límites evisten En otras palabras, no se puede

decir simplemente que el limiíc de la suma de dox/¡aieiones ct la .uiiiia de 
sus limiie.s, se debe agregar la condición de la esisteneia de los límites: .si los 
límile.s e.\i.slen. Consulte el ejercicio 44 de la sección l.ft y el ejercicio 50 
de la sección 1.7.

El teorema siguiente de límites es una extensión del teorema 4 de lími­
tes para cualquier número tlmio de funciones. Se le pedirá que proporcione 
la demostración mediante inducción matemática en el ejercicio suplemen­
tario 10.

1.5.6 Teorema 5 de límites Límite de fa^simia 
y de lo diferencia de n funciones________

Si lim /[(.r) = L|. líin /^U) = Lj..........y lim f„ix) = entonce.s
I -fit ’ ** X—Ul

lim iyjt.v) ± /"it-v) ± . ± /,í\l] = L¡ ± I-i ± .. ± L„
l—»U

El límite del producto de dos funciones se tiene mediante el teorema 
.siguiente de límites. Otra vcv., observe que el teorema establece que el límite



42 CAPÍTULOJ _FUNCIONES, LÍMITES Y CONTINUIDAD

del pn'ducln de dos junciones es el produUo de sus líniKes si los líiiules cxis- 
leii Par.i la dcmoslraeión. refiérase al suplemenlo de esia sección

Si lim /U) = /-y liiii = A/, entonces
I -**| k-tíí

lim lytt) • = L • M
I Wil

EJEMPLO ILUSTRATIVO 3 Del teorema A de limites.
Iim .t = 4. \ del teorema 1 de límites, lim (1\ + I) = •> Así. por el teore­

ma 6 de límites

lim l\(Zt + 1)1 = lim t • lim(l\ + I)
1-.I i-U 1-.4

= 4 y
= 36 ◄

El teorema 6 de límites también puede extenderse a un número finito de 
tuiKiones mediante la aplicación de la inducción matemática, como se le pe­
dirá i|ue lo haga en el ejercicio suplementario l.A

1.5«8 Teorema 7 de límites'" li^mi^ del producto 
de n tinciones

Si lim /i(u = 6|. liin /do = Z,,. liin/,('l = Z.„. entonces
*—♦*1 l t—♦*/

liml/'ifoyd'^) /,lol =

1.5.9 Teorema 8 de límites Límite de la n*ésima 
potencia de una función

Si lim/(0 = /,>/íes cualquier numero entero posiiiN o. entonces
t - •*!

Imi i/(ol" = /.'■
i -♦*/

La demostración es inmediata a partir del teorema 7 ile límites, tomando 
y,t\l./di), ./„(x)todasigualesa/(u> ¡.¡.I... .todos iguales a/,

l EJEMPLO ILUSTRATIVO 4
lim t.^i + 7) = -A Por tanto, del teorema H

11
lim |.5\ -1- 7)^

I . :
Iimj3.i + 7)

Del teorema 1 de límites.

= 1-.^)'
= Kl ◄

El siguiente teorema de límites trata acerca del límtle del cociente de dos 
funeiones. y no sólo se requtere la existencia de los límites, sino que también 
se pide L|ue el límite de la función del denominador sea diferente de cero
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1.5.10 Teorema 9 de límitef Limífe d'el cóciente 
de dos funciones ' .

Si l¡iii7(\) = /,y lini = A/, cnlom.es
* ^*1 t '-•ií

lim = — SI A/ ^ O 
■ M

L.i demostración de este Icorcma se presenta en la scLUcm I 9

EJEMPLO ILUSTRATIVO 5 Del teorema 3 de límites.
lim t = 4, y del teorema 1 de límites, lim (-7ir + 1) = -27 Por tanto, del
I .J i-*4

teorema 9 de limites,

lim i
Imi —---------
• -’-i -71 + I liin(-7 í + I)

i-.a
4 

-27 
_ 4_ 
~27 ◄

Si M es un número entero positivo y limyt.x) = ¿.entonces
I —*iJ

tim "/U) = ^.1
4

con la restricción de que si ti es par, L > O

La demostración de este teorema también se proporciona en la sección I 9

EJEMPLO ILUSTRATIVO 6
del teorema 10 de límites.

hm }
\ -71 + 1 ’ hm

1, ,_,4 -7\ + 1

i,_ jL
\ 37

Vi

3

Del ejemplo ilustraos o 3 y

<

Ahora se establecerán dos teoremas, los cuales son casos especiales de 
los teoremas 9 j 10 de limites, respeetis ámente Cada unii de estos teoremas se 
ulih/a en la sección I 9 para la demostración de los teoremas de límites 
correspondientes

1.5.12 Teprdma h

Si a es cualquier número real diferente de cero, entonces 

lim i = i
V u
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Si íi > f» > M es un número cnioro posuivo. o si <; < 0 y n es un nú­
mero entero imp.ir. enioiiLes

lim V = '\u

Ljs demosirauioncs de los teoremas I 5 12 y I 5 13 se presentan en el 
suplemento de esta sección

En los ejemplos siguientes se aplicarán los teoremas anteriores para calcu­
lar limites A IIn de indicar qué teorema se lia aplicado se escribirá la abres la- 
ción "T n L donde n representa el número del teorema, por ejemplo, "T 2 L ’’ 
se rellere al teorema 2 de límites

^ EJEMPLO 2 Calcule limtv- + 7\ - 5). y cuando sea apro­

piado. indique los teoremas de límites t|ue se aplicaron

Solución
lim(\- + 7r - 5) = lim + lim 7\ - lim 5 (T. 5 I..)
1.1 I -• 1 1.1 ( — 1

= lím 1 lim t + Iini 7 lim \ - lim 5 (T. 6L.)
I .1 I .1 1 .1 1 .1 i-.i

= .3 • 3 -t- 7 • 3 - .‘i (T.3L.> T.2L.)
= 9 + 21 - “i
= 2.<i ◄

Es importante que se de cuenta de que el límite del ejemplo 2 se evaluó 
mediante la aplicación directa de los teoremas de limites CMiserse i|ue para la 
luncióm / del ejemplo no sólo el limJl\.) es igu.il a 25 sino que también /(3)

es Igual a 2.‘i Pero recuerde. Iim A'l no siempre son iguales.

^ EJEMPLO 3 Determine el siguiente limite >. cuando sea apro­

piado, iiuIkiiic los teoremas de límites que se .iplicaroii

, i ’ -i- 2 i -t- 3 
Imi , .
- \ t ."i

Solución

liin I 2\ 1 1
t 5

\ ’ 4 2x ^ 3 
lim
1 V- + 5

(T. 10 L.l

lim ( 1' i- 2i f 3)
l'l. 9 l,.l

lim ( i- + .3)

liiii \' * lim 2 V ( Iim 3
(T.5 1..)

liiii i- 1 liiii 5

(lím 1)' 1 Imi 2 Imi \ 1- Imi ^ (T. úl..

1 Imi 1)- 1 Imi ^ \ T. H I..)

2’ t 2 2 t 3
■*’ 1 s

lT.3I,.> T. 2I,.l
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H + A + ^
y

Tabla /

t / 1- - 25JiV = ------- —
Á 5

4 •}
4.S 9.5
4') 9 9
l 9W
■i'm 9 W

Tabla 2

X

(> 11
5.5 10 5
5 1 10 1
.5 01 , 10 01
5 001 lOOOl

► EJEMPLO 4 Scü

(a) Utilice una calculadora para determinar y tabular los valores de/(x) cuan­
do X toma los valores 4,4 5,4 9, 4.99. 4 999 y cuando r es igual a 6. 5 5.
5.1. 5.01. 5(K)I ,A que valor parece que se aproxima f(x) conforme j 
tiende a 5'^

(b) Confirme la respuesta del inciso (a) analíticamente mediante el cálculo 
del lim J( r)

Solución
(a) Las tablas 1 y 2 muestran bis valores de /(r) para los valores indicados 

de X Observando estas tablas, parece que/"(r) se aproxima a lOconforme 
X tiende a 5

(b) En este caso, se tiene una situación diferente a las de los ejemplos anlerio-

r* — ■’Sres. No puede aplicarse el teorema 9 de límites al cociente ---------^ de­

bido a que lim (r - 5) = ü Sin embargo, al faclorizar el numerador se 
obtiene

.X - - 25 ^ (.r - 5)(.r + 5) 
X - 5 X - 5

Si .t ^ 5. entonces el numerador y el denominador pueden dividirse en­
tre r - 5 para obtener .t -i- 5. Recuerde que cuando se calcula el límite de 
una función conforme x se aproxima a 5. se consideran los valores de x 
cercanos a 5. pero sin lomar este v.ilur Por tanto, es posible dividir el 
numerador y el denominador entre .r - 5. La solución se expresa en la 
.siguiente iorina.

lim
I ..s

X- - 25 
X - 5

lim
I

lim (x

(X - 5)(.r + 5)
r - 5 

+ 5)

(T. 1 L.) 4

► EJEMPLO 5 Cxinsidere

Vh) = -J
X - 4

(a) Utilice una calculadora para determinar y tabular los valores de j,’(x) cuan­
do X tom.i los valores .L 3 5. 3 9, 3 99, 3.999 y cuando v es igual a 5.4.5,
4.1, 401. 4001 ¿A qué valor parece que se aproxima j>(x) confonne .( 
tieiule a 4?

(b) Apoye la respuesta xlel inciso (a) trazando la grárica de ,i* en un rectángulo 
de inspección conveniente.
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(c) Cntilirini; la rospuLsia dul muso (a) analilicanientL' medianil; el caleulo del 
lim <-liando sea .ipropiado mdiijue lo> leoremas que se .ipliearon

Tiihhi ?

i ii:is7)
; s ii:'sv
1 -1 llZSK,
V ‘M u:''n2
1 DIVllO

rahlí2 4

X (11 i - 2
i - 4

S II21M
A S 11242(1
■4 I U24S‘>
aiil il24'4S
4<K)I (1 2^011

\ 4

i i(>l K\4

Solución
(a) Las labias í > 4 muestran los valores de para los valores espevillc.i- 

dos de t Observando estas labias parece que se aprovima a 0 2500 
conlorme i tiende a 4

(b> 1 a lijiura 4 imieslra Ki yrallca de e Ira/ada en el rectángulo de inspección 
de(l “iTIporlO 1| I a graUca tiene un agujero en el punió (4 0 25) 
L'lili/ando el rastreo (mne) de la grallcadora. se observa que ),’fv) se 
aproxima a 0 25 conlorme i tiende a 4 lo cual apo)a la respuesta dcl in­
ciso (a)

le) Como en el ejemplo 4 no se puede aplicar el teorema 9 de limites al co-

cíenle — —^debidoaque lim (v - 4) = 0 Parasimptilicarelcocien- 
V — 4 I -J

le se racmnali/a el numerador multiplicando tanto el numerador como el 
denominador por v + 2

V - 2 _ ( r - 2)( t 4- 2)
V - 4 (i - 4)1 V -I- 2)

(i - 4)( V + 2)

Puesto que se esta e\ aluando el limite conlorme c tiende a 4, se consideran 
solo los valores de t cercanos a 4 sin tomar este valor En consecuencia, se 
pueden dividir el nunicridor y el denominador entre V - 4 Por tanto

V - 4 V + 2

La solución se expresa como sigue

SI V 4

lim 
,_,4 r - 4

' := = liin

= liin

I \ ~ 2)í- V + 2)
(V - 4)( V + 2) 

r - 4
■» (t - 4)( t + 2i 

t= lim — -
.-4 - V h 2)

lim I

limt , t + 2)
(*‘»4

lim V f lim 2
•■1 I-.4

1 __
luí! V + 2

4 + 2

4

(T.9L.) 

iT.2L.)y(T.4L.) 

iT. 10 L.) y (T.2L.)

(r. 3 L.)

4

De \c‘7 en cuando se necesitarán otros dos enunciados de límites que son 
equivalentes a

!im/(\) = L
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I sius cnutiLKidos SL- prcsciil.in en los dos teoremas sijíuienles. i.u\as deinos- 
Iraeiones se le pedirán en los ejereieios 61 \ 64

lmi/(u - /. SI ) suli» SI lim|/(v) /,) = 0
• I -t»i

Imi/'írj = / si \ solo si líinAf + ¿i) = /,
. ■ /—II

Li teorema steuiente estahleee que ima liiiiuon no puede aproximarse a 
dos limites diferentes simultáneamente t-sle teorema reeihe el nombre de 
íiiirímii ih iiituuliid debido a ijue jtaraiUi/a que si el límite de una lunuon 
existe, enionees es umeo

1«5«.I6 Teorema . ***‘^ T”^
.Si lim/(\) = /| y iim/(») - L^. enionLes /,| = /.^

Debido a este teorema se puede establecer t]iie si una lunuon /"tiene 
un limite I. en el numero </, cnloni.es Les ti limite de /"en n l a demostrauón 
del teorema se proporciona en el suplemento de esta sección

|jjii:i:r.ir«ir»n

Ln tos t'jirtUios / ii ¡O, ¡L iniu stn. iipliuiiulo tu iltfiiiuion 
I I. i/iii il limiií to »7 niiiiit ro iiulii udo

1. Iirn 7 = 7 2. iiin (- 4) = 4

.1. Inntlx + 1) = 0 4. liin(4i + t) = 7

5. Iimi7 - Itl - -2 6. liiii (2x 7) = -1

7. iim (1 I- Ix) = -5 H. lím(7-2x) 11

y. lim * - ■’ lim - 6
• r 1- 1 . .1 X - 1

En los ijtniiios II a 24. dtltniiau ti limih mando
apropiado, iiidiípu los hortinas de liniiu s ipu \t apluaroii

11. liini.lx - 7i 12. lim l5x 4 2)

1.1. lim 1X- + 2x - 1) 14. Iimtlx- - 4x + 5|

15. lim I.-' 4 8)

Ifi. iim ix ‘ - 2i- 4- Ix - 4)

17. Iim !K. hm 32.' 3
• 5x - i , 8x - 1

10. hm ~ ^ 20. hm
■ 2f* ^ 6 • ir- - li 4 4

21. liin * ‘ 22. hm
- 1 . r - 1 x' 4 1

2.1. hm ' t •' 24. hm
2i- - X 1 I . > 5 - X

En los i'ji'niLios 2^ o JO lun;a lo sn;iiitiiti lal iiiui
(íilí uhulorn ¡«tni di U'nniiiar i on i uolro i ifnis dt i iinoU i \ Iti 
indar los udoris dt ft.\\para los xalons fspuiln ados di r ,4 
qiu \alor paruc ipn se i;/m»ti/;i/i jix) toiiforiin x luiul< a 
( ' ihl Apou la ri spiu sla dtl iniiso tal ira:i¡Hílo la s’»<i/íu» de 
JIII iin n (taii\;ido di 11 ion adi i nado U I Confinm anali- 
luainmU la respiusla lUI imiso ¡al laltnlaiido il liiii/lil 

\ uunulo s./i apiopiado. oidnpu los uoninas di limites ipie 
se oplu atoll

25. /(\i J-zJ-. t es i 1 “i 1 y. I w. I yyy \ i es i,: i. 
I- - 4

2 l.2iH.2(Kll.c = 2

2(,. ftx) = t es-.1 -2.S.-21 '•20!.-200!
X- - fu - 16

jies-i.-!*; I y-I *jy.-i yjy.. =-2

27. /,,)=. llÍÍi-Í-^'.xes-4.-15,-1 1.-11)1,-1001.
X- - X - 12

-KKKM \ X es -2. -2 5. -2 0 -2 00. -2 000. -2 0000. 
< = -.1

28. Ax) - -^,41-1., es I. I 4. 1 40 1400 I4000\xes2.
Ix- - 9

1 (. 1 51 1 501 I 5001.,• = ^

2‘J. n\) = X os K. .S5. SO SOO. SOOO \ i es 10.
0 - X

05.0 1.001.0001.1 = 0
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30. Ih) = =-l-J—i.-0 1.-001 ~0IK)l>
i

ves l.OS.O I ()(ll.0(K)l.t = 0

tu /tM tjcnuiüs í/ tí •}(> thlvniimr il Imiiu \ iiuiiulo stíi 
tipiiipiíiJti ífii/íi/nt /<n ít (irt im¡\ dt' litnih s ipic m' iiplu urna

54. .Si

f(x) -
Jr - y 
|4

5= -3 
= -1

cnuienlrecl liin /(r)> dcmucslrct|ue lini flxi 

Dibuji; la grafita de/

31. Iim

1 
1

32. lim " - 
. • c + 5

33. liiii 4i* - y
2\ + 3

34. Im,
. .1/1 ijt- - 1

35. lini 3v* - 8r - 16 36. lim :
2v- - di + 4 ■ 4r- - 25t +

37. lim
>' + H 
\ + 2

38. Iiin - ‘
, .1 s - 1

3‘3. lim V- - y i„„ 8,' -27

( 2\- + 7» + 3 ' •’/: , 4í- - y

41. lim t - 1 42. Itm -
1 «1 X - 1 .-^1 a: + 1

43. lim
-•U

/i + 2 - 2 44. lint ' ^ ^ -
h < .1 T - 1

45. Iim
1 « i

2t- - X - 3
t’ + 2r- + 6 T + 5

46. lim
r’ - r- - X -r 10

i- + 3\ + 2

47. Si f(\) - i~ + 5x - 3, dumuesirc analiO(..nnenie que 
lim /(t) = /(2) Api)>e su respuesta graficamenlc

48. Si ¡ixi = Ir' + 7r - I. deniucslrc analilieamenle que

lim Hx) = n-l) Apo>e su respuesta grafitamenic
I . I

40. Si g(t) = -—, por que nt) existe etl)'Demuestre 
X - I

analititamente que íimg(x) existe > caleulelo Apiije su
. .1

respuesta gráficamente 

Tf “ I50. Sif/tTis --------,(por que no existe 6( I)'Deiituesiie
X' - I

analiiitamente que ImiG’U) existe } takulelo Apu>e su
I «I

respuesta gralkuinente

51. Si 7i(c) X + )------3 ^ existe /i(0)* Dc

muLsire aiialitieamenie que lim/ilr) existe j Laluilelo
■ «<i

Apuse su respuesta gráficamente

52. Si //(u = ------- --------. ,por que no existe //(O)’ Dl
r + I - I

muestre analilitameme que liiii/Au O'isle > caluilelo
i

Apoje su respuesta grancamenlc

53. Si
/U, = If ' ;

11 SI r = 2

encuentre el lim f(x) ) demuestre que lim J(x) * f{2) 

Dibuje la gráfica de/.

Cu los i'jvriuios 55 o 5H rtspiiiulu lux luuun (a) (i) t¡ poriii 
di hi finifuii di f diluijodti lU liijl^iirti adjuiiíii

55. El dominio de/cs (-00 + oo) (u) Dcfina/tx) a iroros (b) 
(Cuales son los \alores de y f{3)’ (e),Cuales
son los valores de Imi /(t).lim flx) y lim/'(x)'

( f ^ \ »U t

56. El dominio de/es (-O0. +co) (a) Defina/(r) a tro/os (li) 
(.Cuales son los valores de/(-2)./(0) > /(2)’ (c), Cuales 
son los valores de lim /lij. Iiin/'(U\ lim/(tf’

; < .i; ' 1

57. [ I duiiiiniode/es [-.s. .S] (u| Defina/!t)alni/os tl))(Cua- 
les son los valores de /(-4)./(-3)./(.3) y /(4)» (c) 
,Cuaicsson los valoresde lini /ir), litii f(x), lim/(t)> 
lim flxí’ ■ ■ ' ' • '
t i

7 •
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5K. i I di’K'n I* 2| la) Ik'litu/(tj a Iro/os (lii
, ( u.il..'. Mili luN valiircH dv /( 11. f lili. /(11 > /< I ’
ici , C'ii.iic'. M'ii l>" lie Iim /tu. Iini n«).
Iim íi 11 > tiin mu’

i
\

\

/ n lin fjrri n i<¡\ S'J u 62. iJihiijr lii ufopi <; dr iili;¡iiia Jiiiu imi f 
c/iir /i.i t i'n!Íiniinv\ dudas l.ii tuda fjrnmo fl do-

I -ce *■ OO)

59. /i2j = 3. Iim /i\i - 1. lim (isi = fiat m </ ^ 2. el

timirudi'ininm de í es ei unnjuniu de (mlus Ins nunieios 
reales

611. /I-■'» i 4 /i3| s -5. Iim /lu = -5. liin/lu - 4.

Iim /ui = yi«i -<1 o *■ ±3. el eiiiitradi'iniiiui de / es el

conjunlo de indos jos numero'- reales

61. Iiiii \hi] fni liMi/(\J = /'uj) SI

II * ±6. el eoiilraJoininiu de ( e-- ei Limjuiim de lodos 
los números re.iles no negaiiuis

62. U-2) ^ ;i2). Iim lixi /l-2l. lím /lu ^ /l2).

liMi yin = lun SI <1 y ±2. lI sontradomimo de / es el
iiilersalo cerrado |-3. 3|

63. Deimieslie el leoiem.i I 5 14 .Siivt'inuiu Uelndo a i¡ue
el teoreiiu tiene el umeLtiio hijiieo ii i solo \i. la de- 
mo-ir.iuoii delie reali/.ir>e en dos p.niis l’ar.i ilemo tr.ir 
ijiie lim yiu = / w liiii l/íu /] 0. iiiieie ton

lim /IV) > Misiilina /lu por |/(u - /] . /., i)e pues 

aplupie el teorema 4 de limites Para demo-li.ir rjue 
lint /(u = I. sólo SI lim l/cu - /.) - II o. eiiuua- 

leniemeitle. Iiin |/íu - /| H w lim Mu - t.. apli­

que el leorenia 4 de límites a lilli IMU - /|

64. Demuestre el teoiema I ‘s lf> Sui;friiu iii tomo en la de- 
iiio-.iraeioii del teorema I 5 14, se reijuieren dos partes 
F’ara demostrar que lim /^(ii = /. m lim/i) • oi = /.. 

.ipliqiie l.i deriniLion I 5.1 \ después siisiiiusa ( -♦ «rpor i 
\ I por V - ti Para demostrar que Iim /(u = I. sido si 

lim til + ii) = /.o.eqiiis.i!eiitenieiile, Iini /ir + m - /, 
SI lim /lu = /.. aplique l.i deUmeion I 5 ] \ de-pues 

susiiti)).i i por/ + ii \ \ - opor/

65. Si /' es una luntion polinomial,, por que CM'le lim h u 

p.ir.i lodos los números u \ por ijue puede determiiiar-e 
este limite taltulando huí'' Si ti es un.i Itineion r.itioiial. 
, porque no puede tenerse un tiiunti.ido semejante al ante­
rior que implique a lim A'(u' (Como podría modillcar el 

enuntiado .interior para el limite de una luneum r.itional'

66. Si lim yu) csisie > Imil/iu* yi u] no esiste. espli­

que porque puede eoiitluirse que lim e< si no existe

67. Sm emplear las paLibras ¡iiniu o s>- s sin ulili-
/ar símbolos tales como f \ í>. estable/ea en p il.ibras lo 
que sienille.i el sieuienle simbolismo lim /i\i = /.

1.6 LÍMITES LATERALES
IKisla .ihiira. en ei esUidii» del líimle de iin.i luneiñn amlornie Ki \.iriable 
independiente .x tiende .d niíniem a. se han ennsider.ido valores de i eereanos 
a ti. tanto mayores eottm menores qne </; esto es. valores de i en un intervalo 
abierto ipie eonien^a a u. el cii;il no se considera conio posible v.ilor de .x 
Sin eniixireo. suponua i]iie se tiene la luneiún dellnida por

yt XI = . X - 4

Como f{\) no existe si x < 4. entonces J no está detlmda en cuaU}uier in­
tervalo .ibierto que contenga a 4 De modo que lim . v - 4 no tiene signill- 

c;tdn Si. de ciialt]iiier lorma. se resiringe .x a miiiieros mavores que 4. puede 
lograrse que e! valor de , x - 4 esté tan cerca de 0 como se desee lomando 
valores de x siincientemeitie cercanos a 4 pero mayores que 4. lin tal casx>, .x 
se aproxima a 4 por la dereclta y se considera el liiiiiif por lu dvH'iha lo el 
limiu- luli-ral dcrvi lio), el cual se dellne a eontinuacnin.
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Slm / una liiíii,ii)ii dL-t1niii.i on tatla imiiitro di.i mlcrvali) abiLTln 
(</. I) I.ntotKCs. d lítnile de f(x), tonrorme x tiende d a por !a de- 
reeliü, es lo ijue '>e deiioia por

!im_ /( U = L

M para LuaU|uicr f > 0 sin miporlar que lan pequeña sea. exisle una 
o > 0 tal que

SI 0 < X - a < 5 entoiiLCs \li\i - l \ < €

Observe í|ue en la ultima linea de la defimeion no se eoloearon barras de 
v.ilor absoluto alrededor de \ ya c]ue se eonsideran uiiieamenle valores 
de i para los euales v > a

Al ealeiilar, a partir de la definieion el limite de \ - 4, eonlorme v 
tiende a 4 por la dereelia, se tiene

lim V - 4 =0
I i •

Si euando se eonsidera el limite de un.i luneion la variable independiente 
V se restringe a números menores que a. se iliee i)ue i se aproxima a a por la 
i/quierda fisie limite reeibe el nombre de liniih ¡>or la t:c¡uurda (o Iwuu 
IíUltíiI rquu rila)

•Se.i / una luneion dellnida en eada numero del intervalo abierto (</. o) 
Fntonees. el límite <le f(x), conforme t tiende a a por lu i/(|iiierdíi, 
es /-. lo cjue se denota por

lim J(\) = /

SI paia eualijuier €> i) sin imporMr i|ue t.m pequeña sea, existe una 
() .> 0 tal que

SI U < a \ < ó entonees j/(v) - 1 < f

f I I i< V
>• IM II s| l p

I t I U <- l

Se relerira .il liin li\} como el límite bilateral par^i distinguirlo de los 
limites laterales

Los teoremas I .i H) de limites estudiados en la seeeion I 5 siguen siendo 
validos SI *‘v —r íi” se susiituve por "v —> a "o"i —> </ "

EJEMPLO ILUSTRATIVO 1 l a llgura l muestra la gra-
lie.i de la lunuon signo delimda en el ejereieio 4‘J de la seeeion I 1 
mediante

sgn
si (I

Como sgn \ = -I SI \ <

Imi sgn V - lim 
i-ai 1 .(I

= -i

“■I 0 < V. se tiene

lim sgn X = lim 1
1 •(! 1 .(I.

= 1 <1 KlliRX 1
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I n d <.jLni]il() ilusirLtlno i .tl(.*hid(i.u]ue el líiiiile pnr l.i i/(|iiierddy el límilc 
jiiir l.iilcreelu nosiin iguales el limite bilateral lim sen x no existe l.koneeplo

I -ii
lie limite bilateral no existe debido a c|iie los dos liniiles laterales son dilerenies, 
lo tiial es lina eonsecuencia del siitmente teorema

l-l liin /< U existe > es igual a /. si \ solo si lim fi\)\ lim /(i) existen 

\ son Iguales a L

1 a demoslraeión de este leoreina se de|a al estudiante totno ejerueio 
(eonsulle el ejereiuo '^4)

l2i SI II I
' 1X. I m ' 1

iií;i it\2

I I o
I I II

EJEMPLO ILUSTRATIVO 2 En e1 ejemplo 2 de la see-
eion I 1 se luso la sigiiietiie lunuon en la que fui dolares es el eoslo total de 
un pedido de r libras de un producto

C(v) -
Iv SI 0 < i :: I

SI 10 < t

l.a gráfica de (’se muestra en la figura 2 Obserxe el rompimiento de la gradea 
en X - 10 A continuación se examinara el lim C'(x) Como l.i detlnición

I In

de C'(x) cuando x < 10 es dilerente de l.i delmicton cuando x > 10. debe 
distinguirse entre el limite por la i/quierda en 10 \ el limite por la derecha en 
10 Al calcular estos límites se obtiene

lim fti) = lim Ix
I .111 i-.iii-

== 20

lim fíU =
i-la

lim
. .III'

l'uesto xiue lim C(x)5t lim C (xl, se coiicluxe. por el teorema I 6 3. tiue 
1 .111 . .iii‘

lítn f’(x) no existe En l.i sección I S. se considerara otra \cv esta liiiicion
....... ̂

como un cqemplo de una I unción tliu inmmiti ^

^ EJEMPLO t Sea g l.i timcion delmula por 

g(x) í I' I M I A 0
i 2 SI X 0

CU Dibuje 1.1 gralica de g (bl Determine lint g( i) si existe

Solución
(:i) I .1 er.ilica tie.g se muestr.i en i.i figui.i ^ Ubseixe i|ue la gráfic.i se rompe 

en el origen
Ib) lim L'(x) - lim ( O hm g(U = hin x

, .11 ’ . .11 . .ll‘ . lio
0 - 0

Como lim e(xj - lim gtx), se conduxe, por el teorema 1 b f que 
» >11 I ai ’

lim g(x) existe v es igual a 0 übserxe que g(0) - 2. lo cti.il no aleda
. .o'

al límglx).
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HUIR\4

I 1 « Hp*"!-: 21 

l« - n/m

ITGl K \ 5

EJEMPLO 2 Slm ¡i 1.1 Iuiich'iii ildlniil.i por 

'4-1- SI r £ I
hiw =

2 + \- SI I < X

la) Dibujo l.i orálii.! cío ti (h) Dolonnino. si osislon. l.k1j uno iIl los siouioii- 
tos liiinios liin/i(\): lim/iíu. Imi/i(\)

■ .1 . .!• I .1

Solución
la) La jzralíca lio h se inuostra en l.t li¿!ur.t 4
lb) lim/jli) = liin I4 - i-j lim/ilx) lim (2 - 1-)

= 3 =3

Como Imi /lili = liin hi\i > ambos son iguales a L so c.onilu\o. por 

el looreiiia I b L i]iio lim li( i) = 3. ^

► EJEMPLO 3

■ \ ~ y
/cu =

Sea / la Itinoión iloUnida por

(a) Trace la tji.iliia do / \ a partir do la gr.íliea baga un.i ioii|clura .loona do 
Imi fi u IIm Conlirmo analilKainonle l.i eonjouira del inciso la)

Solución
(a) 1.1 figura 5 imiesira la grálua do / ir.i/ad.i en el reel.iiigulo do inspec­

ción do |- I, S4] por [-2. 2] Debido a ipio la grálloa so rompe en el 
pimirulondo i = 3. se sospetli.i tpio lini/(u no oMsie 

Ib) Como ' ■'

c - 3 \ 1 SI í > 3
eiiloneesI 3 - i SI i < 3

Al ealiul.ir los límiies laleralos se ob.tiene 

A -3|

\lsA = I I M X > 3
' - 1-1 si X < 3

liin /( u - lim
X - 3 

Imi (-11

liiii_ /ID = Iim

= lim I

Como lili) /ix) '/

lim /(u no eusle.

lim /Ix), se ha tonlirmado

EJEMPLO 4 Sea / la luiieion dollnid.i por

X i 5 SI X < -3
/IX) = . X- SI -3 •• .X <" 3

3 - X si 3 . X

lu) Dibuje la gr.iliia de / (b> Dokimine cada uno de los siguientes límites' 
Imi /Ixi. \m /IX). liin /(xi. Imi /ix). Iii i /u). hm/(.x)
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Solución
MI [ 1 ili- / --o III'..- II 11 1 I I

llfl lim /m I I m (i <1

Comí' liiii M 

lini /(i) Imi
; » t \ •

= 0

Como lim f(\i =
1

i,'ur.i <>

lii 1 /( 0 = líti] >. y - .r~ 
• • 1-.

= 0

i.ikin ^ lim /(i) nii existe.. \

Imi J(\) = liin (1 - t)
I I ,i’

lliM !•'

y -
= <1

lim yi»). cnUinucs liin/(t)cxisie> esigujIaO ^

EJERCICIOS 1.6
hn los ejett u tos / ii 22. tlibuji' hi liriifh a Jt hi finu ion \ w cu«* 
If. (¡I u imirif 11 ¡iinilt' inJn tuto, si d Innilt no í-m/f*. tln;ii por 
iy»t rn:on

\. /(U

-1

SI I < 1 
SI l - 1
St 1 < í

(al lini /(ti.dil lim dti.tc) lintyin

1. j{\) -= i-- M » < (1 
SI (I S t

(ai lim /iii Ib) hin /in.lci lini /lu
i • ( .

SI I S -4 
SI -4 < /

Jr + 1 
l3 - s

SI I S -2 
SI -2 < »

(a) iim /"(O. (b) Iim /(/1,1c) liin fu)

4. x’l'l

(a) lim i}(í). (1)1 liin i;(n. (c) }im

5. /ni = II H - SI t r 2 
SI 2 < t

la) lim Fin.lb) lim / (u. (c) liin/i t)

(>. /)l\> SI j < 1
s) .1 S \!() - t

(a) litn/iin.(l)l lim/ux).(c) lim/m)

Í2f t 3 SI r < I 
7. A'lri = j 2 SI r = I

17-2/- SI 1 < r

(a) liin v(r). (b) liiii >;(n. (c) lim.i}(n 

«. «Ul

(a)l Jim i’(/i. (b) Jim «(i). (c) Jim t’(M

3 + /• SI / < -2 
0 s) / = -2
II - /• SI -2 < /

Ir - 4 s) T < 2
y. yin j 4 SI X = 2

I 4 - t* SI 2 < t 

(a) Imi /in.(b) lim /(v),(c) liin/U)

II). /in
[ 2* + 3 SI t < 1

= j 4 SI r = I

I »* + 2 SI 1 < i
(a) liin /lu.(b) Jim /(x).(c) lim/(i)

11. /ii) I» - -M
(a) lim/m.lb) lini/(t).(c) líiii/lt)

12. yix) = 3 ^ I 2» - 4 I
(a) lim /(n. (b) lim /(r). le) lim/U>I I *213. (H\) =|l» - -3| - 4
la) Imi (ii n. Ib) IimGlt).(c) limG'ln, : . .1 j

[ I V - 1 I SI r < -1
14. /U) = jo SI \ = -1

I I I - r| SI -1 < «:

(a) l>m /(ii.lb) lim /-It);(c) lim/(t)

15. /!»).=

la) liiti /Ir).(b) lin)/(x).(c) lim/(x)
I .0* I •!> I *0

Ui. iin = ¡ sjin 11 IIj funuon sgn t se definió en el ejemplo 
ilusiuiivo 11
la) limSn),lb) Iim3(t),(c) Iím5li)

17. /in
SI t < -2 
SI -2 £! t S 2 

I. - 2 SI 2 < r

(j) hm yiii.lb) lim yir). le) lim/(x) (d) lim/Ir);

le) liiy/in.if) lím/it)

X + 1 18. yixl r
2 - X

SI X < -I 
SI -1 < X S 
SI 1 < X

(al Inn /(x).lb) lim /(x).lc) lim/(x)(ü) lim/(x):
> -f I I • r 1*1

(c) lim /U). (f) lim/(x)
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í'í.

20.

21.

22.

2.^.

14.

25.

20.

27.

2S.

1').

M I 
SI I)

1.11 liin i\n lili lim /in ici iunrm

I 1 -I o < i

1.11 lim .1II lili liiii !.'< 11 UI !mi gli)

I i- ~ M \ 1

/■I 11 “ j l| _ , - s| \ ^
¡ - 0 SI .1 *r 1

MI lini /111 ili) lim ), ici huí / u I (íll lim /(u. 

It‘l l'ni Al o, ifl lim^fu

(lili

/ - I SI f '' -I

I - r SI I -- / < I

/ - 1 si I '' í

fjl hin O'in lili liin (iiii ui liniOin, (iJ| limG'(/i. 

leí lim Ol/i.ifi limOU)

.Scj /i II « - 2 süii X. Joi.ilt; spn \ csl.i Jdlmd.i cii d 
L-|cniph> ilusiMinn I Si c>.islcn ikiLmiinc (al liin /iti. 
lili lim /111. (O luí) /1II

.Scj/ilii = sj;ii X - Mu iliuuic süii X fslj dflniid.i en el 
ejenipUiilustr.iIixn I \ / e .l.iluiKinn s.ilUiiinil.inodLnmdJ 
por

Mu - f" ^ "
I 1 SI (I X

Si cxisti.n. dciermme (al liiii liiw (li| liin /ilxl 
Id ImiliiKi

Si cMsien. deteniiiiie l.il lim |¡x||, llii lim ||x||. 
ícl Imiílij!

Sieusleii.ilstenimie (.11 liiiilh Mi.ll»» liiii |[i - 1||. 
(d liii)|[x lli

Se.i/ilxi IX - 11 spii V l)ihii|e 1.1 er.ilK.i de/i Si esis- 
len. delerniiiie lal lim/iixi llil liiii/iixi.(d liiii/ilxi

Sx.i 6'i u = |lx|| • H} x)t í)ilui|e l.i ¡.T.ilie.i de (i 
Si e\isit.n d I iiiif,. 1,11 iim (,iu. (Ii| Inii (/ixi, 
Id iiiiUi'i XI

I).id.i/H) ^ ’ 7 M. dekiiiiine el x.ilm
I Si . / si d • X J

de k I il i|iie liiii M 11 esisl.i

í 2x - </ s] 1 < -1 j
.Í2. D.id.i/íxl = -j (u . 2h SI ■: X ■- 1 L delermiiie

I /» - .‘'X SI '' X J

Ins v.iliires de ii } h laks x|iie lini Jim > liin/ixj 
exisi.ui

.\1. Sea/lxl - I”' *’!. Deniue.ire i[Ul liiiiyir)
I I SI (I < X )

noexisie, > ijue liin evisie

.14. Demuesire el (eurema I 0 1

Lii loi iji raí itn (5 x .(0 wxxmIui luiliu Ii>\ limih •, ilr Im 
iniiun (a) Ikl a luiilir ih lii ¡¡raliiii iiunlunla iii lii fii;ur¡i 
luljiinlii

35. Ll doiiiiniii de f es |-l, ,S| (.i) liin /(x). (h| Imi /’lx). 

(d liiii /in. IdlIiiiiMx) (el lim /(x|. (f) lim fi\) 

(tt) lili) /(xl (lil lim Jl\i lil liiii flM. (jl lim /IXI, 

(k) liin A‘)

.10. 1:1 diiminio de / es |(l, 5| lal lim /(x|. (Iil lim J(\).
X >> i il

(d liiii fix) (d) lim/ixl, (d liiii /(X). (fl Imi yixl.
1 • .1 I .’ .

(K) lini /(X). Ihi hm /(xi. lii !ini flM. (j)liiii/iu.
I .' , . I , . I , . 1

Ikl iim /(X)

! u ios ¡irnhhiiui'. (7 x f.V (hlnijt la t’itilitü ¡It al\’una liiiu ion I 
ijiii xií/M/ííea hn I mullí imu \ da,¡as

.1(1. 1> 1.1 Mu - í X ( si X
k SI I < X 

lie i( f.il ipiL lim/l XI esisi.i

. dik Mililie el X.ilnr

X' SI X • -2
31. l).id.i/(xi • ,/x * h SI -2 < X *. 2 • iletcriiiine

2x - 0 SI 2 1 J

xaliiie. de íi \/il.des x|iie lim Mil\ lini /{xl esisi.iii

37. 1 I xlniiiinm de / es |-| 1| M-| | = - 2. Mil) ll./lll - 
2 m2) 4. Mi) = 1. Imi Mxi = -2. hm Mx) = 0.

i . I , .(I

lim MX) - l.hiiiMx) - 4. Iiin Mx) - I. hiii li\) =

0. Imi Mx) = .5

3S. !•lll(l||llnllu!e/es[ 4.4| M 4i - 1.M-2) “l./UH
1. /(2) = -1. /(J) n hin Mu - (}, lini /(x) 1.

Iim /(x) = 1. Iim i(\) .j. lini 1(1) a¡ ]. üm Mxl = 0
‘ 1 • • . , t
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3*>. Lnel iiKi'O(aliIl‘1 cjLTiikin > ilv-la'•cn.ii'ii I VM.‘ÍL‘pidio 
LfiiL' ciikiinlraM: un nioilali) in i(i-mali«.t> i|ul’ c\|Ui."-ara el 

(• it.il lie un L‘iiilui(|iu‘ eximí una Itincinii de mi plmi 
Si t e* e-a Innenm \ k es la laii.ilile indepemlienie. deler- 
inine cada iimi de los 'lyiiienies liiinie-* lu) liiii ¡tu, 
ili) lim /I i). (el lim l\ II idi lim M11

411. I.n ehiiLiso (al del ejereieio (i de la seeauii I se lepidio 
i|ue enionlra-e un modelo iiialenialieo L|ue expresara el 
fione de Lorreode priiiieraelase pata una caria ijiie no pe-^o 
mas de 11 <>/ Lomo una iiineion de su peso Si / es esa liin- 
eion V I es la \anahle independiente, delertinne eaila uno 
de los sieuienics liimles (m lirn /111. Ihl liin /11). 

le) hm /it). Idi liin/(ti. (el lim/iiKlfl lim/iij.t ' • . >kO
1^1 lim 111)

• *1

41. 1 n el inciso (al del c|ereicio ^ de la settión I 1. se le pulió 
que en<.onirase un modelo m.iicin.ineo que expres.ira el 
co'to de un.I llamada telefoniea. que no dure ili.ís de .S 
mili, de Meiuloemo a San l-raiieisui como una tuniioii de 
su dur.icion Si e es es.i liinuon > t es la t.iri.ilile inde­
pendíenle. delemiiiie c.nla uno de los siuuieriles limiles' 
lu) Iiin el >)■ (1)1 lim e(t). (el lim e< 11. Idl lim el u

42. I.n el inciso ijidcl ejercicio 8 de la seceti'ui I 1. se le piilio 
que eneonirase un modelo maleniatieo que expresara el 
precio de admisión al Co.ist (‘mema como un.i riincion de 
l.i cd.id de la persona. Si (i es esa luncmn ) i es la xarialile 
inJe[H‘ndienie. deicninne c.ida iimi de los sij;uienles li 
iiiiie. la) lini (<lti. Ilii liin (;iti (el Imi (iiii, 

Id) lim Ííl i)

4.^. Sean f y « las (unciones delmidas como

/'))
j t- *- 3 SI t • I 
I t r I SI I «- t

el»)
j »' SI I • I 
I 2 SI I < I

(a) Sluc-slreque liiti/(iiy liiii yi t| existen pero no son 

Iguales, y en coiiseciieiieia lim/( v) no existe.«I
(l>) .Muestre que liin el»l> lim e'») existen pero no son 

leiiales.y en conseeiienua. iiin el») »‘>existe 

(c) Olncnea una lormiila p.ira/(u el»'
(ti) Demuestre que liiiilM») el »i| existe ptoliando que 

liin I /I \l - el»i| = lim I /(ti el ti|
44. Se.iiiJ y e las lunciones dellimias como

/(t) -

ei»i --

I I I SI t < 1
! \ - 1 SI I <; 1

J I ■ » s| t < 1
I + t st I t

la) Miiesireque lim(it)> lim el »l no exisien

(lil Deliiu l.i liincioii / -t- e 
Id Deimicstrei|ue lim|/(tl ♦ emlexisle

(il) De los resultados de los incisos lal x ic) se tiene

lim{/iil + eit)| ^ Imifiti * limeiti. .1 . .1 . .1
, CoiitMiIiie es|i' hedió al leorema 4 de limites
(1 5 .^).’, l’or que ’

45. Sin ulili/ar l.is p.il.ihias limitr o te i.'/’rouimi x sm em­
plear simholos ules como C y «». expíese en pal.ihias lo 
t|ue sipmi'iea catla uno de tos Miniieities siinl'oliMii.is tal 

Imi /iii /. ll>) hm /II) I

1.7 LÍMITES INFINITOS

I i(.l l(\ I

l-ii esl.i setciiin, se isimli.m la- liiiiiiones eiixos v.iloies tunn o JiiUifit 
Mil liimif I un lili me la tai i.ihie iiiilepenilienle se meiea i .ul.i xe.' mas a im lui 
meio lijo l'aia inieitM, euiisnleie la limuiui deliimia |itu

1
M»)

\

I I lioiiimiii (le / e < el i oi)|iinlo de Imlos los niimeios le.iles excepto (I, míen 
li.u (|iii' ai (onli.idomiiiio es el coii|iinto <le todos los niimeios le.iles pttsiii 
Vil. I .1 lipiiia I mitesu.i l,i pialu ii de t li.i/iiila en el lectani'tilo de iiispev emn 
di I poi |l). inoj Oliseive i|iie lonloime las t ooideiutlas t ile los
pimíos lie la j'ialivM se .ipioxiinan a 0. pot l.i tieteilia o poi l.i i.'qnieid.i. 
las eooiilenailas v. o /I v). v'iei en. A conliniiaeion se c.iU nl.n.in aletmos xalo 
tes de la linii mn i naiulo v tiende .i 0 .\piOMme v a D pot la deieeha. es ileen. 
eonsideir los sipnii nli's xaloies ile v I. DS, (» ti I. IHM. (MKU. \ de 
li'mime lo. valoii'. eniie-,poiidienlt"< tle /tt>, l>‘> vitales se miiesii.m en l.i
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¡Mi i

1
■ I

I
i:
4S
‘IX)

•Dlhm
I ixi Col

Li i.il’l.» I Observe cu csUl.ibl.u|iK;/(Ucrcccco(ifonnc rsc aproximacadü \c/. 
mas a (I. a iraves de \aliues mavores i|ue 0. En realidad, se puede hacer/(lan 
erande tomo se desee para lodos los valores de v sulleienlenienle cercanos a 0 
% niavures tjiie Ü. Debido a este hecho, se dice i|ue J<\)> reii' s//i limih' conlor- 
nie « lleude a II inediaiile valores mayores que 0. lo cual se escribe como

Imi —í- = +00

Ahora aproxime v a 0 por la i/quierda. en particular, considere para v los 
v.ilores-1,-0.5.-0 25.-0 1,-0 01 y -0.001 Debido a la simetría con res­
pecto al eje y. los valores de la lunción son los mismos que los uurespondien- 
les a los valores positivos de .\. Así, otra \e/.,yiv) ireie un línuiv conforme 
\ tiende a 0 a través de valores menores que 0. lo cual se expresa como

lim — +00 
I -ai I -

ííítt

iK.i n\i

Por i.inio, contorme t se aproxima a 0 por la derecha u por la i<’(|uierda. ftxi 

I ri’tr sin limite, lo i|ue se expresa en símbolos como

lim = +CO
. •() V-

A partir de la mformaciiín anterior, se obtiene la gráfica de f. mostrada en 
la ligura 2. la cual, por supuesto, corresponde a la gráfica trazada en la figu­
ra I Observe que las dos "ramas’* de la curva se acercan cada vez más al eje y 
conforme v se aproxima a 0 Para esta gráfica, el eje y es una tisúiloia i criiail. 
la cual se definirá posteriormente en esta sección.

.Sea I una lunción definida en e.ida número de algún intervalo abierto / 
que contiene a </. excepto posiblemente en a mismo. Conforme x se 
aproxima a a,f(x) crece sin límíle, lo cual se escribe como

liin /< vj = +00 (I)
I

SI para cualquier mimero A' > Oe.xisieó' > 0 tal que 

si 1) < ].v - í/| < ó’ entonces f{.\) > N

Esta deJmiuon también puede establecerse en otra torma como sigue 
“I os valores de lunción /(it crecen sm líimie conforme .v tiende a un número 
ii SI /(V) pueile hacerse tan grande como se desee (esto es. mayor que cual­
quier numero positivo /V) para lodos los valores de i suficientemente cerca­
nos a </. peio sin considerar u a. mismo

.Se insiste una vez más. como se hizo cuando se analiza la notación de 
intervalos en la sección A-1 del apéndice, que +oo no es un símbolo para 
representar un numero real, en consecuencia, cuando se escribe hm /(v) =

\-*a
+CO. no tiene el mismo significado que lim f(x} - /.. donde Z. es un número

real La ecuación 11) puede leerse como "el límite de fix) cuando ,v tiende a n 
es infinito positivo (o más infinito) ’ En tal caso, el límite no existe, pero el 
símbolo +00 indica el comportamiento de los valores de función/(.v) ctinfor- 
me X se aproxima cada vez. más a a.
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l)c m.incra .in,ilo¿.M. piicdL- indic.irsL‘ el eompiirijniiento de un.i funeinn 
ui\(>s valores ílun-mi sin liniiu Para lleyar a eslo. tonsidcre l.i lutiuun ^ 
delinid 1 por la eeuavioti

' 11 —

e(vi = -T
V-

I a liüura í mueslra la ¡jrafita de esia lunuon Ira/ada en el reelanyulo de 
inspeLUon de |-2. 2| píir [-11)0. 0| Los valores de tmivioii dada por =

son los neyaliuis de los valores proporuonados por /(\) = *4; De
i* V-

modo que para la tuneion conlomie v se aproxima a 0. por la derecha o por 
la i/quicrda ijíu </c’í rae un liiniie. lo que se escribe como

liin i'' 
.-•I' - w

Sea I una lunuon detmida en cada numero de alüun miervalo abieno / 
que contiene a a excepu> po ihiemcnte en ii mismo Conforme x se 
aproxima .i a,fix) decrece sin límite, lo cual se escribe como

lim /ti) - -00 (2)
Í-9Ü

SI paracuali|UiermimeroA' < 0 existe o > 0. tal que 

SI 0 < I \ - íí I < J entonces /(i) < A'

MDLItvq

i\'oi(i La ecuación (2) puede leerse como "el limite de/( vi cuando v tiende 
a <1 es infinito negativo ío menos infinito)" Observe, otra ve/, que el límite no 
existe, > que el símbolo -co sólo indica el comportamiento de los valores de 
tiinuonyt V) conlorme v se aproxima cada ve/ mas a a

laminen se pueden considerar los limites ‘infinitos" laterales Se estable­
ce que > lim J<\) = +co si/está definida en c.ida número de un intervalo

I *
abierto (íi. í) > si para cualquier numero iV > 0 existe «5 > Ot.ilque 

si 0 < V - o < o. entonces /(v) > N

Del miciones semejantes pueden darse par.i lim /(vi = +oo. Inii /(v) =
i-.li t-.ii-

-00 > lim /(V) = -oo .Se le pedirá que escriba estas delimciones en el 

eiercicio ‘52
Ahora suponga que /; es la lunuon definida por ia ecuación

/;(v) = " - (3)
\ - I

I a gráfica de l¡ se presenta en la figura 4. en esta figura también se muestra la 
recta \ = I como una recta punteada tuna nu'iiinht \eriuul de la gráfica) 
Consulte las figuras 1. 3 v 4. y observe la dilerenci.i entre el comportamtenio 
de la lunuon de la figura 4 > las luneiones de l.is otras dos figuras Note que

lim
.-I \ - l

lim , = +0O (5)
. .1* V - I
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hMo L’s. para la tiirii.ion dctlmda ¡mr (3). Lonlurme v se aproMina a I a iraves 
de \alures menores que i. los valores de tutieióri decrecen sin límite, mientras 
que mando v se aproxima a I mediante valores madores que I, los valores de 
tunuon crecen sin limite

Antes de presentar alguno-, ejemplos, se necesitan dos teorein.ts de iimiles 
que implican limites ■‘infinitos"

Teorema
Si r es ciulc|uier número entero positivo, entonces 

ti) lim = +00.
, h- x»-

.. 1 (-CO SI I es impar
(II) lirn — = {

. a. .x'' 1 1-00

Demostración Se probará el inciso (i) La demostración del inciso (ii) 
es análoga \ se deja como ejercicio. (V'ea el ejercicio suplemeniario 3). Se 
debe probar que para cu.ilquier/V > O existe tí > 0. l.il que

si O < i < J entonces — > A' 
x''

o. ei]ui\alenlemenle. conuM > dv A' > 0.

SI 0 < V < ¿> entonces < +7
A

>). de modo equivalente, como ; > 0.

SI 0 < \ < <5 entonces v <
\lr

I I ' / 1III enunciado anterior se cumple si ¿ | — j l’or tanto, cuando 6 = |

0 < .V < ó entonces — > A'

EJEMPLO ILUSTRATIVO 1 a partir riel teorema lid)
de límites

lím = +CO ) lím * = +00
. -(>• X ‘ V

Del teorema ) Idi) de limites

lim i -oo V lim -r = ‘ co 4
I .11 X . -a X

1.1 teorema 12 de límites. i]iie ,i conimu.iciiin se presenta, implica el limite 
de iin.i fiincion racional p.ira la cual el límitedet denominadores cero y el limi­
te del numeiador es una constante dilerenle de cero Esta situación se presenta 
en lá) V (.3)

Si </es cuaU|iiier numero real V SI lim/(v) = Ov límglv) = «-.donde 

(• es iin.i conslaiile dileiente de 0. entonces
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(l| M ( > (l\/u) —) (1.1 lr.i\cs de \ jiorcs p^)^|ll\ns (JeüiHoiilcs

lim — = +00
. • M ri

(ii) sjI > 0\/(u —» 0.jiroxcsde\.i!orcsncg.ilivosde/"(u Lnumec'v

I «fuIim — = -00
.

lili) SI ( < 0>y(\) —♦ O a Irasés de s.ilores posKisos de/(V) enkim.es

I e<t)liin ------- = -00
Jíx)

(is) si( < (Isyix) —> o a irasés de\alores negaiivos dcy(\) enlonces

, i’l \)htn = +00
/U)

I I teorema (amblenes valido SI se sustituse '\ -t a por‘\ ti' 'o
’X —* II

La demosirauon del muso (i) se présenla en el suplemento de esta see- 
(.lon I as demostrauonLS de los otros inusos se dejan como ejercicios Con- 
su lie los ejercicios suple mcnlarios 4 a 6)

Cu.indo se iplica el teorema 12 de limites con Irecuencia se obtiene 
alyuna indicación de si el resultado es +oo o -oo. tomando \iiliiiis iith- 

iiiiiilu\ de i próximos a n para determinar si el cociente es positivo o 
negativo, como se muestra en el ejemplo ilustrativo siguiente

EJEMPLO ILUSTRATIVO 2 I n l4) se liene

■>
lim —“

1 I V -
V

Se puede aplicar el teorema 12 de litmies va c|ue liin 2v = 2 j 

lim (i - I) ■= O Se desea determinar si d resultado es +00 o -00 Puesto
I -I

ijue i —# I se lomi un valor cercano a 1 pero menor i]ue I por ejemplo 
lome V •= O y V .il calcular el cociente se obtiene

2(0‘J) 
Ü‘J - I

= -IS

rt cociente negativo conduce a sospechar tjue

•>,
lim -T = -co 

I V - I

Lste resultado se obtiene a partir del inciso (11 j del icorema 12 de limites, pues­
to i|iie cuando v —> I . V - I se .iproxitna a O mediante valores negativos 

Para el limite de ('>). como V l'.setomav = I Ivsecaleula

11-1

Debido a ijue el coeienle es posiuv o se sospecha i|Uc

+ 00
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Hslc rc'-iiluJn soulilionc :i partir dd iiiLisotudd leororna 12 de límites, piiestn 
que ciundi) \ -* 1*. \ - I se aprosim.i a I) piir medio de\alores positivos ^

Cuando iiiiliee el procedimiento mostrado en el ejemplo ilustraliui 2. len­
ca cuidado al elegir el valor de t. asegúrese de que esté sullcientemente cer­
ca de ti al determinar el comportamiento verdadero del couente. Por ejemplo. 

2 \
-. el valor elegido de v no debe ser sólocuando se calculó el 

menor que I. sino que también debe ser mayor que 0

iiin 
<-.i- .r - I

► EJEMPLO 1

/-(i) = X- + X + 2
a - - 2 V - 3

Se.i

Determine (a) lim R\\. tb) lím f\.\i (c) Apoye las respuestas de los inci-
t*-*^*' X—♦?**

sos (a) y (b) ira/ando la gráfica de /■'.

Solución

ía) litn
1-.V

■V- -f- V + 2
V' - 2 r - 3

lini ^ ^ -
■ -«V (\ - 3)(.t -1- Ij

El límite del numeradores 14. locual puede venllcarse fácilmente

lím (T - 3Mv -i- 1) = lini (v - 3) • lim (v -t- ll 
l-,0 c-,1* .-.o

= 0-4 
= 0

El límite del denominador es 0. y el denominador .se aproxima a 0 me­
diante valores positivos, Entonces, del teorema 12(i) de límites.

\ + 2 
i - - 21 - 3

= +0O

(b) bm
1-. I

A- + V -t- 2
.V- - 2v - .3

lim t- -H .V -f- 2
.1- (.V - 3)(.v + 1)

t’ - 2» t

FIGURA 5

Como en el inciso (a), el límite del numeradores 14.

lím ü- - 3)(i -I- I) = lim (V - 3) lím (v -i- 1)
i_.i- i-*i «-«1

= 04 
= 0

En este caso, el límite del denominador es cero, pero el denominador 
se aproxima a cero por medio de valores negativos. Del teorema 12(ii) 

de límilcs.

lím ■X- -f .V -H 2
.r- - 2.V - 3

— co

(c) La figura 5 muestra la gnlfica de F trazada en el rectángulo de inspección 
de |0. 9.4] por |-l(), I0|. la cual apova las respuestas de los incisos (a) 

y Ib).
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► EJEMPLO 2 Sc.iii

ln,= J ;J-y

Determine (a) Iiin /‘m.llu lini(>l\t Apo\e ead.i respuesta Ir.i/.mcli) la grá- 

IIlu Je la lunutm

Solución
(a) C'iiiiiii \ 2'. X - 2 > 0 JerniiJoquex - 2 = ( \ - 2i* Asi

liin _t: - 4 
I - 2

, (» - 2)( X + 2)
iim — -----------

(X - 2)-

i„„ '_r -
X - 2 X - 2

- lim X + 2

hl Imiile Je) numeraJor es 2 Ll liiiiile del denoininaJur es 0. v el Jenn- 
minadtir se aprovima a 0 medíame \alnres pnsiiixos tn eonsetuenua 
por el teorema 12(i i de 1 mu tes.

Iim

fiM ' __
I 2

I Kil H\6

La j:rátiea de / tr.i/ada en el reLianyulx» xle inspetoion de [2, 5| por 
|0. lOi. > mostrada en l.i Imur.i (y. aposa la res[uiesla 

(I)) Cnnm x —» 2 . x - 2 < 0. de mudo que x - 2 - - _ (2 - xPor 
tanto.

2 - X 2 + X 
X 2 - X

hn, = i,„i
. 1-^ ...’-i-, •)_

= lim

ni limite de) mnner.idor es 2 1:1 limite del denonnnadxir es 0. y el deno- 
imn.idor se aprosima .i 0 mediante salores negalisos Ln eoiiseLuenua. 
por el teorema I2liil de I mil tes.

Inn -----1— = -00

s(o

I a liyura 7 muestra la grallea de i* ira/.id i en el rectángulo de inspeeeion 
de |(l, 2j poi I II). (I|. la cual apos.i la respuesta A

► EJEMPLO 3 Dada

xll - 4/i(X)
X - 4

I IGl R\7

(a) Trace la gráfica de li. y a panir de la gráfica elabore un enunciado acerca 
del comptiriainiento aparente de /i(x) conlxirnie x se aproxima a 4 por 
medio de valores menores que 4

li» Confirme el enunciado del inciso (a) analiiicamente determinando el 
lim h{\)
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Solución
<al L.i liüura S imicsira l.i gráÜLa df li lr.i/ad.i en el reLl.m"uIo de iu'>peLeiún 

deC^. 4|por|0. 30) I.n la Hpiira. parecet|ue/ií\) erecc sin liiniteeonlorme 
i se aprounu a 4 mediante salures menures que 4 

([)) CiMiio lim 1]\[1 = 1. se tiene iiiie litn (||il] - 4j = -1 Además
l « i C —

!ím (\ - 4) = I). >1-4 se .iproxima a 0 pur medio de valores ne-
I —• 4

pativos Iln conseeuenua. del leiirema 12(iv) de límites.

Iim
1 >4

!hj -4 
\ - 4

+ CO

liste resultado eonllrma el enmielado del muso (a). ◄

I h;i r\k
Recuerde que como +oo y -co no son síinhotos para representar núme­

ros reales, los teoremas 1 a 10 de límites de la sce-eión 1.5 no se cumplen para 
limites "intlnilos” Sin embarco, las pmpiediides eoncemienles a dichos lími­
tes se presentan en los teoremas siguientes, cuyas demostraciones se dejan 
como ejercicios (consulte los ejercicios suplementarios 7 a 0)

1,7.5 Teorema . . _________• '
(i) .Si l¡m/(\) = -i-co y lim^’(i) = c. donde r es cualquier cons­

tante, entonces lim(yu) + = +CO

(¡i) Si lim/tv) = -coy linit,'(u = c. donde r es cualquier cons­

tante. entonces

lim \fix¡ + gíu] = -00

Ksios teoremas también se cumplen si se sustitu>e ’’.v a" por 
> i¡*" o a

1 EJEMPLO ILUSTRATIVO 3 Como

lim — * - = +03 V Iim - *— =. - 
. \ - 2 ■ , V -1- 2 4

se deduce del teorem.i 1 7.5(nqiie liin = — - + —^—
■ L V - 2 V + 2

+ CO 4

1.7.6 Teorema
Si lim/(U - 00 y iim/’t») = (. donde r es cu.ilquier constante

T *íJ l-*J
ilisUnta de 0, entonces 

(I) SI «• > 0. Imi í( \ l • i¡{ 1) - ♦ 00,

(il) SI r < 0 lim /tu • í>(i) -- -00.

listos leoiemas también se cumplen si se sustiiuve “x -> a" por 
"x —> a ’ " o "i (I

I EJEMPLO ILUSTRADO 4

lim
(V - .^)-

lim >-*-
X .1 X -

4
4

= -7+ 0O >'
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l’or tanto, ik'l tcnrcmit 1 7 (> lili,

lim »_+ 
t -

•4

1,7,7 Teoremo ____  ..... / *
Si lim/u) = -w j lim.i'ív) = c. ilmulc ¡ es uialtjuier constante

•^J4 4—»u
distinta de 0. entonces 

til si c > 0. Iim /t u • .c’t = -co.
I —

til) SI ( < 0. lim/(\) • ,i,'(\) = +0O

Estos teoremas también se cumplen si se sustiluje “v —* a" por 
"\ —> íi*" o "i —» ti

EJEMPLO ILUSTRATIVO 5 Kn el ejemplo 2<b) se mos-
tro que

lím .-t - t-
A - 2

Además.

lím 
< —*2

V - 1
r + 2 4

por tanto, del teorema 1.7.7lii)

lim , 4 - .r* A -
V - 2 A + 2

Se pueden aplicar límites infinitos par.i detenninar las ít\íiiioli¡\ veriUn- 
lf \ de una jirállca. si es que posee alguna. Consulte la figura 9 que muestra la 
gráfica de la lunciiín definida por

/■(A) = (6)

Cualquier recta paralela al eje r \ por encima de éste interseciará esta gráfica 
en dos puntos, un pimío a la i/quierJa del la recta \ = </ > el otro en el lado de- 
reclui de dicha recta Así. para cualquier k > 0. no importa qué tan gran­
de sea. la recta v = K intersectará a la gráfica de /'en dos puntos, la distancia de 
estos dos puntos a la recta t = u es cada \e/ más pequeña contorme k crece 
Por esto, se dice que la recta v = o es una (Im'uioIii vcrnatl de la gráfica de /

1.7.8 Definición de asíntota vertical
La recta \ = <i es una a.sínlntu MTtical de la gráfica de la funcióny si 
al menos uno de los siguientes enunciados es verdadero-

(í) lim yt\) = +00

(i¡) lim /i r) = -00

(iíi) lim /tu = +«
\ -*|X"

(iv) Hm /(a) = “00
I ”
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EJEMPLO ILUSTRATIVO 6 c\iü.i un.i de i.is h^urü^ lo
.1 n mucsira imi pDamn de la grailea de una luiKh'm para la cual la rcUa 
i - a es una asiiilnla vertieal f ii la tiyura 10 se apliea e! meisu (i) de la de 
lina ion I 7 X. en la tigura 11. se aplica el muso (ii). ^ ui las liguras 12 > H sl 
aplican los inusos üiil > (iv | respeclivanicnle

▲
o « ► I

Para la lunuon detmida por Uo. los incisos iii > iiiil de la detlnicion an­
terior son verdaderos Veau- la figura 0 Si i* es la liinuón definida por

i-íii =-------- !—7
(\ - </)-

entonces los incisos hil \ (i%) son verdaderos por lo cjue la recta i = <r es 
una asíntota vertical de la gráfica de i» La figura 14 muestra esta situación

► EJEMPLO 4
lunuon / definida por

Deteniiinc la asíntota vertical de la gráfica de la

l(\) =
V - -i

Apove la respuesta trazando la gráfica de J y la asínioia en el inismo rectán­
gulo de inspección

ilGLIU 15

Solución Se cstudiar.in los líimtcs 

Iim /(V) y lim /(\)
i-*i

porijue en los dos casos, el limite del denominador es cero 

lim —= +w lim = -co
, -.1» X - T ,_i X - 3

De la definición I 7 8 se conduje que la reda v = 3 es una asíntota vertical 
de la gráfica de/

La gráfica de f y de la recta v = í trazadas en el rectángulo de inspec­
ción de |-L 8 4j por |-I0, I0|. mostradas en la figura 15. apojan la res­
puesta ^
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EJERCICIOS 1.7
til l<<\ i7«Ti ;i ii'v / ti ¡2 lun;ti h> (til iiiilni iiiui
mil íiIiuIki.i ¡’¡ir,i ¡liU rwiiuir \ lnhiilur !n\ \¡i!nn \ ih Iim ¡’nni 
h'\ u.lnni t/i’ \ iiii/iitii/in \ ti/'tilín ih i\U'\ wl/"/l'^ iliihnrr 
un iiwiuiiulii i i’iu t niii ntf ul lomiiiirumiunio tipuri'iiu ih 
ÍIU lh‘ \pi’\i lil U l/Kli '/ri lili IIUI‘,11 Ul) lliKíllulil lil íinijuil 
i!i I ii I Li’iijiniu lit n \/iiii \ií¡ Jil imiui lo) aiuilmmminlr 
< íth uliiiiili' ti IiniiU iiiiluiuln

l. n\> - ' \ L-s 0. S S SI 5 di. 5 ddl. S dOdI
i - ^

lini ‘
■ i - s

1. ii\< i L-s 4.4.*^.4 y. 4'j‘í.4 yyy. 4 yyyy

Inn -~
■ ■■ t - 5

3. /m = —' , I L-sfi. 5 5. 5 I. 5(M.5 0üi. sodoi v v
n - 5r

cs 4,4 5.4 y 4 yy. 4 yyy 4 yyyy. inn —' ,
■ 11 - 5i-

4. /H| = t es n. (I 5. dy. oyy. nyyy. oyyyy.
I - »

Irir l±r 
1 X

5. IH) ^ Ll-:. , 2. I s. ] 1. I m I 001, I omii.

hm I 
1 - '

í). ín I - . t es n. o 5.1) y. o yy. o yyy, o yyyy \ i
(»-lr

i;> 2. l 5. i 1 I (II. I 001, I (H)0|. Inn ^ --
' \ ! I-

7. Ux) =- —vesO.-n 5.-oy.-oyy.-oyyy.-() yyyy.
X -*• I

lim• ' i + 1
8. /(I) = i-Z_r;,es 2. I5.-Il.-Mli. I 001.-1 0001.

I 4 I

iim -5- --
' • ■ \ T 1

y. M») = —L_. 1 es -5, -4 5, -4 1, -4 01 -4 00i. 
X + 4

-4 0001. Inn —I—
■ • T 4 4

J». M\l = —1_. , es 5.4 5.4 01,4 00! 4 0001.
r - 4

Inn —\—
I-.4- \ - 4

•1. Jii) = —Í-‘_. r L's -4. -3 5. -3 1. -3 01 -3 001. 
y - r-

-3(XHI|. i¡,n _^5_.
> y -

Jl\) = r lis 4. 3 5. 3 r. 3 01.3 001, 3 0001.
y - i-

inn... y _

l.ii lin I jen II un 11II ^2 tA’OT/imit il Imiile (iiuiIiiiuiiiiliui v 

iipou Ul rinpiiiUii liinmilii la j'rn/iui lic la Jiiiumn iii la
eiii/if luliira

Inn 1 4 2 14. lini -14 2
- 4 (f - 2r

1 4 2 Inn .3 T X-
/- 4 i

17. 1 m -.3 4 t- 18. 3 4 X-
V \-

Inn Inn -.10 X-
t - 3 X - 4

21. f ' - ' 1 22 lim X- - 31 X X ' 4 X'

Inn
:-4x^

5x- ♦ 3x'

lim 1 ' - M
i ^ 1
' 4 3, - 4 r 4 4 1
2x' - 5x-

Inn

1- - 1

Ihll - * 1 ni llx-ll - 1
3 - t X- - !

Imi x’ 4 yt- 4 2()x 30. Inn 6 X - 4 X - 2
V- 4 X - 12 2x- f- 3x - 2

X - 1 32. Inn X - 2
• >1 V2x - r- - 1 2 - s4x - X-

33. Sea

/Ul = -LLL-Lz^ 
I - - o I + 8

OH 'lrji.L‘ l.i i.'rJrÍL'.i lili J en d recMniiiilo Je inspeteum de 
(-1. S4[pnr|-5. 5| Apartirdel.igrille.lel.ihoreiiiueini- 
jeiur.i .leerea de Ins limites siguientes \. después euntlr- 
nie¡iii.ilmeanieiite laetmjelur.i Ihl lim /(ij.lc) lim h\f. 
Uh lim /lu.(e) Inn Hxi

34. .Se.i

11 1 r — --- , -
r* 4 X 0

(a) Traee la gr.ifie.i de f en el leelaiigiiln de inspeeenni 
de |-4 7, 4 7| pin [-5, 5] A partir de la grallea el.ihnre 
una emijelura acerca de los limites siguientes >. después, 
ciiiillrine analmeanienle la unijetura- (b) liin Au. (c) 

lim 7(i),(d) lim /(i).{e) Innytx)
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l II /t'« «ytri.cK't V ilittniiiiit hi nuiittiUi Kirinul ih ¡u 
i'nitK ‘t <■'«• l‘i tii'i' i‘"i ‘ titl-.iji Iti

(I») l,MI 4,
»■

(<|| (jUI = —
’ x’
' (I» I.IU -í-
> X'

' uii (;iu - - ‘
»' \

hi li "i 1,1 ii ii im i7 ü 44, lai líi hniiiiu hil\l axiiiloiulx) urii- 
mlltsiili líi urtiliiii tlí hi Jiiiitiiin. \ thl iii>lu¡iii /<i n x/wx/n 
<h ¡ iiui\i' iiU l’iira (lihiiiur hi u

.37. .38. yiu = 3
MU ^ -

i 1

3‘>.
T

41). -4
\ - 5

41.
*>

/tu ^ 4
( 1 -t- 3)- u - Sr

43. Mu = —. - 2-------- 44. Mu =
1

T' + ^ + 5x - <1

hi lo'i • jtr<uiii\ 45 \ 40 tuiUii lo\ limiu i ilc Im iiu nn\ <n) ii (ji 
(I ¡himr ih hi íI </< hi Jiun lint ¡ (lihiijmln • n hi ln;iiui (iiljunlu

J5. 11 tluiiiimo Jl‘/ es I 2. ^1 (ul (I») lim /’iu.

le) lili) /(U Id) hmyiu. le) limyií). If) límyiv) 

l(>l lim/i«>. lili hni J(x).Ci) lim /iD.lj) lim /(o

f - -I * t I « 2

/ II tus íjt it II iiis 47 \ 4H, tlihiiji tu ^rajuu ili tili;iiiiii Jiim mnj 
</<(■ Milistiit;ii Itis < niiilu iinii's ihutiis

47. II iloiniiiio de / cs I 5, .S] ¡i-^i II./(-M 2.yi-l» -
I) /-((I) = o./lll = O.yni --2./l^l = -4. 

Iim 11 = + co, liin /( u = II liiii /(11 " 4

Iiiii /(i) = -e«5. liinMil = I) lmi/l<) •*-m

lim^lx) - 11, lini /(i) 'W

4H. II diiniinii) de / es [ 2. 2| /i 2) -()./( I) = 0
rni) = *>, /Jl) . Ji2) = 4. Iim /(u - -w.

Iiin /(») = +«, lim /lu -co. Iini H\> = D. 

iim Mu = t-oo, Imi/lu = -oo. Imi Mu = 5

4V. Si ( U) (liil.ires es ti cosid tdl.il per Imr.i de lii/ en una la 
hrita uiii II l.iinparas lluortsLtmes taJa ima tim n:i pro 
iiieüm de sida de I huras eiiloiites

donde rdul.tres es el tuslii de renovaeióii. ces l.i tonsl.mlc 
de efitientia uunertial./r xxatts es la poieiitu de cada laiii 
para.) A dolarL-.es el tu lo de l.itneryia portada ! DIlDxt.iUs 
Deiennine liiii (I/)

50. Dadas

;(xl . —!— ) [.(i) = —!—
r - 2 2 - \

lu) Deniutsireipie liin/iu) linu'lutioeMs|..n ibiDetl- 

iia la luneion / s- <■ le) Deiiiuesire ijtie liin |7I\I + 

Vlu| existe Idl De los resultados de lo> mtiso-. la) 
) it).

liiniMU + A’lul A Imi/lu - liinvlu 

, C'onlradiee este littlio al leorema 4 de líiniles 11 5 S|'

51. De atuerdo ton l.i teoría especial de la rel.ilividad de 
l.iiisiein. mngutia p.trtitula con nusa po^llt\a puede Maj.ir 
mas rápido ipie l.i telotidad de la lu/ l.a teoría t'speeillta 
(pie SI mil) es la medid.i de la masa de una p.'nítula i]ue
. mutxe ton uii.i teloeiüad de medid.11. entoiitts

35. tal NU 

lc)/m

36. tal NU

Ul />u

46. I.l doininto de/"es I 4 -II i.il Imi Mu ib) Inn /'))• 

10) liin MU. id) limyii). U'l I") /lU. ifl lini MU. 

(pi lini ^1U. lili hm/lu. (il lun/IV), (j) lim /lU
ilonde IIII es l,i medida toiisi.mle de la masa de la parlitiila 
til tepoM) relalixa a .iljtun sistema de relereiitia. \ t es la 
Iludida toiisiaiile de la xeintidad de la lu/ l-\plique por 
que mnpuno de los sieuieiiles limites exislen lim //iti) 

ImwnM). liiiiHid) i-ii su explit.ieioii indiipie el toiii 

porlamienio de «lU i eonlorme i tiende a t intdianie \aio 
res menores (|ue c

52. Escriba una definición tornial de cada uno de tos si^uieii 
les litniles laterales lu) lim /lu = +i»;ib) Imi yiu = 
-00. le) Imi /lu = -c¿ ’

Lii los cjiT<n IOS 5t \ ^4 I sUihU:io t mi iHilnhiiis lo i/iu .wvrii 
fluí i'l siiiiliiilisiiio iiutiiiiilo sin iiiili:ai tus iHilulmis liiiiHi'. 'C
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tipn'uiiiii intiiutí’ lUit un Iiim'i tii¡tir<n un liniiU i un 
impUiir umhi'lu'. iiiniíi \ \ ci

53. Iini/ni »ec 5J liin/(\i = -oo

.^5. Si/’ui ci un p.)litiiiinio \ (íui - x - u. aiinni.LS ! i i;rjf¡
S.J ilu lj lurtLii'ii / ililiniJa por MU = /'iu/íJ(U pllJu

lcm.r .1 Li ilU.i i ti unriio .ismtni.i n un juuji.ro tri el 

piinlii (liiude \ = a , Cu il ci ]i reljumi uilre tslos dos 
toneeplos L'uiineinuie j luii /(u'

1.8 CONTINUIDAD DE UNA FUNCIÓN EN UN NÚMERO

I >• -.1 MI t

t-K.l RV I

Ln d ciemplo 2 de la scuunn I 3 y en el ejemplo iliistr.iliui 2 de la seeeiim 
1 6 se irato la fuñe ion dellnida por

,, ¡1\ SI O < i < 10
C(x) = <

1 8e SI 10 < i

donde O U dolares es d costo total de x libras de un producto Se mosiro que 
lim Ci r) no existe debido a que lim C(x)?¿ Iim C(x) La erallca de C

• iii i-.iii' I .111
dibujada en la figura 1 se rompe en el punto donde x = 10 porque C es 
la iliuoiilimiíi en d numero 10 Esta ihsiaiuinuidtuí es causada por d íicclio 
de que lim C(x) no existe Se liara relerenua a esta luncion otra \cv en el

i-.iii
ejemplo ilustratno I

En la sección 1 4. se considero la tuncionJ dellnida por

/(W
(2x + 3)( X - I)

X - l (2)

n(;iiu2

I IC;i KA 3

I a gr.ilica de j consiste de todos los puntos de la recta x = 2.x + 3 excepto 
(I. 5) y se muestraen la tigura2 Laerallcaserompeenelpunlotl 3)dcbido 
a que la luncion es J¡\i oiuimui en el numero 1 Esta dist onumiuhul ocurre 
porque /(11 no existe

Suponga que la luncion / tiene los misinos calores que la lunuon / deh- 
nida por (2) donde X x* I ysupongaque pnre)emplo /ll) = 2 Liilonces / 
esta dellnida p.ira lodtis los valores de \. pero existe una rotura en la gráfica 
Iconsulte la figura 3). y la función es distonriniui en I Sin embargo, si se 
dellne/(l) = 3. la gi.ilic.i no se rompe \ se dice que la luncion T es <orí- 
imiiii en todos los valores de v

1.8.1 Definición de funcíén continua en un número
Se dice que la luncion / es contíntia en el nunierxi a si y solo si se alis- 
Licen las tres condiciones siguientes

lí) /l<rl existe, 
lii) lint /(XI existe 

(iü) lini /(xj = /(íi)
i m

Si una o mas de estas tres condiciones no se cumplen en u. entonces se 
dice iiue la Uincion / es discontinuu en o

EJEMPLO ILUSTRATIVO 1 La gr.dlca de la luiicioii C
definida por 11) se muestra en l,i figura 1 Como la grallca se rompe en el pun­
to donde X = 10. se investigaran las condiciones de ladellmcion anterior en ese 
número
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í(0

(i) C(i(M m 
lii) lim í ( u ni> L'Msic

■ IM
\si. 1j vt)tKliuun (I) sü saliskiCL', pLrn l.i tntitliLion (ii) no so ciimplL lii 10 Por 
linio SL-uinLlu>c ipic C us disLonlimi.i en 10 ^

Ll siLUiiunlc ejemplo ilusir.iluo preveiiM olr.i siiiiauim en la aiat la lor 
muía para eakiilar el uoslo de mas de 10 Ib de im produelo es diterenie de la 
formula para el eakulo del costo de 10 Ib o menos Sin embar^'o. para csia 
situación 11 luncu'n co->lo es conlmiia en 10

IK,Lin-4

EJEMPLO ILUSTRATIVO 2 Un m.iVonsta dislribu>e un
producto c|ue se \endc por libra (o Iraccion de libra) cubra S2 por libra si se 
ordenan 10 o menos iitiras Si se ordenan mas de 10 libras el majorisia cobra 
S20 mas SI 40 por cad.i libra cjue exceda de las 10 Por tanto si se compran 
X libras por un costo total de C11) dolares, entonces C*(\) = 2x si 0 < \ < 10 
> OU = 20 + I 4( r - 10) SI 10 < x, esto es.

,, llx SI 0 < X < 10
C(x) =

1 I 4x + 6 SI 10 < X
I .1 itrallca de C se muestra en l.i llgiira 4 Para esta lunuon C(I0) = 20 j 

lim í(x) = lim Ix lim C(x) = lim (I 4x + 6)
■ -,111 I •III' I —iii'

= 20 = 20

Por tanto. Iim C( r) existe > es igual a C( 10) Ln consecuencia C es conti­
nua en 10 '

Ahora se presentaran .ilgunos ejemplos de lunciones discontinuas lín 
cada ejemplo se dibuja la gráfica de la luncnin dada, se determinan los puntos 
donde la gráfica se rompe > se muestran cuales de las tres condiciones de la 
dcfimcion I H 1 no se cumplen en cada discontinuidad

EJEMPLO ILUSTRATIVO 3 Sea/la luncmn definida por

Í2x + "í SI X vi 1
/ÍU = l2 SI X = 1

I a grallcade esta I unción, la cual se muestra en la figura "í. se rompe en el puntx) 
donde x = l. por lo ijue se investigaran en ese punto las condiciones de la 
dclmicion I H I

II) /(l) = 2
(¡i) lim/(X) = S

I -.1
(III) lim/lxi /(I)

■ I

l as condiciones (i) \ (ii) se salistacen pero la condición (tu) no se cumple Por 
tanto, ia luncion f es discontinua en I

Observe c|ue si en el e|emplo ilustrativo 3. se definirá f{!) como 5. enton­
ces lim /(X) V /(I) serian iguales ) j sena conlmiia en 1 Por esta ra/on. I*i

discontiniiid.id del ejemplo ilustrativo 3 se denomina disumuimihul luimuhli' 
Fn general, suponga c|ue / es una luncion discontinua en el numero n para 

la cual lim^(x) existe Fntonces/(o) no existe, o bien./(«) ^ lim/(x)
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OilIu liisLiiniinmitaJ es uní disLOiitÍnu¡<J.uJ rcmovihlc (o climiiidhk-; por­
que si / se redetlne en a ile iiKKlni|uelimes igual a lim fix). la nueva funuon

1 il
es eominua ui a Si la diSLonlimmIad no es reinovihie enlonees se le llam.i 
(lis(.ontÍniiul.ul esencia).

EJEMPLO ILUSTRATIVOS Sea/lalunuóndetlniclapor

I a gratlea de/. mosirada en lii ligiira se rompe en el punlodoiide i = 2 porlo 
t[ue se invesiigaran las condiciones de la detlniuón I S 1

(i) /l2) no fsia dellmda

I K.l K\ 5 Como no se satislace la condición (i). / es discontinua en 2
La discontinuidad es esencial porque lim /(i) no existe ^

I k;i k \ í)

i,.i disconlimiidad del ejemplo ilustialno 4 recibe el nombre de dls- 
umlimiídnd iiinnita.

EJEMPLO ILUSTRATIVO 5 Sea C la luncum definida por

!,'( u -
SI v 2

1.1 gratica de e xe muestra en la figura b Se nnesUgaraii las tres condiciones 
de la definición 1 h 1 en 2

(i) e(2| = ^

(ií) liin gt u - lim lim 1,'tv) = Itm

Vilo !’ •' " '
■* I SI I < I

f k;ir\7

liin 1,'tv) no existe

Como no se ciimjile la condición (ii). g es disconliinia en 2
1 a disconlimiidad es mlinila > por supuesto, escnci.il ^

EJEMPLO ILUSTRATIVO 6 Sea h la luncion definida por

/l(V)
[ ^ t i a X £ I
1 .1 - \ SI I < t

l a figura 7 muestra la gráfica de h C orno la gráfica de It se rompe en el punto 
donde \ = 1 se investigaran las condiciones de !.i dcimición 1 S 1 en I

ti) /ilh = 1

tií) lim /ilv) = lim t'í + \) lim /j(x) = lim iT - \}
, .1 .1 1 —!• i-O

= 4 =2

Debido a cine Iim/ili) lim/lU) entonces lim/i(\) no existe 
, .1 1 .!• <->i

La condición (ti) no se cumple en 1. de modo que l¡ es discontinua en I
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F^icsH)quc nu cxislc. la discontimiuJatl es esoncul A

l,a disLiinliiuiulad del cjcnipln ilusiraliui 6 se detmmin.i disconUmiidad 
de salto.

íi ii ) I« - 11 •'I I jí 1
!2 '1 I í

EJEMPLO ILUSTRATIVO 7 .SeuFl.ifunuón definida por

i - 3 I SI .t 3 

SI X = 3

La lleura H muestra la {ir.ílKa de /•. Se insesliijarán las ires condieioncs de la 
definiuún i.8 I en3

lít m) = 2

(iit lím H\} = lim (3 - a) liin F(\) = lini (a -
X — X I-. > !-.»• 1-. »•

= 0 =0
Pnrtanio. Iím/^l\) = 0

l -♦ \
üü) limRx) /I3)

i—X

Debido a que la condición (ni) no so satisface. /■ es disconlinua en 3.
Esta disLonlinuidad es remosible pnri|ue si se redellne /^(3) como 0. 

entonces la nue\a función será continua en 3. ^

► EJEMPLO 1

=

La función definida por

es discontinua en 4 (a) Trace la gráfica de f en el rcLiángulo de inspección de
10. y.4| por [0. I|. La gráfica se rompe en el punto donde \ = 4. <,La 
disc<mtimiidad mostrada es remos iblc o esencial ’ Si la discontinuidad parece 
remosible. especule sobre cual sería el valor de f(4) de modo que la discon- 
timiid.id sea eliminada, (hf Conllrme analíticamente la respuesta de! inciso (a)

. 4

i I(iLK\ V

Solución
(a) La ligara y muestra la gráfica de f con un agujero en el punto donde 

V = 4. Al emplear el rastreo {fituf) de la grallcadora. se sospecha que 
lim /(s) existe y es 0 23. Así. la discontiiundad parece remos ible y pue­

de eliminarse si se redellne /(4) como í) 23 
(1)1 Al calcular lim/(s) se obtiene

< • I

lím /1 r) = lim ~— - 
t-4 . .4 s - 4

(-.4 (\ - 4)( . i + 2)

= lim --------- í-^li---------
>-4 (s - 4){ .. A + 2)

= lim ----- ------
. .4 t + 2

\_
4
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\m. '.c 1m c(iiilirm.nin l.i rcspui. ,i.i ild iin.iso (a> Por t.mio. su rL-dUiiu; la lun- 
Lioii / ui 4 \ sL- ol'liL-iic la nueva liiiiuon dcinnda por

I \ ~ 2 
- 1- -1

I 4

SI í vi 4 

M i = 4

l-sla luni-imi es tnnlinua en 4 ◄

Los leorcmas aterra de lunuones eontmuas en un numero son de jjran 
a\ uda al ealeular limites, asi uimo para demosirar otros teoremas M primero 
de estos teoremas se obtiene al apliear la defimuon I 8 1 > algunos teore­
mas de limites

% f.8.2Teórema>-
Si / \ ^> son dos lunuones umlinuas en el numero ti. entontes

ti) / + g es Lontinua en a.
(iil / - i* es eonimtia en ¿i. 
lili) j g es eontinuj en íí.
íiv) //g es eonlinua en <í. considerando que gtíi) ^ 0

A Un de ilustrar el tipo de dernosiniuon requerida para cada meiso de este 
teorema, se probara el muso li)

Demostración de (t) Como / y g son continuas en a, de la defmiuon 
I 8 I

lim/(t) = JUi) > limg(v) = gífi)

De estos dos limites y del teorema 4 de limites, 

lim I /(v( + g(r)) = j{(¡) -f g(í/)

la cli.d es la condiui'm para t|ue / + g sea continua en í/ ■

I as demostraciones para los incisos (ii). (iii) y (i\) son semejantes 
Considere l.i limcióii poliiiomial f definida por

}{\] = A|]\" + -i- /jsv" ■ + . + /»„ [V -t /i(, Ti 0

donde n es un numero enlero no negativo y /q. . /»„ son luimeros rea­
les Mediante aplieaciones sucesivas de los teoremas de limites, se puede 
demostrar que si o es ciialijuicr numero, entonces

Imi/(i) = + h\ü" ' + hiu" - + + h„ ]íi + /»„

- /(O)

de modo i|ue se establece el siuiiiente teorem.i

Íl.8.3 Teorema
l'na tuiieion polinomitil es continiu en todo numero

EJEMPLO ILUSTRATIVO 8 St/u) - v’ - iv’ + sx+ i.
entonces j es una lunc ion polinomi.il y por tanto, por el teorem.i 1 8 T.



I es «-oiuimi.i en linio numero l.n p.iriiuiLir. tomo / es e«innnu.i en 3. 
Imi /( U = yi 3) Asi

limlv' - 2i- + 5i + I) = 3' - 2(3)- + 5(3) + I 

= 27 - IH + 15 + I 
= 25 ◄
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l nj luuLion r.icinnal es tontiniu en lodo número de su dominio

Demostración Si / es una tiinuón rational eniontes se puede expresar 
tomo el cociente de dos funciones polinomniles De modo que / se puede de­
finir por

Jixi
lit \)

donde i» y li son dos lunuoiies polinomiales. y el dominio de / tonsia de lodos 
los números reales exteplo aquellos para los ijue li(\) = 0

Si íf es cualquier numem del dominio de J. enlonees liiti) ^ 0. de modo 
que por el teorema 9 de limites

lim/U)
l-*ii

lim i;( 1) 

lim ¡tí \)
(3)

Como i» > h son funciones polinoimales. por el teorema 1 8 3 son u>nimuas 
en o, por lo i|ue limvli) = Imi/iíi) = híai Ln consecuencia.

Iim/(t) !»(<?)
/M<M

Por tanto. / es continu.i en c.tda numero de su dominio

► EJEMPLO 2
pmeme es continua

n\í ^
i' -I- I 
1 - - 9

Determine los números en los que la función si-

Solución 1:1 domimo de / es el conjunto ¡i de números reales excepto 

.iquellos pai.i los que \- -9 = 0 Como v- - 9 = 0 cuando i= +3. el do­
minio de y es el conjunto de todos los números reales excepto 3 y -3

Dehiiio a i|ue f es una función nicional. por el teorema 1 K 4. / es conti­
nua en todos los números diferentes lie 3 y -3 A

‘ EJEMPLO ILUSTRATIVO 9 Sea f la función del ejem 
pío 2 Puesto que 2 está en el domimo de ^ entonces por el teorema I S 4

liin /(X) = y(2)

9
5

4
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^ EJEMPLO 3 DelLrmino los tuiineros tn los tjuc Ij liuiuon si-
yuiunlc es continua

, 11 SI X £ 1
l(\) = i ,

I i- SI I < r

Solución I,as luiiLiones tuyos valores son Ix - 1 y x- son tiinuoncs 
polmomiaks) porlanto son vonliniiasLn todo numerortal Deesia manera. I es 
el imito numero en el que la tonlinuidad es tueslion.ible l’or esto st iinesti- 
•iaraii las tres tondiuones de continuidad en I

(i) ytl) = -I Por lo quc se cumple la condición (1)

(iii lim fi\) = lim (Ix - Iiin Ax) = lim x-
.-.I V-.I . ,1- , .1-

- -I =1

Como lim /(X) lim Ax). el limite bilateral lim/(xl no esisie Foresto
1-1 1 o• , >I

/ tiene una discontinuidad de s.ilto en I Por tanto. _/ es contmu.i en cada nu 
mero real excepto I ^

.Si i¡ es un numero entero positivo >

/(X) = " X

entonces

(¡I si /I es imp.ir. entonces J es continu.i en todo numero, 
di) si n es p.ir. entoncesJ es conimu.i en todo numero positivo

íni ' <

I k;i r\ 10

l.a demostración de este teorema es una consecuencia inmediata del 
teorema I 5 H el cual esiahiece que si o > 0 y ii es un numero entero positi­
vo, o SI a *=■ n y II es un numero entero positivo impar, entonces

liin " X = "o

EJEMPLO ILUSTRATIVO 10
(a) Si /(x) = \ X. enionces. por el teorema I S xli). / es contiiui.i en cada 

nuiiicroreal l.a figura 10 muestra la gr.'ifica dey 
(h) Si gf X) = '' entonces, por el teorema 1 S i(n). g es conliiuia cii cada nu­

mero real positivo I..1 gralica de i,’ se muestra en l.t figura 11 "4

/II) 1

l'n ocasiones se necesita emplear una dellnicum de continuidad en la 
que se utili/a la nutación £ ú A fin de obtener esta definición aiternativa, 
se comien/a con la dellnicion I H I. la cual est.iblece que la luncion J es con­
tinua en el numero o si

lim /(X) = J(íi] (4)

Al aplic.ir l.i dellnicion de limile de una luncion (1 S 11. donde L es igual a 
/(</). (4j se cumple SI para cualquier € > (1 existe una á > (Mal que

si 0 < IX - <1 I < ti entonces |/(x) - /t<i)| < ei KH’IU 11 (5)
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Si / t.niiliiui.1 en a. debe existir /(<;). por l.iniu la Londieii'm de i|ue 
\\ -<i| > t)noesneci-sariaeiilapn)pi)siLion(5(.dchidi)acjueeujndin = <i 

|/(\l - lid) I será 0 ) así. menor que € Se nene entontes, el teorema si­

múlenle. el tual sersira tomo la deilnitu'm allernati\a deseada de toniiiuiidail

1.8.6 Teeremq_____________ ^
I a funeiun / es tontmua en el número a si J está definida en aljjún inier- 
\alo abierto que tontenga a « > si para cualquier e > 0 existe o > 0 
tal que

SI I r - </1 < o entonces |y(o - /((/)| < €

III hn ijinuim I ii 14. Jihu¡e lii i^nil'K ii ih- hi fiiin mu Oliscm 
JiiiiJí hi vnilliii niiiipi. iliUniiiiu ¡I niinnin m il i¡iif hi 
Jiiiu mn t s ili\iiiiirin¡hi \ niiirUri ¡mr i¡iu Iti ihlhiiíiim I S I 
«(' íi’ '<iín/«tí </j fv7« imiiHiti

X* - ti - 4
1. MU

* + t - f)
2. /IX) =X + 1

X‘ + X - Í1
.1. t’lxt r -r

1
1

SI 1 - -1

(X- - .Ir ' 4
4. Oi u = X - 4

•) SI X - 4

.s
í - 4

5
7. /lU = X - -1

SI r = 4

1 T -2
8. t’ti) = X -f 2

(J si X = -2

-1 SI X < n
9. /It) - 0 SI X = 0

X SI 0 < X

X - 4

X - 1 SI X < 1
10. /(XI = 1 SI X = 1

1 - X SI 1 < X

f- - 4 SI r < 2
11. t’(í) = 4 si f - 2

4 - SI 2 < /

0 + X SI X <: -2
12. //(X) = 2 - t si -2 < X

2x - SI 2 < X

1.1. /(U = -
X 1
r
N

si X s* 014. t-(x) = t

Lii Im vjfn u iíh h 2H Iu fiim mu t \ iliMimliium ui il luimc 
n> (I (ii¡ Triiíi 1(1 t’ra/íiíí Ji f ai un tic iinpLumn
i i'iuiinailt \ ílt ti niiiiu (¡lu Iti i,’o//íí u ic inmpi ai ilpiinhiitaiuli 
X = <i , ñnac ser raimahlt ti csaiaal csin ilisuininuiiiliiil 
Si puri(V \ir riiimiihlc, t spaiilc snhrc iunió ilchc n di finirsi 
fin) di mudo iiiiv lu disi onnnindud xia clniniitidu Ih) Coiijir 
me tiiudiliiuniaui lu n spiusiu di I iiu i\o (ul

15. yn» = = 2

tf ... X- -r 4 x + 1 ,](i. M'l - ----------- ;— .11 = -^X ■- í

17. f(\) = ,11 = i)
\ - '*•

1«. /(XJ = — r>-. ----- U = S
\ X - I - 2

19. Hx¡ = 5
» - .s

2». Ha = -1—1^^.„ ^ (I

21. /M) .u = 11

22. /IU - =-----1
X - X

2.1. /(XI - u
\ - h

24. MU .</ = ()

25. f{\] ^ - -.1

2fi. ytx)
1 - I X ¡

X X- <i

I X -I- I I - 4'

27. /(X) = -L±J-.u =

.1 - h ,

X 5
1.x -f l| - 4I si X = (I

28. flM
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tn lii'i i'jt iM< in\ ti-fe ¡It li niiiiH lo\ miimiin tu li'\ i¡iit lo 
liir.t mn t > • í‘i\!iiuu¡ f iiiilii¡iii lii r¡riiii

2‘J. f( \ l - »-ii -► ^1-

^0. /I ii - (V - 5l‘ (i- 4i'

31. .'1X1= 32. Inxi = ~

33. í n I 34. f/H) =

35. f(t|
,lt - l 
l4 - X-

SI X < 2 
SI 2 S t

36. (MI -
[i X 2r

X- • 2
SI X íí (I

VI 0 < I

' 1
37. /MI = ^ ‘ '

si X iS 1 

si I < r

I i SI X < 3
3H. yu) = I \

I —i:— vi 3 íT X
l<> - X

39. /i(x) =
SI X < 0 

SI íi <: A

40. i,4x)
J2r - l X SI X 5 1
I X.. X SI I < X

Ln loi t’jin.uio', 4! u 44 rmliLC lo nfHHtiUe lat <It Icniiinf 
lux xalort’i Jf lax i tiiixiun/i-x i x i t/iu' /jíii;í;/i a lu tiiiu imi loii- 
liiiua til ludo mimew Ihl fJilniji lu firii/hu di lu fioitióii 
rfxullatile

41. /(X)
|.3x f 7 SI X í: 4 
[At - l M 4 < X

42. /M)
jAx - I SI X £ 3 
|Ax* si 2 < X

43. /<x» =

44. _/mj =

X SI X S 1

i X + A si 1 < X < 4
-2x SI 4 £ X

A T 2f SI X < -2

3í I + A SI -2 £ X £
3a - 2A si 1 < X

Los ejeniLiox 45 \ 46 IniUm aiinti de lu fiiiuion dihujutlu m 
lufiíiura iidjiinla Eii los menos f («yinw imaliiii uiiu li­
le por qué f es dmonliiiuu en el mimcro mdiaido señuliiiulo 
por que no se rimiplc la defiiuc ton I H I

45. (u) Ln X = -3: (b) en x = 1. (c) en x = 3. iil) ,Cu.ilcs 
Je las discontinuiJaJes de los incisiis (a)*(c) sdii eseiieu- 
les? j,Por qué'’ (c) ^.Cuáles de las discixmiimid.ides de los 
inciitus íaHc) son reinoxiblcs? t,Qué haría para eliminar 
la dibcontinuidad''

46. (a) Lii X = 0. (b) en x = 2. (c> en x = 4 Idl , Cuales 
de l.is disxoniiiiuid.ides de los inusos (al (c) son esenua- 
les ’, por ijiie ' (e) , Cuales de las disLuniiiniidades de los 
musos lai-(e) son reinoxihles ’ , Que liari.i p.ira eliminar 
la disLonliiuiiJ.id ’

' X l

En los eji n itios 47 \ 4S dihuji lu eni/iio de ulí'iinu fiimioii f 
qiu siilnfiniu los i oiulit iones dculus

47. El dominio de / es (-4. 4) L.i limcion / es uinliniia en 
tada numero de los interxalos (-4. -2). (-2. 2) \ (2. 4| 
j f es disLontinuj en -2 > 2./1-2) =■ 0 > 4(2) = 0. 

iiin f{si = +CO. lun /(x) = 0. Iim/(x) = 0 >

lim /IX) = -00

4X. La fuiixion/es uiniimia en eada numero de los miervalos 
(-80. -I). i-t. 11 \ (1. f co) y/es disLonlinua en - i > I. 
fi~l) = ()>/(l) = I), lim /(x)y linj_/(X) existen pero

son dilerenies de 0. lim /lx)j lun 4(')no existen

l.n los ijeii líios 4'! ti 52, lUlenniiu los niiiinn>s m los qiu lu 
Jiiiiiion iiuliiudii esdisi onlintiíi. \ niiii slu porqiu no setiwipU 
la dilinii ion I H I disioiiliniiulud

49. La luiiLion del ejeruiciu 5 ile la seeeion I 3 % del ejercieio 
39 de la seceion 1 (>. la eual es un modelo nialematieo 
que expresa el eostu toial de im emlurque unno una tun- 
e'ion de su peso

511. La luneion del ejereieio fi de la sescion 1 3 y del ejersieio 
4(1 lie la seeeion 1 ft. la cual es ini modelo malemaliu* que 
expresa el pone de correo de primera clase para uii.i carta 
que no pese mas de 11 o/ como una Imicion de su peso

51. Lilunciondel ejercicio 7 de la sección I 3% del ejeaicio41 
de la sección 1 6. la cual es un modelo maleiiulico que expre 
sa el cos(o ile una llamada telefónica, que no dura mas de 
5 mili de Mendocino a .S.ui Fr.mcisco como una luneion de 
la diinición de la llaiiuda
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52. 1.1 luiKU'ii Jfl vjcitM.ui Je l.i scu-inri l I > de! cjcr».i>.io 
42 de l.i sección I l.i ui.il vs im nioJclo m.iicnuiins (|uc 
cvprci.i el preun de .idini'Hiti jI C'ujvI C’ineiii.i umm 
imj limcii'H de l.i ed.id de lj perMUi.i

53. Soptinea i¡ue .i Ihh í tiiiniiii'-- iU\ nielrn'. es el r.idiu del 
»,if..ul.ir de peiiuleo i|ue ve derr.inu por uiu lisura

de un [am|uc \

I 4/- -t- 2ii SI ü - r • 2
fin-

116f - 4 SI 2 ' r 

Dv'tnuesire que res eimlinu.i en 2

Si Un muros vuadrados es el arca de la fisura del tanque 
del ejerauo 53 a los / minuius. (¡ij deliiia Urj > (hl de- 
muesfie que \ es toniinua en 2 

Demuesiie que la lunuim deliiiida por

donde n es un mjiiien» entero posiiiu). nene un.i disuni- 
titniidaJ remosible en I 'sin\tTciuia p.ira el taelor r' - I 
uiilice la formula 112) de la sveeion suplementaria 1 .5 

56. 1.a lutiLiun) esta dellnida por

54.

55.

Dihiije la jtrafiea de f , l;ii t|Uc valores de t cs disumtmu.i 
la tuiiLMin/ ’

57. .Si/U)
í - \ SI r < 0 (I SI \ < 0
|i sitJ-r > Itoürt

demuestre que j y k '*>n distonUnu.is en íl pero que el 
prodiiuo j ^ es Lontinuo en 0

5S. PropiirLione un ejemplo par.i mostrar que U prodiieto de 
dos funuones / y ^ puede ser niiiiinuo en o donde f es 
eonimua en u. pero j; es diseonlinua en a

59. De un ejemplo de dos lunuones que sean diseonlinuas en 
un numero pero tu>a suma sea Lontmua en u

60. I \pliqiie por que la deliiuuon de funuon umimu.i en un 
numero u uaranli/a que la jtr.tliea de la tunuon no se 
rompe en el punto donde r = o

61. .Si i.i lunuon / es uintmua en a \ la tuiieion v es disson- 
imti.i en ii. ,jior iiue puede eoneluirse que la suma de Lis 
dus luiiuones / i- i;. es disuuitinu.i en o'

62. Si la lunuon f es diseoniinua en o > la timeion v es eimti- 
iiua en ii., es posible (|ue el eoeienie <)e las dos luneiones, 
J/i;, sea eonlinuo en a ‘ bxpliqtie sii respuest.L

1.9 CONTINUIDAD DE UNA FUNCIÓN COMPUESTA
Y CONTINUIDAD EN UN INTERVALO

Recuerde la definición (1.2.2) de Iunción ctimpuesiu dadas las limeimies j \
q. la tunción uimpuesla. denolada pur/ ° t;. está dellnida por

( / o j'KU - /(i-lUI

y el düinmiu de / ° i* es el eun|iiiHo de Imlus Ins mlrneros del dominto de c 
tales que \ i esta en el dimiinio de /

/iiti I <'

I K.UKA 1

EJEMPLO ILUSTRATIVO 1 s,/m . > etv)- 4
i’. y si/; es l.i liitiuon cimipiiesia / o .i», entüiu.es

/í(l) /IL,'(U)
• /(4 \']

= 4 i ’

MlIikIü .1 que el doiinniu ile q es el eoiijiiiiln de todos los luimeios le.iles \ el 
dominio lie / es el uinjiinio de lodos los núinetos no neiMtisos, e! eoii|iinio de h 

es el eoiitiinio de todos los mimeros Liles ijiie 4 i _• 0. esto es. todos los nii 
inemsdel iiilers.ilo venado [ 2. .’| I.a jirállea de/; se nmesiia en l.i Mema I ^

De hl lijqiia I, p.iieve i|ue li es eonliiui.i en vada inimeio del inlei\.il<< 
alneilo (-2. 2) Aiiles de piohai este lieelio en el ejemplo I. se neeesil.m dos 
leoiemas mas. el pimieto lie los Lítales líala aeeiea de! Iiinile de tin.i liiiu loii 
unnpiiestii
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•ormma ; ÜmifP.de.ii (iiiif-i r-Ti I «ro 0

Si lim vi' • = /' > ■'I 1-1 liiriLiiin / es Lnnimu.i Lti h enlnncLs 

lim ly o i,)(i) - /(/;)

o LijuiN.iIsmcnicnti.

Iim /U-( U) - n lim vn

Demostración l'ucstti i|Ul / es i.nnlinua ui h por el leorema 18 6 se 
tiene ti Mgiiiunlt enuiiuado p ira t.iiia €\> OeMs(eiinart| > 0 lilqiu.

si \\ - h\ < (), LiitoiiLes |y(\) - /(/»)| < f| (1)

Como liin;'(u = h paraLuiiar)| > 0 existe (>■> > 0 tal c[ue

si ti < j i - íí I < ()i tnloiices |a'(u - /j| < d| (2)

Si n < I V - </1 < se siisiituve ^ por x(i) en el LiiuiiLiado (1) oble 

iiiLiidost lo siyiiiuile par.ieadifi > Oexislet^i > (I tal

SI I i,'( V) - /) j < 0| enlniKi-s ¡/(e ('))-/</')|<C| (3)

De los tiuintiados (2) ) (1) se tontluxe i|Ul p.ira Ln.ilc|un.r €¡ > 0 existe 
Ü2 > n. tal que

SI 0 < ¡ V - íí i < ü2 entontes |/(e(U) - /(/>)| <£"[ 

de lo que se dtdute ijue

lim/K’(U) = Jil>)
1 -»4l

I» lim /(x’tU) = /( Imi i-(u) □

i,l teorema 1 1 tiene un papel importante en las üeiiuisiraeiones de los
teorem is de limites 9 > 10 presentadas al final de la seeeion \ eoiitiiiuaeion 
se apliear.i el teorema en la demostración de! teorema siymenle que trata so­
bre la continuidad de una luneion compuesta

1.9:2 Taórema Continuidad de ündfenciqrí ¿pmpuesfq j

Si la luneion t; es eontinua en a > la función fes continua en i'(o). enton­
ces la luneion compuesta f ° i» es eimtinua en a

Demostración Puesto que t; es eontinua en a entonces

lim ei\) = x'Oi» (-Í)
i KT

Como l.i luneion/es tonlinua en c,'(o) se puede aplicar el teorema I 0 1 a la 
luneion compuesta / “ t;. de lo c|ue se obtiene

limt/ ° iiim = lim/ieui)
,-.,i > «ii

= /( iim u)
x—tu

- /(!,■(«)) (por (4))

= 1/ ° vK<r)

lo cual demuestra que/ ° i> es continua en a
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I I tairtina I ‘J 2 l*s1.iIiIllc i|ík; iiihi Iiiiu mu t oiiiiiiiiíí </( ¡iiui Imu ion t onii- 

nuil I \ tiiniiiiiiii í:l sigiiicnli; ejemplo mueslra mino se emplea esie teorema 
en la obieiKion de los números para los cuales una función particular es 
continua

^ EJEMPLO 1 Deiermmar los números en los que la lunuon si- 
uuienie es conlmua

/i(\l = 4 - \-

Soíución La función/i e> la que se obtuvo en el ejemplo ilustratno 1 como 
la función compuesta/® j*. dondc*y(\) = v ) i’ív} = 4 - v Como i> es 
una función polmomial. es conlmua en lodos los números reales Ademas 
por el teorema I S 5(ii), / es conlmua en cada numero real positivo hn conse­
cuencia por el teorema 1 *> 2. /i es continua en cada numero \ para el cual 
eU) 0 F-.slo es, cuando 4 - \- > 0 Por tanto./i es continua en el intervalo 
abierto (-2 2) ^

Como la lunuon/f del ejemplo 1 es continua enc.ida número del intervalo 
abierto (-2. 2). se dice que li es lontinna ui el iiucnalo nhu rio í-2. 2)

Se dice que una función es continua en un intervalo abierto si y sólo 
SI es conlmua en cada numero del intervalo abierto

Se hará referencia otra ve/ a la función li del eiemplo I Como li no está 
derimda en cualquier intervalo abierto que conienjta a -2 o 2. no se puede 
considerar lim /i(v)o lim/dt) Por tanto, la definición 1 S I de continuidad

en un numero, no permite que li sea continua en -2 o 2 En consecuencia, p.ira 
discutir la cuestión de la continuidad de li en el intervalo cerrado (-2. 2]. se 
debe extender el concepto de coniimmiad para incluir la continuidad en un 
extremo de un intervalo cerrado Para esto, primero se define (oniiiiiiiihulpor 
tu ik'i i'i ha V < oiiliniiiilad por tu i:ipiicnla

1.9.4 Pefinícién de conrinuldad pórja^deretha.
Se dice que la función/es continua por la derecha en el número o si 
\ solo ‘.i se cumplen las tres condiciones siguientes

(i) /(tilexiste,
(ii) lim /(uexiste.

(iiu lini /(i) = fia)

1.9,5 Definición de continuida3*'j^yía4Íl^qóíérclQ

Se dice que la función / es continua por la ¡/(julerda en el númerotJ si 
y solo SI se cumplen las tres condiciones sigmenles'

(i) /(til existe.

(ii) lim /(X) existe;

(iii) lim /(ii - tUD.
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É

S<.' Jicc t|u>.‘ iinj turMun. ui\n cJaminm unuicnL' al inicíalo tcrrailu 
jíí, h\. üs loiitímia un d íiiti-i'Milo cernido [o, /»| \ solo si es Lontimia
en el miervalu ahiLilo (</. /)). así eonm enndiiu.i por la dcreeha en a \ 
uiiilinua por la i/c[uierda en h

^ BJEMPLO 2 Denuie'lre c[ue la liinciuti//del ejemplo I e^LOIl- 

limia en el inlervaio eerradu |-2. 2|

Solución l.a fiiiiLion h esia dellnida por

Ih\í = 4 - i-

\ en el ejemplo I se niosiio c|iie li es conimua en el miervalo alnerlo (-2, 2) 
A! apliearel leoieina I U I seealeol.in los limites lim /;(u s lini /í(U

lim /jl u = liin 4-1- lini lií\i = lim 4 - v-

= 0 0
= //(-2l /í(2)

De este modo, li es eonlmna por la dereelia en -2 \ es eontirnia por la i/ijmer- 
da en 2 I-.n eonseeiieiiua. por la delinieion I f>. Ii Cs eontitma en el in- 
térsalo serrado [-2. 2| La jiraliea de/i se imiesira en l.i tleura 1

Ohserse la diferencia en la lermmoloyía iitili/.id.i en los ejemplos I \ 2 
Hn el ejemplo 1 se estableslo que l¡ i \ i onnnim e/i < at/n inimcni di I iiiu milo 
(ihicrío (-2. 2). mientras que eti el e'iemplo 2 se conslusó que li es loiiwnui cu 
11 mil nido (11nidri \~2. 2|

(i) L’na tuncK'ii su>o lioimnio iiisluse al inlers.ilo seiniabierto ((/. />) 
es uinliiuin en |«. h) si v sólo si es uummia en el inter\a!o abierlo 
(</. hi \ es sonlinua por la dereeiia en ¡í 

lül L'tia luncii'in eiuo dominio inshne al iiilersalo semiabieno {a. h] 
es lonlíiuin en («. h\ si \ sitio si es sontinua en el iiUer\aío abierto 
(o. /<( } es eontmu.i por l.i i/qiiierda en h

.Se tienen detiniuones smiilaies a las de la definienin I ‘L7 para la loiiIi- 
iniid.ul cii los inler\alos l<i rcoj j t-co,/t|

► EJEMPLO 3 Deienmiie el inlerxalo más ¡jraiide (o unión de in-
tenalos) en el que la lunui')ii siguiente es continua

Solución f’iimero se determina el dominio de / La liiiieion está dellnida 
en todo numero excepto eiiaiido 1 = 3ocu.indo2^ - i- < 0 (esto es. cuan­
do i > 5o V < -.5l Por latilo. e! dominio de/es (-5. .^1 U 5] Como

lim /(\) = I) > lini /(i) " O

= /(5tfi-5)
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/ fs fontiiui.i por la ilcrcclia en 5 y es etmlinua pnr la i/(|uierda en 5. Ade­
mas. I es eoiuituu en los mlervalns seiniabierins (-5. 3| y (3. 5j l',n ctin- 
seeiieiKia. / es (.(iiuimia en |-5. 3) IJ(3, 5| ^

La importancia de la coniiniiidad de una ítineión en un intervalo será mas 
evidente a medidaqueavanceenelcsludiodel Cálculo. [:si.i propiedades pane de 
las iiipólesis de imiclios teoremas esenciales , tales eonio el leoreiiui del uilnr 
uudto, h\ lenreiiun liiiulameituiles del Cdleido. y el teorema del valor extremo

o ti

[ k;i k\ :

EJEMPLO ILUSTRATIVO 2 r-n el ejemplo 4 de la sec-
Clon 1 .3 se obtuvo como modelo malemálico la lunen'ui l' defimtia por 

\’(rl = 17()i - 5Ax- + 4a^
. /

V expresa el volumen de una caja de c.irtón como lunuón de la longitud del 
cuadrado corlado en cada una de las es(|uinas de un iro/o de cartón de forma 
rectangular Debido a que es una función polmomial. es continua en todo 
número, y por tanto, es continua en su dominio, el intervalo cerrado 1(1, 51 Hsie 
liecbo es necesario para .iplicar el teorema del valor extremo de la sección 3 2 
[lara deternniiar el valor de el cual hace i|ue \'(.v) sea un máximo 4

► \

Otro teorema importante concerniente a la continuidad de una función en 
un intervalo cerrado es el teorema del valor tniermedio. el cual se tr.ilará a 
continuación

r» .1 I . - < /,

ík;ir\3

■ 1.9.8 Teorema del valor inTermedio
Si la lunuón / es contmu.i en el intervalo cerrado [f/. /»| y si_/(</) ss fihh 

entonces para cada valor k entre Jia) y /(/;) existe un número i entre a 
y h tal queJi() = k

La demostración del teorema del valor iniemiedio está más allá de los 
objetivos de este libro y puede eneontrarse en un texto de Cálculo avan/ado.

Kn términos geométricos, el teorema del valor intermedio establece que 
la grátlca de una luncn'm continua en un intervalo cerrado debe intersectar a 
cada recta y = k cnlie las rectas y = J(a) y v = ¡ih) al menos una ve/.. Ob­
serve la llgur.i 2. donde íO. k} es cualquier punto sobre el eje v entre los puntos 
(0. /'(íi)) y (0. /(/»)); la recta v = k mtersecta la grállca de f en el pumo (c. k). 
donde (■ está entre a \ h.

Paraaleunos valores de A. puede tenerse más de un valor posible para r. lil 
teorema establece que existe al menos un valor de e pero tal valor no es 
necesariamente tínico La llgura 3 muestra tres valores posibles para ( (C]. í : 
y ( 0 para una k paiiicular

Ll teorema del \ alor intermedio alírma ipie si la función / es continua en 
el intervalo cerr.ido [o. h\. enttincesJíw loma todos los valores entre fUi^ y 
/(/») conlorme t loma lodos los valores entre a y h. Los dos ejemplos ilustrati­
vos Siguientes muestran la importancia de la continuidad de J en |/i./>) para 
poder garantizar esta alínnación

EJEMPLO ILUSTRATIVO 3 Considere la función f dc- 
rmida por

/(.) = !•'-' II s ■' < 2

i V- SI 2 < ,v < 3

La gráfica de esta función se presenta en la figura 4.
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1..1 tuncn>n / os disLniilinu.icn 2. el tii.il esUien el inlerv.ilii eeir.id<i (0. 3j. 
/(O) = -1 \ = y. Si A es cualquier miniero entre I y 4. entonces no hay
niniiun valor de r lal que/(i) = A porque noexislen valores de la luncnin entre 
] > 4 4

I Uíl R\ 5

EJEMPLO ILUSTRATIVO 4 Sea i; la lunción ilellnula por

La llgurj fi muestra la jiráfica de esta l'iinción.
l,a luriLión i* es discontinua en 4. el cual pertenece ai intervalo cerrado 

[2.5]:i;(2) = -I y ct5j = 2. Si A es cualquier luimcTo entre-I y 2, no hav 
miiL'ún valor de t entre 2 V 5. tal que ijlt) = A En particular, si A = 1. enton­
ces í,'í6> = 1. pero6 no pertenece al intervalo l2. 5>. 4

^ EJEMPLG 4 Dada la lunción / detlnida por 

/(V) = 4 -t- 3t - V' 2 £ V S 5

» - I

I IGL'RA 6

tul Verifique que el teorema del valor intermedio se cumpla para A s 1 trazando 
layráílcade/y lareclay = 1. estime, con cuatro cifras decimales, el número c 
del intervalo <2 5|. lal que/(<) = 1. (h) Confirme la estimación del inciso irn 
üiialílieaiiienle. (el Dibuje la gradea de/en el intervalo (2. 5| y muestre el punto 
Ir. 1)

Solución
la) Como / es una función polinomia!. es continua en todo número, en particu­

lar en |2. 51 La figura 6 muestra la gráfica de /y la recta y = I trazadas 
en el rectángulo de inspección de {2. .*51 por |-l(). 10| En la grallcadora. 
se estima c = 3 7‘J 13

(b) Se resuelve la ecuación cuadrática

4 3c - i- = 1
- 3r -3 = 0

3 + . y + 12 
t = --------

3 ± 21 
. = - —

Se lechaza " -1 • porque este número es negativo > no pertenece
al intervalo |2. .‘)|. El número ‘.(3 -f- . 21) está en el interv.ilo |2. 5). y

3 + 21

Como|3 + 2ll/2 = 3.7y 13. se conllrma la estimación

le) La grállcM rei|uerida se muestra en la figura 7.

El teorema siguiente es una consecuencia directa, un corolario, del teo­
rema del valor intermedio

/U) - 4 - .V - t € [2. S|
1.9.9 Teorema del cero intermedio

FIGL RA 7
Si la función/e.s continua en el intervalo cerrado [«<. í>| y si fUi) \ /(/») 
tienen signos opuestos, entonces existe un numero c entre u y />. lal (|ue 
/(<•) = 0; es decir, ros un cero de/I
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Demostración L.i Uiiii-'iúii / ^.ltls|JCL• l.is Inpí'iicsis dd icnrL'iii.i ül‘I \.i[nr 
mlcrmcdiu. \ i-oiiin ¡idi \ /{/») licncn signos upucslos. se considera a 0 étimo 
im numero k enire /(</) > I'or lanío, exisle un luiniero < enire a j h. lal 
ijue /(( j - 0 o

l'.ii el ejemplo smuienle se apliea el leorema dd cero mlermedio para 
lov.ali/ar ceros de una íunción.

^ EJEMPLO 5 (a) Aplu|ue el leorema dd cero miermedio p.ira
mostrar i]ue la fnnenín ddlnida por

,/(i) = 2v’ - I\- - 4v + I

tiene tres ceros entre -2 > 2 (b) lislime en una ¿traficadora estos ceros con dos 
cifras decimales.

Tabla I___________________

. -2 1 u I :

no I 1 I

FIGURA K

Solución

(a) Se calenliin los \alores de /(i) para los \ alores enlen»s de -2 a 2 y se for­
ma la tabla I Como /(-2) y /(-I) tienen signos opuestos. / tiene un 
cero entre -2 y -I; lamhicui / tiene un cero entre 0 y 1, y otro entre 1 \ 2 
por la misma ra/ón.

(b) La grátlca de / trazada en d rectángulo de inspección de |-3. 3| por
3) se muestra en la tlgura S Ln la graficadora se estima ijue los ceros 

son-l I4.l)2.3y I ‘Jl, ◄

Ahora se demostrarán los teoremas 9 y H) como se indicó en laseceii'in 1 5
Ohserxe la aplicación dd teorema l.ó.l (límite de una función compuesta)

Si lim/tt) = l. y si liingív) = M. entonces
l-»</ i •*/

li,n ^ SI M ^ 0
.... «(r) M

Demostración Sea h la lunuón definida por = l/t. Entonces la 
función compuesta li ° está ildlnida por /íígíO) = l/g(x). La función li 
es continua en todo número excepto en 0. lo cual se deduce del teorema 
I 3,12, Hn consecuencia,

lim = Imi/itglu)
I -».< gt .1) 1 -.1.

= /jl liin gdn (por el leorema 1 ó 1)

= IHM)

1
-Ú

Del leorema 6 de límites y del resultado anterior -se tiene que

li„, 'LL! = • lim --Í—
1—.J gi.v) gí V)
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Teorema 10 de limites Limíte de lá raíz n*ésfma 
_______________________de uno función' ,
Si H os un número cniurn poMUVí) y lim/'(v) = /..entóneos 

lim ’\f{x) = '-‘.L
» -*tí

Cí>n lu reslriouón lie (]iio si ii os par, L > 0

Demostración Sea h la funoi<3n definida por li{\) = " i Entonces la 
lunción compuesta li ° f está detlnida por /i(/lv)l = " /(\). Del teorema 
1 .S.5./i es continua en/. SI/I es impar, o SI/I es par y/, > 0 Por tanto,

lim /I i) = lim l¡( J(x))
I *4J

= /i(lim/(U) (porel teorema 1,9 11

= /i(/-)

= V. ■

EJERCICIOS T.9
/of t-jíTiii lof l íi (> íh/iiui \ i¡curminr ¡m mhncni\

i n lili ijiif f o )• c\ uintiniiíi

1. (a) fí\) = . = 9 - t*.
Ib) /it) = •. t= r - 16

2. (a) f(i} - . í.ijlc) = 16 -
Ib) /<ri = . t:e(t) = r + 4

3. (a) f{\) - . t, c'lr) - —-*“r.
» - 2

(b) f(x) - —. s-íi) = -. r 
1-2

4. (ü) HH = \ = . t + I;

Ib) flt) = .Tí 1,^'ít) = '. T

5. /(t) - -li-----L_. ji(T) = 111
, » - 1

6. /(T) = ~ i-U) = I l 1
, 4 - »

Lu lox fjcniiun 7u ¡<t. iltiainiuc il íluiiuiud i¡f luftmuóu. \ 
dcspuvx t/t'/tTíiiirii i’íiru < luil tU- los mli'nahn iiiiliiaílin es ion- 
timui lu funudit

/('• = -^^.(3,7),(-6.4|,(-w 01.1-5.+ eo).|-5,+«). 

1-10. -5)

8. í-(t) = (-co.Oi.IO. foo). 10. 2) (0.2). |2. +oo).

(2. +00)

9. /(I) = (0. !,.[(), II. (-i, 01. (-00. -U.
/- - I

10. firf = 4^.(0.4|.(-2.2).(-«,-2U2.+oo) (-4.4|.
r* - 4

(-2.21

11. iftí) = . t' - 9; (-«. -.3). (-M. -.3|, (.3. +»). 
(3, +eo). (-3. 3)

12. /<T) = Ihll.í-;.. !).(i. i).(l. 2l.ll. 2).(l. 21

13. /(/) =
|(-li íí

if.|-l, u. (-1. +«).
r - 1 ■

(1. +CO)

flv - 3 SI r < -2 1
14. /ilv) = ■ T -5 SI -2 S t < 1 L (-ec. 1). (-2. +w).

I3 - r M 1 < ) 1

(-2. l),(-2. h.l-2. 1|

15. /(t) = •. 4 - (-2. 2). [-2. 21. 1-2, 2). (-2. 2|.
(-CO. -2|, (2. +WI

16. /.,T, = -------- \-------..(-1. 3).|-l. 31,1-1. 3).(-l. 3)
3 + 2\ - \*

Ln lin ejen u «o 17 u 22. tleienmnc el inicnulo //no finiiule lo
uiiiim lie Hilen (líos) ui el que hi fiimu 'm / ° e tiel ejereuio

iiuliiuilo es uiiiliiiiiíi

17. Ejerucii) 1 18. lijerciem 2 19. Ejercicio 3

20. Ejercicio 4 21. Ejercicio 5 22. Ejercicio 6

23. Delermine el mlers alo más grande lo unión de miersaloslen 
el (|ue la función del cjeruciu 17 de la sección 1 6 es 
conlimia.

24. Determine el iniersalo más grande (o iimoii de inicrsalos) 
en el que la función del ejemplo 4 de la seecion I 6 es 
continua(1. +CQ)
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/ n li>\ rjcriH ios 2^ a 2S, ilihiijf hi s;t,itu mlt ttnu liiiu ton / ,¡¡i, 
siiti\fiii!ii las lo/uíii itinrs ihithis

25. / es koniiiiu.i en f-oo. 2] > (2. +sor lim/n) 4. 

lim MU Iim /M) = +00. hnt / ( »í - 0

2ft. A“si.nnlmudcn<-00. 2).|-2. 4|\(4. +oc|. [iiii /lu - 

(I. hm Jiw = -ce; litn mu ' liin/iu = -1. 

Iim /lu = 2. lint Mu = .*>. liin/(u 0

27. f es tonlinua en (-eo.(-1. j (.í.+o5i. 
Iim /(II - 2. Iini /U) = (I. litn Mu = 4. 

lim/(0 = I. lim /(u (I. Iiin Mu -5.I «0 t I • < ^
iim/(«> = 0
> « I

2S. y es umiinua en (-oo. (Ii \ |0. +oe). Jim fu) - (I. 

Iiin /(V) = lim yu) = -.1. limyui = 21 *0 » *0' I
Lii los rjrnuins 2’J a .^4. JumK’sIn i¡in hi fiiiitiiiii nhunidu 
i omn un iiuhU’Io muU’HuJlu o tii rl 4 jvn u lo iiiilu mío lU Iti ■ ■ 
<K'>i I 3ci ttiniimui tii suilimiiiiit

29. (a) Ejercicio H (l>) Ejercicio 1.^

3(1. la) Ejercicio 14 (h) Ejercicio l(i

31. (a) Ejercicio 17 (b) Ejercicio I9

32. Ia> Ejercicio Mi (bj Ejercicio 2(»

33. lu) Ejea'icio2l (b) Ejercicio2(

34. (a) Ejercicio 22 (b) Ejercicio 24

tn los tjercuios 35 o 42, ileltTmiiir w se t wnpU t / /«(¡n ma ¡Ul 
Mtliir iniermeilio iHini la fum inii j. el inleruthi < errado |u. /»| \ 
r/1 alar de k tndu ado Si el leorenui no i iinif’le, i slahieu a 
la razón \ apose f;rajhaniinw \ii n sjnu sia Si < / u or, ma st 
I umpli la) l/ü( e la urúfa a de f \ la reí la \ = k en la t'raln a 
dora s eslinte, ion iiiuiro afras ileiimahs. il nánitro t </«/ 
inlenalo (a. h) tal t)Ue JU ) = k Ih) Conlimie la esliniiiaon 
ilel ¡naso la) analiiii ámenle hl Ddinje la t;iiiHta ilt / ai 
I<j. b| i mucsire el pimío U.k)

35. /(i) = 2 -t t - = [IMI.A = 1

36. flx) = -.10» - \'.\a,h\ lO.Kt.i; =

37. /U) = \25 ~ ,\a.h\ \ A5^.k (

3«. y(U = .1- + 5x - - I-I.2I.A - l

39. flx) = = [ 3. !|.A = I,

41. /(r> = 

* = -1

42. /(ij =

* “ i

5 1*1. 6| = 10. I|.A-2.r’' 1

H ■ M -2 < C < 11
ij- - i M 1 iT i S 3 )

1 +.» M -4 s .r < -2
2 - t si -2 < r S 1

. [o. M - i : -M.

. lo. M = 1-4. 1|.

I.n los I jen i< los 41 a lO, lia¡;ii lo sn;ini nh (ííJo/'/o/'o tluon
nía del i ero inleimallo paia mosliai ipie la laiii ion f lieiii il
numero indtaiilo di aros aitn a i h Ih) f same estos aros
I on dos I ijras di i iniah s i n la s;ral}i adora

4.3. fiM = »' - íii + 3. tres ceros. <1 = -5.6 - 5

44. /Ir) = r' + 7r’ + i - S, dos teros.o = -10 h = 5

45. /lu - 4i’ - 3r' + 2i - 5. dos teros a = -3.6 = 3

4fi. yjt) = 3»^ - 21»' + 36»' + i» - K. cUJiro teros, o = 
-5./J = 5

47. .Muesire que el teorem.i del tero miertnedio earanli/a (jue 
laetuationr' - 4»- s- t + .3 . I) nene una raí/enire I 
) 2, y iililice l.i jiratlcadora para esiiiiiar esl.i r.ii/ con dos 
tiiras detiniales

48. Muestre que el leorema del cero inlerinedio it-iraiili/a que 
la ecu.iciun »' + \ + 3 = (I nene una raí/entre ~2 v 2 

> utilice la eraricadora para esliniar esta raí/ con dos ci- 
tras deciniales

49. Pe l.i ecuación i|ue delme .i nilij (|ue (rata de la teoría 
especial de la tehiticidad de Eiiislein del ejereicio 51 de la 
sección I 7. deieriniiie el intercalo más uraiiJe en el que m 
es continua

.5». Peinuesirc que si |.i luiicimi / es conlinu.! en a. eiilonces 

lim/io n - iim

51. Oeinuestre que si / ui es no neeatiui para lodo valor de » 
en sil dominio y liiii |Mu|'e\i'1e> es positivo, entonces

lim /i\i = ^ lim ( M »)1*
• » •

52. iJeimiesire que SI lim/l»i = /.entonces lun j/iu] =
t/.i

53. .SupoiitM que f es un.i luncion para l.i dial

» • /lU • 1 sill -- » r I 

Pe muestre que si / es continu.i en |» 1) eiitoiiees e\isle .il
menos un numero ( en |l). 11 i.d que/'<) = i .S»i,rr./iko
si I nocsOni I. ciiloiiLes/(Oí > »>y*li < 1 Considere
1.1 Itmcion t; pai.i la cual i,’<u /lU - t y .iplique el 
(toiem.i del v.ilor intermedio a e en |0 11

54. l•llcllemIc• el valor mayor de k par.i el dial la luncion de-
linula por /l\i = 1|»- 2|) es continua en el intervalo
|3. 3 - Al

55. ,Soii equivalentes los dos enunciados siguientes (i) l‘ 
luncion / es coiiliiui.i en el intervalo cenado |o. /»]. »» 
la luncion / es contimu en cada numero del inlerv.ilo ce­
rrado |ij. /i| ’ Jusiitlque su respuesta
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1.10 CONTINUIDAD DE LAS FUNCIONES TRIGONOMÉTRICAS 
Y TEOREMA DE ESTRICCIÓN

H(>IR\ I

labia I

t t

1 0 11X41 17
II'> II s7ii’r.
II X (1 WfwO
0 7 0'12III|
IK. 0V4I07
II IMlShhX
0 4 0 ■170'*;
11 V
0 2 II 'l'UtS
0 1 O'WSVV
IMll II')'/ )‘)S

labia 2

•J t
f

1 II OKI147
ii'j 0H7ín(.
IIK II sy(.7ii
117 o<»:ini
«Mi "vini?
■ l X II'IXXSX
0 t ll'í7VXX
<M , ti'MXin
0 2 O'l'lUX
'U ll'l'lSVV

'it 1) 'J‘.1'J'1X

•■iipntKlf.Kiui; ustedcs|lidioinyoniMiicIn.iprcMainuilc siiiomb.iriio debido 
.1 !a import.1111,1.1 de las luiieioiies lrij.omimelnt.is tn Calculo st presenta un 
breve icpaso de ellas tii la sección A del .ipcndice

Ln un curso de irijionoinelna las gníiicas de Lis liinuones triuononicln- 
cas se dibujan nicdiaiite consider.tciones inuiihvas. debido a que dos conceptos 
de Calculo, < oiiniiiiiilíid \ í/í/tn lu i<n iiiii. son necesarios para una presenla- 
cion tornial de diclus j:r.ilicas I n cMa sección se Iral.ir.i la continuidad de las 
luncioiic'i tnjtonomelricas iiiieiiiras que en l.i sección 2 7 donde se obten 
dran las jtrallcas. sededicar.i a ladiierenciacion de estas I unciones Pnel estudio 
de la continuidad de las funciones Irigonomeirieas se considerara el limite 
sijiuieiite

l.m‘-^"' (1)
f .'I /

Observe tpie la Junción detniida por fin = — ' no evisie cuando r = 0.

pero existe par.i Iodos los otros valores de l A lin de tener una idea intuitiva 
acerca de la existencia dcl liniile (I) primero se tra/.ira la frailea de/en el 
rcclanjjulo de inspección de [-10. 10| por [-1. 2| mostrada en la figura I 
ComoytO) no existe, la grallea nene un a<:ujeri> en el eje \ De la figura, se 
sospecha que probablemente el limite de 11) existe y es igual a I A Un de 
examinar el limite a mavor prolundidad, se calculan los valores de la luncinn 
para conlormar las tablas I v 2 De las dos tablas, se sospecha otra ve/ c|ue 
SI el limite en O I existe puede ser igual a I Ll hecho de que el limite exista y 
sea Igual a I se demuestra en el ieorem.i 1 10 2. pero en la demostrución de 
este teorema se necesita e! siguiente teorema, al cual se liara referencia 
como el Unuiiui ih isinuiiin I-sie último no sólo es impórtame en la 
demostración del Icorem.i I 10 2 sino que también se ulili/a en la de­
mostración de teoremas importantes cit secciones posteriores

Suponga i|ue las liinciones /. e > li est.in deílmd.is en algún intervalo 
abierlo/qiiecoiilicíieai/.v queyi V) £ i;(t) < /i( v) para toda ven / para 
l.icu.ilv ii I amble n ^uponga i|ue limAtvjj Inn/i(v) existen > son 

igii.iles a / hntonces lim i,'< vi existe y es mual a L

.Se iiemo-.trar.i el leorcin.i de estriccion en el suplemento de esta seceinn 
Sm embargo, ahor.i se interpretara el teorema geométricamente en el ejemplo 
iliisir.itivo siguiente

[ EJEMPLO ILUSTRATIVO 1 Sean/, e > h las funciones defi­

nidas por

/(U

C’lv)

/lív)

-4(v - 2»- + 1 

Li - -II ' 4v + 7)
V - 2

4(v - 2)- + T
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‘« Íl I 4< '1

II 1 i 2i - í

1 as fraileas do ost.is hinuDiios oslan Ira/adas lii oI rcclangulo do inspot 
Lum do [-1 I0| pur |-H) IO| do la lisura 2 Las gralkas úc J y li snn 
parábolas i|in. liLiion su vóriiLO on ol punió (2 I a yralli..i do o os una pa- 
rabida ton su sorlito on (2.1) suprimido I a funoion j;* no osla definida 
cuando i = 2. sin embargo, para loda x 2 Jix) < ofr) </il U Adornas 
lim /U) = T y hm /i(r) = T Por lanío, so salislacon las liipoicsis del

Icorom.i do osiriccion do donde so deduce que 'inií'(i) = T ^

^ EJEMPLO 1 Considere que - 2| r: - 1»* para

toda \ L'lihce ol looroma de osiriccton para dolernimar Inn ol O

Solución Como |;0lO - 2| < Tli - I)'para toda I so infiero ejuo

I K.i in 2 -l{i - 1»- í: - 2 < 'ílt - Ij- para Inda i

c=5 -"^lí - h- f 2 i: ji>íi) £: - 1)- 2 para toda i

Soa/íu = -Tu - I)- + 2 ) /lU) = Tic - I)- + 2 Entóneos

linyU) = 2 y lim/i(r) = 2 (2l

Ademas, para loda x,

J(\) S 1,'U) < /í(U Ü1

Por I into. de (2). (T) y el looroma do osiriccion

liinoU) = 2 4

^ EJEMPLO 2 Uiilice el leoroma do esinceion para probar que

Inn c sen — = 0 
’ I 11

Apoye esto liccho gralic.imcnie

Solución <■01110 I <• sen / 1 par.i lod.i/. onlonoos

0 son * I 1 SI i
\ 1

Por l.inlo. SI c / 0

e en'' - 
\,

1 i| json II

^ 1'»l
1 n eonsociicnua

0 11 sen '
e

1 ^ M

( orno lim 0 = 0 y hm 1 V1

leoiom.i de osinceion qiio

Inn « on —
*" I M

I) l-ll

deduce’ de la de sigu.dd id ( ll ^ ili'
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/' 11 I sen '

1 .1 yr.itK.I ik‘ 1.1 liiiii.mn ijiic tiene v.ilnres ,' ■'en , ir.i/.ul.i en el reíl.tnyulude

iiispeeeiomle (-I I | por |0. 11. se niuesir.i en l.i l'iyur.i Observe el inusual 
comport.imiento oseilanle de l.t tuneinn cuando -1)12 £ r £! 0 12 La 
yralica .ipova el hecho de ijiie el líiinle es 0 ^

Iini sen t
I

HíllIU.l

7il lino

/'iLi>> t s..n /I

Demostración Primero suponga tiueO < i < [n Relier.Lse a l.i llgura 4.
I.i cu.il muestra la cireunterencia unilaria i- + v- = 1 > el sector sombreado 
llO¡‘. donde ¡¡ es el punto (I. 0» y P es el punto Icos /. sen /) hl .irea del sector 
Circular de r.idio r y .íngulo central cuca medida en radunes es i est.í deienni- 
iiada por J r-l. de iihkIo que si S unidades cuadradas es el area del sector HOP.

S = [f (5)

Considere ahora el Inángtilo l¡<)¡\ j sea K\ unidades Luadnidas el área d-* 
este inaneiilo Como A | = ‘ |/tP | • [ 7)//1. ¡1P| = sen / y | | = 1.

se tiene

A'i = isen/ (6)

.Si A's iiimiades cuadradas es el area del Irianyulo rectángulo HOF. donde 7 es 
el [Uinlo (I. i.nw). entonces A‘; = !|P/| K'’P| Debido a tpieP/ = t.in í 

y OH = [. se tiene

A's = |t.iiu t7)

r.n l.i ligiir.i 4 se observ.i cpie

A’i < .V < A's

Al sustituir de i5). lí») \ i7) en est.i desigtiald.id se obtiene

[sen / < [/ -' [tan ¡

Si se multiplica cada imemliro de esta desigualdad por 2/sen r, el cual es 
positico ponjue (I < / •' [rr.se tiene

\ ‘ (poique - j
sciw cos f ' seiw cosí'

Al coiisiileiar el recípioeo de cada miembro de esta desigu.dtlad lio cual 
hace que cambie de sentido el signo de desigu.ildad). se obtiene

eos / • «r I (8t
I

I)l la p.irie dercLlia de la desigualdad anterior >e tiene 

sen / < /

y de uiu ulentidad iiigonomélric.i tie semicalor. se obtiene
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\l sijsiiuiir/ pi>r ' t L-n hi di.‘sijjii.iliJ.iil (‘^1, y si se eleva al cuadrado, se tiene

seir , I lili

l’ur tanto de t 1(1) \ (I 11 'C intlere t|Ue

- /- <* Uts / (I2|

De (S) \ 112) V c<tmo 0 < i < ^ íT, se deduce que

I - ‘r- ^ '"•■'’i <1 SI 0 < / < í;r (13i
2 -I ■

Si-';r< f < 0. entonces ()<-!•' l;n sdetHi.

I " -t-/|- < < 1 SI - < / < 0
2 I '

Pero sen (-fl = -sen /. de modo que lo anterior puede escribirse como

I - -f- < — <1 SI -U < í < 0 (14l
2 / -

De ( H) V (14) se coricluve i|ue

I ^ < I s. -;;r< i< > ) , v. (I
2 f - :

(15)

Como liinll - !/-) = I V iim I = 1. se deduce de 115) V del teorema
r «I» - ' /

de estricción que

I .11 /

^ EJEMPLO 3 Sea / la limcirin detlnida por

/(V) - sen 31 
sen 5 V

l:il Irace la "r.illc.i tle / en c! rectaiiuulo de inspección de [-2. 2] por (-5.5). 
,.A qué valor p.irece que se aproxima / (vi conlormc \ se acerca a 0 Mb) Contlr- 
me l.i respuesta del inciso (a) .malílic.imente talcul.mdo lim fi\)

y.o
tn

Solución
(al l-.i llgur.i 5 nuiestr.i l.i iiráfica de / tr.i/ada en el rectángulo de inspección 

lie (-1) 6. 0 ()] por [-5. 5] Como/(O) no existe, la gráfica tiene un agujero 
en el punto donde v = 0. l:n la gralicadora parece que /"(x) se aproxima 
a O.b cu.indo x se acerca a 0

(h| P.ir.i deiemnn.ir el lim/tx) se desea escribir el cociente sen.3x/sen5x
V ‘•tt

de tal lorma que pueda aplicarse el teorema I 10.2 Si x ve 0.

■y [sen 3x ] 
scm_^x ^ • I 3x ' 

sen5\ gjsenSxJ

H(;URA5
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Ginlurinc \ se .ipnixim.i a tero, lainliién li» liasen Ln ujiisetuenuii

lim s’ii 1 s

Por lanío.

I sen Iv l m ------—
I -a sen s i

liin
> I .a

sen 3i

I

. 3» >

. .al '

3 I 
S 1 
3

t 5l '■ ai 5,

= 1

hsic resultado sontlrina la respuesta del msiso (a) 4

Del teorema I 10 2 se puede demostrar que las lunuones seno y coseno 
son Lonliinias en 0

L.i luiicion seno es toniinuii en 0

Demostración Se demostrara que se cumplen las tres condiciones ne­
cesarias para la continuidad en un numero

(1) sen 0 = 0
. , 1 sen I ,(m lini sen i = liin----- /

I .11 •-•i> í
= iim ' liiii /

I .(I f / .11
= I (I
= 0

(iiu liriisen t - sen 0
I * I

Por Mulo, la luncion seno es continua en 0 ■

1j0«4 teorema
La luncioii coseno es continua en 0

Demostración Se \enricar.í (|ue se cumplen las tres condiciones nece­
sarias para la continuidad en un número f:n la \erificacion de la condición (li) 
se utilizara el hecho de que la luncion seno es continua en 0, > se sustituirá 
eos i por l - sen- i pori¡ue eos í > 0 cuando -[it < i < i ;r

(I) eos 0 = 1

(II) hm eos r - 1 m \ I - sen- /
I .11 ' ’<)

= /l mil - sen- r)
\( .Cl

= 1-0

= I

lili) lim eos t = eos 0
I-.I)
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I)c cslc modo, la fuiiciuii (.osemt es eonluuia en 0 ■

fil limite del enuneiadndel siguiente teureina.el cual seaplicar.i piisiennr- 
inente. se ublieiie a p.irlir de lus tres teoremas previos j de los teoremas de 
limites

I - I I

Demostración

, 1 - eos l , (1 - eos Mil eos nliin----------= nm----------------------------------
• I I .1) í(l f eos I)

I I - eos- /— itin --------------
' ai r(i + eos o

, sen- /= lim — —------
I ai /(] + eos /)

, SL’íl lllll —
I >11 I

lim
• a l I- eos I

Por el teorema 110 2 

sen I Ilim
/

> como l.is luneiones seno > coseno son Lonliiuias en 0. se intleie i]ue 

, sen i _ 0
I >11 1 + eos / i + 1

= 0
Por taim*.

Iim l - eos I 

I

. (I

► EJEMPLO 4 ScM i> l.i lime ion (lelimd.i por

i-tU ^ ‘
sen I

I I o I
..II 1

tul I i.iee la j'i.tlie.i ile i; en un ree tangido ile inspeeuoii eoiuemente , \ que 
\ aloi paieceipie -.e aproMiii.i el') eiuiulo \ tiende o se .leeie.ia 0 ’ (1>I Conlinne 
l.i lespuesla del inciso tai aiMlllicaiiieiite e.iletil.iiulo el Iiiu e'l \ i

Solución
til) I a llgin.i U niiestu la gi.ilica de l>i liuieion e ti.i/ad.i en el lectaiigulo 

de ins[ieeeioii de | 1. M |'"i 1 >i graliea tiene un aguieu' en
I (I pouiiie i'lD) no existe luí l.i gr.iliea. parece que ei vi se .ipiosmu 
.11) eonloime i tiende .i l)

(hl Puesto que llnit I C’os \) = ti \ hmseil \ H. los leoienias de li

miles no pueden .ipliL.iise aUocienli (l - eos i)/m.ii \ .Sin eml>.ngo.'i 
el immei.uloi ) el denomin.idoi se duideii enlie \, lo cu.d esl.i peinu 
lulo )’•! que \ 0. se poilian .iplicii los teoieni.is 1 10 2 \ l 10 ^ \si,
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1 - cus V
liin *——= liin —I —
' •" stti 1 ■ —'I son V

hm ' -
_ I —r _5_____

hm '
1 .it r

0
1

= I)

Por li> que se iu contlrmado la respuesla del inciso la) ◄

► EJEMPLO 5

= iMp.

\-

Sea I) la funuon dellnid.i por

I k;i u\ 7

(u) Trace la grallca de li en un reclanculo de inspección convenienle , A que 
\ alor parece que se aprosinia /»(\) cuando i iiende o se acerca a 0 ' (b) Continué 
la respuesla del muso (a) aiiablicanienie calculando lim/i(\)

I -«U

Solución
(a) Se ira/a la gráfica de h en el redangulo de inspección de |- J ;r. [ ;r| por 

(0. I0| para oblencr la figura 7 La gratica llene un agujero en \ = 0 
porque /ilO) no exisle En la gráfica, p.irece que /i(i) se aproxima a 2 
enniorme \ se acerca a 0

(b) Se .iplica la identidad trignnomcirica

laii i =
eos \

y se nene

lim - - = 2 Imi

= 2 hm

" \- eos- l 
sen \ , sen ilim liin —‘rr-

I .0 nis- V

Lsle icsulladoconiirnia la respuesta del inciso lal ^

Del icoreiiia 1 I? \ de losliechos de i|ue las lunciones seno \ coseno son 
conlimias en 0 se puede deiiiosirar i]ue Lis linicioncs seno \ coseno son conli- 
nuas en lodo luimero. como se esial'lece en el icorema siguienle

I
Las tune iones seno \ coseno son coniitiiias en cada mniiero real

Demostración 1:1 coiijunlo de números rciiies es el dominio de Lis 
limciones seno > coseno Por lanío se debe demostrar que si u es cualquier 
numero real, entonces

lim sen i = sen n y liin uis \ - eos n
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o. ci|ui\.iienicnicnlc. ticl teorema I 3 13.

lim sen(/ + n) = seno y lím eostr + a) = enso (Ifi)
I .•! / .11

I;ti la ilemosirjeii'm se ulili/ar.in las ideiitulades

sen(/ + o) = sen/eos o + eos/sen o (17)

eos(/ 4 OI = et)s/eoso - sen / sen o (18)

De (17).

lim sen(í + o) = liniísen / eos o + eos/seno)
I /-«<1

= lim sen / ' lim eos a + Iim eos / • lim sen a
I .11 I—II I-.ll ( .0

= o • eos o -s 1 • sen o 
= sen o

Por lanío, se euinple la primera eeuaenin de ( Ki); de modo ijue la l'uneión seno 
es eonliiuia en eada número real De í IS),

lim cosí/ 4- o) = lim(eos/eoso - sen/sen o)
( -o l-ill

= lim eos /• lim eos o - lim sen /• lim sen o
I -II I -II l-•'l / ••M

= 1 • eos o - O • sen o 
- eos o

por lo que se eumple la segunda eeuaeión de (16); así. la funelón enseno es 
eoniinua en cada número real. ■

Mediante el uso de identidades irigonomélrieas. el teorema 1 S 4. aeerea 
de la eonlinuidad de una luneiiin raeional, y el teorema 1 10.6 se puede de­
mostrar que las otras cuatro funciones trigonométricas son conlimias en su 
dominio.

Las luiieiones tangente, cotangente, secante y cosecante son continuas en 
sus dominios

I.a demostración del teorema 1 10 7 se deja como ejercicios (consulte 
los ejercicios 37 a 40).

EJERCICIOS 1.10
/.'/I lii^cji r,'ii un I ii2<K li¡u;ii lo MfjiiirnU ' iullnuchi i'fa/iií/i/c 
/1II un r«'( /(iíie///tí itc iinpci i uní t niiwiiu nii , 4 f/iic viilui ¡vi- 
rii f í/Hi' u' iipinuiiui f{\i Kinfiiniu' v luiulr i> u‘ ucíTiíi ii ().' 
Il>l Confiniif lu uninicuii ikl uimo lii¡ t uU iihmilo 11 Imi/ u)

I. /■(«) = sen 4 X 2. /u) - 2i _
1 sen ^ s

X /UJ = sen y t 4. /U) = sen 3»
sen 1X sen />»

/tu = 3\ 6. /U) = sen' X
sen 5-t \ '

ti\) = 8. /(U -.= seir' 2i
sen ’ 31’ 4.1'

Au \ 111. ((XI _ 1 - COs.X
cus t 1 4 sen X

/(U - 1 - cus 4 i
(Ul

1 - cus 2 X
i 4i

/U) ^
3\- (H) 1 - cus' X

1 - cus' 2 X •

/Ul = Un V
2V ir>. /(u Ion'' 21 

”4x^‘'

AO 1 cos2x C(\) l • cus X
sen 3»

f{x) \- 4 3t
(Ul sen X

sen X 3x- 4 2.
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Inl'isi , li II ii-\ 21 \ 22 luna In \ií;¡iitiii,' hii tnu i hi ¡;uif¡i u 
^,nunuiiitni;.ili<ílriii\[h i. u’iii i'uuiuiiih , \ i¡iu u ¡uin i < 

ti ¡(•ri['i>itiW!Uiili> ¡It L'U) I l•r■|llrllH I u ii¡’ii'\iiiia a U iiiiiliiiiih 
i.il.’ii»iihr.i'U ^ iiui 0 ihi ('i’iiliinu hi n \inic\i.i ihl na na hit 
tt.!,ii'tirJi'il l'iii íU)

1\. in 22. i;lfl = -'""i'
I 1

[• ,','w , n .i .'n 2 < \ 24 la Mí’iiunu Uiiruui' lai:uijuii 
^tl tiiii’!itii..m;‘i!a¡li iin¡u ¡ t lait i aim imiiif , .\</iu'uilar¡>n- 
r,,i i/iii \c i.¡'ii‘xinhi lí\í\i aiilaniii I iii iiji a u- in.cn ti u njl ’ 
ihiCan'iimi la u \¡ku \l,i lU I iru na hii i a!¡ iiUiiula ti Imi li\i\ 
S’Hiui uii < I inii!i n \ ~ - I

22. hn ^ 24. h\t\ =
I t.iiíi

l<1 lot ijtn Iiia\ 2í i 2fi. Iui.;ii la mí;iiii iin tul inu.i lu crufii u 
tic I in un ni li.in;.ili-lie i'i\¡'t í í laii taintiiinilc , \ ijiit uilar 
l'.init íl.it n ii¡'rawiu¡ Ji\i I aniannc X liiiiili a se iit i n ii u ,J 
i'iuihinli \iilan \ minan \ i¡iH ,1' ih) Canriniu unuliliiuininic 
lil ft X'HII shl ihl im na hil nih liliiiula lirii /U) Siíí,'i /t ;ii iil 
ii'inicltii ; =• X - /T

25. rui -- K,. /(,) = i-*"
' - .T » .T

27. Si RiOi píos C". d jltjru.e de un pruseUil. cnlotives

/íiín ' (..'«--‘.T
V

dundo i,ipio/-.i-s )j \ o!(ii.id.id mitul. o pio/s’os l.iLunNl.inio 

do jtolcrjcinn dohui.i a !a jiraVLtl.id y (I t-. I.i modula on 
r, díanos dol .inouli> i]iio ol t.iiujti lunna tun I.i Imn/onlal 
Ounuo-.lro ipio W os Luniimia oii su dnnmiiu

2H. Si un ui^rpn cuyo po-u l' dL U lihras os arraslradu a lo 

l.irj:ij di. un pi'-o liori/onial a una xolouil.id umsl.inlo por 

un 1 luor/a do nuomiud / Idifas y dirigid i iii un .iiigulo do 

0 radianes oon lospLolfi al piso. i.nloiu.L’

k son H - oiis II

dundo/ os una ooiislanio llain.ula (o</(I on/( tU liiiiwiis 
*> '' k ■' \ Doiiuioslri. ijUo/\suiniimiaon |0. ' ;rj

k-'i hn ijtniiiin 2‘i u <2 iitilui il Itannui ih i \liii i lan inuu 
iltitriniihir i¡ ¡iiiiih In la\ ijiniiun 2'l i .hl n/nnr mi if 
pin Uu i'rii/í<<;iinii/(

2'}. Iiiii k tu. * .10. Iiiii i- son
‘ ' ■ t

21. Iim i;(»i.si ¡i;li( i -J | < 2ll - x)' par.Hoda t 

.12. hm of>) ‘I idi) - -ij < .5(x 2r paralodak

í II Ia\ ijifi ii un .f k \ ,<4 ilihiiniiii illiiiiili \i t \nic \ iiiiint si/ 
n s[iiii ‘.lu i'nilhiiiinnic

1, , sonlstii s 1 1, , 122. iiin — .14. Iiiii ■-0I1 r son-
V ' ■ k

.15. Dado xjuo i - tos- x /(xi c x- p.ir.i toda t un d in- 
lonaloabicno ' .7, ' ,Ti. dtiormino liin/ixi

.Ifi. D.ido k|iio -son \ ti ft\) •' 1 + son \. para luda x on ol 
iniunalo ahiono I n" Oi. doiomnno liin fi\¡

III la\ i]i i< uitn 17 ti 10. tltniiicMic i¡iii lu liiiii laii a íiiiwniiti 
III sil iliiiiiinia

.17. L,i luiition lanoonlo 

.18. 1 a luiKioii toi.iiiionlL 

.1'/. I a lunuuii sotanto

40. L.i luntion oo'Otaiilo

41. Si |/ixl| • Uparalod.i i.di'iido Utsiiiia(.nnsl.inlo, uiiliLC 
ti koiLina do osintuiuri para klomosinir i|uo iniir’/’fxi = 0

42. Considero k]Uo ¡/Di| £ M p.ira toda i. donde U os
un.i Liiiisianlo \donias suponaa i¡uo lim | oí x) | - 0 
l’liliLO ol lonroiiia do osirituion para domosir.ir i]uo 
Iim O

4.1. Si I /< u I / I' - n I para luda x := ii. donde k os una 
tonsianio. domuosiro kjuo lim/ixi = 0

44. [)adi/(x) = soni l/ki, Ir.iuo la prafita do / un cada uno do 
lo. sii'iutiilts rutl.iTipulos do inspottum (.i) |-2. 2) por 
|-2 2| (hl |-l I] por |-2.2). (c) |-l)l 0S[ por |-2. 2]. 
(ti) |-()2S.()2i| por 1-2, 2J. (d |-n I (H| por |-2 2|. 
(f)i 001 001 ] por |-2. 2|. {>■) (.Sospotha (¡uo d Imiy(k) 
csistu' Si t. asi., que mnnoro snspttlia k|uo os y por (¡uo' (X 
, siisp.tli.i i|uo lI !iiii/( i) nooMslo ’ ,Si os asi., porque ’

45. 1 lepad ijtrtitio44 toiisidoraiidoahor.iqiioy (x) = eos - 

4íi. Ilapa ti tjortioiii44 tonsidoratidki ahora quo^r t) - lan -

^ SUGERENCIAS PARA LA REVISIÓN DEL CAPÍTULO 1

*• Dtlina fiiihiait y en su dollnkion intluya li's ttinotplos dt 
‘l"'iimia y , aiUluilainiilla

“• Insonio un ojoniplo do un.i luiitiun qiio (tupa Li piopitd.id 
uulitada

(.1) (.1 diiniinm os d tonjunto do todos los números 
re.des

(b) f.l doiniiiio es d Lonjunio do lodos los números no 
nopalisos
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U > II iltmiiiimc' K<s mmicriis nci.'jii
vos

iil) II ilominto es loniuiKii iL' i«J»s los números rúales 
I \stf'IO II

li‘i i I uoniruJominio es el eoii|unlo Je loJos los números 
eiikros

\ , l.lui. »e uiili^iiJe por jitilu ii lU iimi /une ron ’

4. Insente un v/,.mpIo Je mu tunuon i|ue (enea t.i propiedad 
indie ada

(jl laenfisadel nene un agujero eiM = 4 tiiindu 
n4i no esta dellnido

il)i 1 a iiral'iea Je / tiene un • agujero en t = 4 cuando 
/i4iesta JefiniJo

(c) I a luiiuun/esiaJefinidaa tro/US para » <' 2j2 í r.
donde la gráfica de / se* rompe en \ = 2 

Id) l atuiieion/estadelinidaatroitospara» <: 2j 2 í i 
donde la eralica Je MIO se rompe en » = 2

5. Detinalao/rmi Jifirtiuia tinunit Jedoslun-
eiones/\ c’. > Cstable/ejcomose relacionael Joininiode la 
■unción resultante con los dominios de las luneionesv

fi. Iiuente un ejemplo de dos funciones/y g. tales i|ue al me­
nos unano sea una tuiieiim pohnomial jdefinat/ +
1/- ijnri If Olvl > if/elU) Determine los Jiimimiis de 
/\ ej losdonimiosde las tunuones resultantes

7. Defina la fmuum toniinifsut de dos tunuones />«,*. y 
k‘slahle/ea como se relaciona el dominio de la tunuon 
compuesta con los dominios de las funciones/y i;

S. Iinenleunejemplodedosfuiicioiies/y i,Malesi|iieal menos 
mu no sea una tunuon polinonual. y defina (/oj/Kil y 
(r 'T /1(«) Deteniiine los dominios de f y j,’. asi como los 
ilonimios de f ^

*). , Que se entiende por <u) Jiiiu ion par, (li) Iniu ion inipiir' 
Desenha la simetría Je las gráficas de cada uno de estos tipos 
de tunuones

10. Iinuile un ejemplo de una ímieuui. dilerciite de una poli 
nomial que sea tal par. (1)1 impar y (el ni par ni imp.ir

11. Deíinaeonprecisión empleándolanoi.iuoii ('-Aloqúese 
cnliendepor illinuii lirori/oniit c rc’ri/iim(»)(io«< \ 
(111,lio l Ahora eslah!e/ca en palabras loque signilica sin 
iitili/ar la notación ( iSy sm ns,ir l.is palabras hmiri y tiauli 
o o iipiininui

i 2. , < oiiioseutili/aladetimuoiiJel limite de una limuoiip.ua 
demostrar que lim/l tí / '

I.T. [yescribaen icrniinosgcoiiicincoslau I luonenire ( y i>de 
la (Iclimuoii del Iiimie de im i liiiiuon

14. Invente un ejemplo Je una limunn para l.i uial 

(ii) /(><} no existe, pero lim/i u i viste.

(I)) /tir) existe. iH’fo lini/^t U no existe.

(i‘) t.inln/l(i| COMIO liiM /I i| existen, pero no sniiigii.lies

15. iQueseenlienJecuanJoseilicequet f/imiri ih iiiiiifuiuion 
1 iiiiiuloíVMfC, i//m o'{,siable/cj el teorema que garanii/a 
este hecho

U). , ('oino se uiili/an los teoremas de limites para calcular el 
límite de tina función *

17. Rslahie/ca los teoremas que (ritan sobre los limites de la 
suma, diferencia producto y cociente de Jos tunuones

IK. , Por que no es preciso el siguiente enunciado Ll liniih tU 
lii uiiiui lie ilo\ fiin loiit I ei lo uinui ih un liiniu s' In 
vente un ejemplo Je dos lunuones pan las cuales d 
enunciado es incorrcclo

I1>. Invente un ejemplo de dos funciones f y i; (ales que al 
menos una no sea una función polinoniial. y muestre cómu 
se aplican los icorenias de l.i sugerencia 17

20. Defina con precisión, uliii/ando la noiauon €-S cjd.iuna 
de los siguientes/(Hiift I/(iii rd/( t ía) lim fí\) - / (bi

lim flxi - I Ahora estahle/ca en palabras lo que sig­
nifica cada una de estas definiuoncs sm utih/ar la nota 
Clon C-ü ni usar las palabras limile y lieiuli o vi iipnniniti

21. , Como están relación.idos los limites laterales y los limite-, 
bilaterales'

22. (Cu.indo es neeesani) emplear los limites Literales pira 
calcul.ir un limite bilateral' Invente un ejemplo para ilus 
irar su respuesta

25. 4,Cuandopueüenc'nipIearscloslimi(esl.iieralesparademos 
irar que un limite bilateral no existe' Invente un cjempU* 
para ilustrar su respuesta

24. Detln.kcon precisión, empleando la nol luon 0-<V, cad.i un i 
de las siguientes expresiones (al cunloniie v se aproxima a 
ii./l r» crece sin Kmite, (h) conforme t se aproxima a o./i vi 
decrece sm líiime Ahora csiable/ca en palabras lo que 
significa cada una de estas definiciones sm ulili/ar la 
not.ición S'^' y sm usar las palabras limiu, luiiile o o sr 
iipnnimoii infíiiilo. irtii un liniiu oiUirut sm lunik

25. , Ciuiui se evalúa el limite de una función raciona! para la 
cual el limite del denominador es cero y el limite dcl 
mimer.idor es uii.i consiame diferente de cero *

2fi. , Qiic es la tniiiiiiiii ierro ol de la gráfica Je una iuncion ’

27. , (*omn ]Hicde delcrTiuiurse ciulquier asíntota veriic.il pin 
Ll gralica Je una liiiiuon'

2H. Invente ejemplos de Jos tuncioncs r.icionales tales que la 
gralic.i Je una tenga un .igujs ro en el punto donde i - ^) 
la otra Icni'.i .i la recta i = ^ como una asíntota venical

2'J. Deíma la /une ton / es coiuinu.i en el niimeioo

'(I. Invuilc un cjLiiqilo de una Uiik ion di coniinii.icii el luimc 
10 I. debido ,i las coiulicioiies i die.idas

(iil /111 no existe, pero hm /Ul cvisie, (b)/(1»existe 1^10 

hm/iu im existe. (c> lanío /di como hiii/(\l existen, 
peto no son iguales
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l|, , { II il iT' 1.1 ilili'iiiK la Cilla’ iliu i'í!f(íi,((í/iji/ < si’/ii u¡l \ ilis-
, I it I. II i.'i/i '

.U. hci.nU’ im iicniplu ilc una tuiKinii ijuc lenca una ilis- 
. I’IlmIK^a^lc^cnk.l..l^.ll < - J Dc'pui.^lincnicuncjcmplo 
lie una tiiiicinii i|iic lene i una ili'iniiliiiuhl.ul a’inmilile en 
I r > iiuu’ lie o'iiui pueJe feniu\ef-e u i.liniinjr’.e evla 
Ji'.ar.iimiiJ. I

33. i 'i..h!ee>..i le.'rema' tuiKernienie' a la uiniinuidjcl ile
laiau'i’.L”. i'olinoiiiinalcs \ racK'iiale'. ,('<1111.1 -.e .iplieaii 
e-t t-.'ieiiU' par.i caklitar lia liniile' Je e'l.a liiiieione-.’

3J. , Que vi"k)aiiine’ Je toniinuiJaJ ile las lunu()ne^ I y e smi 
iLkL-'aii... p.iij vjue l.i Itinui'ii cumpue'.la r . ‘ca amli- 
iiua en el ii'iiiiern »i'

3?. l'i.enie tm eieiiipln Je día tuneiuiics/ y lates cjue la lim- 
tii n Liimpuesia I e sea ciintiiiua en e.ida numero del 
iiiiervalu atiierio (-3 3i Mueslre <)ue las liineinnes / y y 
Je su eieniplii eimiplen las eondiuones de la respuesia Je 
la su.’erenua ^4

36. Iiivenie un ejemplo Je una luneiun <jiie se.i Jisuiniirui.i en 
el luinieiii 1 y ijue se.i Lonlmua por la Jeretlu de < Mueslre 
ijue 'U luiieion 'alisla..e lia requcnmienlns.

37. iX'tiu I la (un..ion / es eoniiinia en el iniersalo eerr.iJo [o. h\

3S. I;slaWe/ca el h íti nm ih 11 iilm inl<Tiiit (lio

3‘>. Iiueiiie lili ejemplo Je una Iunción que ilusireel leorem.i Jcl 
\alor iniennedio .Mueslre que la hipóle.is y la Limclusion 
del leorema son s.iiisleclias por su liiiiiion

41). f.siahle/ca el ri<'r</iK; ¡U ¡ \¡ni 1 H’ii Iiicenle un ejemplo Je 
ires tunuones f. e ) h que saiislaeaii la. Iiipiíiesis Je Csle 
leorema y imiesire que se uimple la conclusión

41. Iinenie un ejemplo Je ires luiiciones /, i; y h ejue ilusiren 
eiimo se aplica el leorema Jeesiriicioiip.ir.ie.ilciil.irel líiiiiie 
Je ijlii cu,111 Jo los límiles Je /(il y lii\¡ 'C eonocen

42. , A qué c’s igii.J el hin— y cómo se uiili/a su\alor p.ira 

Jcmosirar que la luiicioii seno es coiiliiuia en 0 ’

43. , Comoseeinple.ii.icuimiiimIaJ Je 1.1 lime ion seno en Op.ir.i 
Jemiairar que la liiiiciun coseno es coniinua en (I'

44. , ('orno se usa el hecho Je <jue lus luiiciones seno y enseno 
son conlinu.is en 0 p.ir.i Jemusirar que Jiclias lunciones son 
conlinuas en c.iJa numero re.il'

45. , Cómo se deimiesira l.i eoniinuiilaJ ile las oirás ai.iim lun- 
Clones Iriconomeirie.u a p.iriir Je l.i coniiiiiiidaJ de l.a 
luneiones seno y coseno ’

► EJERCICIOS DE REPASO PARA EL CAPÍTULO 1

1. iJjJa/iii - 4 - i-, delennine (a) /(l|. (b) f{-2)

li) II?') (d) Mi -

h a o

DjJa i;| 11 _

j.(e) /li-).(f) l( r wo - /di

- <. deicrmme (a) ,v( l). (b) ¿4-3) fe)

m . h.idjeil - 1-1. (C, r o
h

III ///< tjiTi ii IOS 1 (/ 0. ih’liiiii lus sis;iiii iih s fum iiiiws 1 í/c'/íV 
"’iiir los iloiiimios t/c lus fililí iiiiii’s n siiliíiiiit-s. Ui) f I y, 

■J.itii- e. (</) //e. (<•! L'lf: illf° c, ln)n °f

3. /n

4.
■ 2 ; el i) - i- - 4 

'I i,'( u . 1 i- 5

/Id) = (di 7-d) = i'lhl

FmIos i'jcriii IOS 9 V /(/, Iriii chi^nilu it ilf liifuiii iihi \ ilfh-rmiiu’ 
su iloiiiinio V 11/ rontrihloiiiiiiio

•). (a)/d) = 4 - li 

(C) /i(0 = Vt* - 16

(c) fi\) - )5 - < I 

10. (a) i’d) 3i a. 2 
(c) ll\\) = Vi - t- 

(e) .yd) - 11 4 I

(b) ,i;d) 

(d) /-'(O

(f) ,ed)

i’ - 4

V16 - »•

5-hl

(b) Ao = 0-1^

(d) (7(0 = V-T- - I

(f) /(O = |ri *4

?. Mil - _L ^
I *

6. íui - ' ui
1 - I

/•" , I,7 , i, j íiKii'i, II lie lii lililí mil V <1 ¡iiiiiii
'6 líi i'i.ih, II, oiijiiiin SI líi lililí loiii s i’íii. iiiipui í'ili iiiin;iiiiiiili 
' ii¡íOí Di sjuu-s í oniiniii su ¡ oiijtiiiru uiiiililií iiiiu ule

(al /!,] = . -j, ||,| 5,‘ + 2i- í

(c) /,iu ^ 3,1 . 2i' - ,

Idj / 'L+ I

(bl cd) =
t

l.ii los <2»7<(i«>i II o I-I. ilihiiji lo í¡n¡liiii lie lo fiiiu loii i 
ihleroiiih MI iloiiiiiiio \ su I oiiiruili’iiiiiiio

11. (al e(0

(li) (<'i O

12. (a) /di

(b) / U)

13. (a) /-'(O

iL' '.i'
I + 4 

I i - 4 

|3

l~ 4- c - 6 
1 2 

j 1 + 3

li

P-.

I 3 + 1»

SI l -4 

si I =. -4

SI V * 2 

SI V = 2 

SI I < (I 

si o • llili Mil
1
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ih) /iiii
M 1 ü / n Im cjrrt ¡i tus Jf< <i -12, i iilt ule el liiiiiie si e\i\ie. \ iipme mi 

ii Uíi lr(i:im(ln ln i'riilii ii de ht liim inii iii un reí liiin;iiln de
11 laii ailei nada

3x -* 2 si X r 0
14. lai /ii X1 .35. hm .3/1 lim -----—

4 2x SI 0 X ' • 1 3 X - + K r 4- 5 ■\.’^27

1 * s| X < -1 2‘s - V-
(bi //ixi - .37. hm ■ ‘ - .38 hm

IX - 21 S| 1 ■' l r - y X - 5

39. i 1 + 40 i "i. 1

Ln las tjt n ii las /.í a 2l> u han iladi '/(XI a. 1 s € lal Idiln i 7 - X '• 2x ' - 3x-
nn.i liiiiini \ mi iirai/ra nía uiiii jan.'i a los de las ijtinplas 1 s ^ . ■ x' - 1 , . X - 1 - 2
de la x< 1 (lán I 4 ¡ ata deU nninar ana x') > 0 tal ijia !im •:—X-------

1 x_ - X
iim----------------

X - 5

M 0 < |\ - tí| < O ffiUin>.cs j/Mi - /,] < C

li'l la eliii i"'i ih ódil iiu i\i> ííihi’ii ¡a e^afíi adiira (< )
Cnnfíniie unaliin anu nle. ewiileimdu las ¡irnpudiidi s de Im 
deuíiiialdadi s. Iinh ¡í.iin¡ di Odil im na Uií

15. /II) = - 5 „

Ifi. lili - 3i - 2.a

17. in) = .'-I----

2.L

l.l.

I. f 

e

(105 

0 2

- 5
5. í. = 10 e

2i- - ’lv + 10is. n\)
\ - 2

ly. /(X) = X- T 4.a = 2.Í. ^ i^. e

.a = -2. L l. € 

0 3

0 03

‘ I 0 < IX a 

21. Iimí2i-5i 

2.3. Iiin t3i H)

25. lim

2(i. Iini

I ÍM - - O 
4 . .3

I Ovj
l ,3'x

O entuna:'' ¡/(t) ~ I.\ < € 

I 22. liiii (X - 3x1 14

3 24. Iimi4x - 11) = y

-(i

í.iilm fjeri u (t>x 27i; U.< ah iileil Iniiih \, i iiaiula \eaapiapia 
da. iiuli<pie las h ah iiuis di liiniles enipliadas

27. lini)3i- 4x T 5)

’ - i - t.
2S. lim

29. lim

• r* - 5 X - 14 

- y 
: ’ .3

31. lim 
■ ' \

4x- - 4x 3

,M). limo .1

32. lim

Ir - 4 
' 3/i’ 4 0

I - VI 4 f

.3.3. Iim

4x- - I

■/y - f - 3

I
hm

5v f 4

\' ‘

La las ejen uias-1.1 add dihiiji ltii;raluadi la/iaiíiain laladi 
el limiii iiidiiada si esisle: si il linule na existe istiihh:ia lii 
iiraii

I r- - i SI X < 3
43. /(XI =

I X + 5 SI 3 £ X

Oi) hm /Ixl.lhl lini /(x).(cl liin /ixi

' \ - 2 SI X •' 0

I X ’ - I SI 0 < X

(ii( Inii vl'l.di) hm eU' lim x.'(xi

44. í-lx)

45. htn =
I - 1

2(1. /IX) = X- 3í.„ = .3./, = 0. e nos

/ n las I jen ii las 21 a 2'i di iiiiu sire ijiie el liiniii i s ti iiuiiu ra 
indii ado aplii anda la di finii laii I 5 I, i sla es, para i iialipin r 
C > U deli niiiiie lina 6 > <ltiili/iie

4fi. /ID

(:i) lini hm Ib) hm /iin.lcl hm/i(M 

si f 3i 2|k-2¡
1 3 ‘'I ' - 2

(>i) hm /(r),(b) hm /(/).(cl lim/(ri

I X - 4 SI X < -4

47. eix) =1 ](, . si-4 < X £ 4
I 4 - X s] 4 < I

(a) hm i.'(xi (h) lim e(xi, (c) iim i/lxi, 

(d) hm A’íx) (e) hm elx).(f) hm eln.

i X- • l
4S. /iix) 2 - X

s| X £ 2
SI 2 < X £ 4
si 4 < X

(:o lim lii 11 (1)1 lim /lUi (el lim /n x).

(d) hm /jiM.(i') ¡im /iixi.ifi hm/i(x)

l.n las ijt n ii h‘s a j'd lahiih ti liiiiih \ npaSi sii resmiesui 

i;ialii aim iiu

49. (al lim

50. (iil hm

4 X
il> X-

X 1
X 4

51. la) Imi - ,
■ ' 1(1 • X-

52. (a) lim '

(li) hm

(li) hm

• K. - X-
X - 1

X- - 4

Ib) iim
If. - X-

Ib) hm —
■ 1 - - 4
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/ 4 í .
51 Mi Iinl ihl lini

U 'i í S

5-1. IJ1 !‘i" • ' ili) liiii ' ^
I í 2

In h'\ <liitiiun •'> .1 fi2 lui^,¡ la Mi^iiitiui líii ira, i la i;nili(íi 
I tn im rtK!i,iii.uh‘Jt ins¡'íniiiii tuluiiiulo , \ i/uí iiiinuro 

■' if. I« '( ii¡'ri'\i"iii M'i I oiiltuiui-1 iii luh o it chin o ij (I'
1/11 C<’/ liri' I lit ri •.¡nit sUi ilt I iiii iso lii) nmililii iiiih rilf 1 iilt 11 

Lrjii 11 ¡iiititi !iri) íu I

55 (m = 5f». Jíxi - ----------
' X ! - eOa 1

57. /111 - n 58. /(ti - ‘
.n2v ■ en 31

‘ in X

M. nu = 62. /(u.'--'
Ul X 2 sen i

hilas titrtii un fi^ihS ikhnmnt kiuisinlaun urinaks ik lo
zrii'iío Jt la fiim mn i iiiilit los pi.ro tlihiijiir lo urofk 0

(>\ fix\ = ’ - V M lU) = ÍLz2
- 4 X - 2

Íi5. .(rj - 1 fifi. Ii\) = ------—
' t' - t - 6

f-7 1 u f)8. ;/(u -
r - - 4 lí -1

hilinijtniíiinWíi7-f tlilniji lo i;rofito tk lojiiiiimn, ik sinii \
••¡'u n c (lo tu lí 1 rainiu lo i;roJiio iltUn'iini las uilan i ik x<n
kix i¡w lo fiimian 1 \ ikstaiirinim \ imu sin parqiu loikfinu mn
I 8 1 u» u in ioiJo tliMiiniiniiiikiil

X * 2
i- + i - 2 lí - i

2.x -t 1 s| 1 £ -2
71. A’U) - X - 2 SI -2 < 1 ■' 2

2 - 1 SI 2 < 1

|4-,| si 1 si 4
lili-

SI 1 = 4

73. /jhi =
1

X
SI 1 £ 1

1 SI 1 < 1

- <1 si 1 < 1
74 /lu = S SI i = 3

9 - ií si V < 1

hi las fjin II „ix 71 „ ~,s{ iknnu xin tiiu lo liintiaii ímIim anii-
tn , 1 niinu ra a Ikxnuvs ik It nninc si la ili rt anitniiiiloil i s

''“iuol a ruimuhk- Si lo <'•■! inliiuiiiloil tx roinmihlf. rnk- 
/'"« fiouk nmda i¡uc ki iliscaniiniiuloil u.í iliininoilo

75. lu, - t* + 2\ - S = -4
tí + 31 - 4

4 - i’ SI l < 1
76 JiX) -

2< s 3 Sí 1 •' 1

77. J(xl =
SI 1 Si 2

3 SI 1 - 2

78. /(>) = 2 1 - 6 3

I n lii'i ij( n ¡ci<>\ 7‘> i; Íi2 la jinu mu 1 ^ thu niUiiiiui mil miiiu ni 
íi lii) irán ¡II finirit ii ik f lii í mil \t nunpi lh il iHinm ihiiuJi 
X = (I , Ex mili lili II niiiinilik lo ili\i niiliniiiihiil ‘ St luin 
lí i¡iii e\ rciimi ihh ixpiLiik ottnoili lonuiihln rtikliiiirxi 
fio) tk iiwilri </í/t lo ilnioiiuiiuiihiil \Ki tliininoiki lli) Con 
firiih lo n '/Wt \lo ik I iin ixn lo) oiiolilii oiiunh

79. fui - LL-LLlÍ. o - I
( I

8(1 lix) = 1-íd „ = (,

82. Jix) = -----L. = 1
V t - 1

Ln lin ijiiiiiiin Ni 1 S-l lo) ikliiio I ^ i’ \ Ihl iklirmiiit lox 
mimeros 1 n los i¡iiff \ loiitimio \ t xiolik:ui lo rozan

83. (ii) fix) = .X y í,(>) = 2,‘i - i-

(|,| llx) ^ >'~ > MU = I »I
.3-1

(c) fiM = r > [.’ÍU = r - 1

84. (j) fix) = ,t \ j;(x) = - 25

(iU flx) = . r -f- I > ^-(i) = —L.
l - 3

(L) f(x) = sgn t ) t-fi) = i- - i

/ n kixiji niaiH H5 \ kO, dilínnnu los iolorcxile losíonMoiitcx 
o i h f/i(t lia¡;iin a ki fiiih ion c onliniia 1 n latín nuiiic w \ ilihujc lo 
Urofit o tk lo finu lán rt \iillonh

2i + l SI i S 3
ox + h SI 3 < 1 < 5
«í + 2 SI 5 £ t

3\ + 6¿j SI r < -3
3tíi - 7h si -3 £ 1 < 3
X - i26 SI 3 < r

87. Sc.i/ Id luiiium dd'itiid.i por

1 M \ es un numero enlero
/(U =

0 M X no es un mimcm entero

(11) Dibuje ldj.Tdnc.ide/ (b), l'.ir.uiues diores de «evisie el 
limite llm /(t)' (c), Ln iiue numenis redles es eoniinud/'

4^*0

88. Proporcione un ejemplo de un.i funcnm / p.ir.1 Id tiidl 
lim |/(U| exisld pero que liin /(Ufloesisl.i
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III h'\ i;cii it'v SWo ,/(itiiiiiiir «/ inlt nulo nui\ v'iiiuU’ tu 
limón til iniintiIi'M. il<’iuh-la liiiu um i v i oiiiimui ,l/»inc/i/ n \- 
l’lll \lil t (<>I hl Kl'lllt íhloru

8’>, (u) MU -

iltl i,'i\) , 2'

«M». MU MU - ilLli
' < I

lili i,UI = ~

<í|. (a) M'» -- il—^
I - 2

(I» «ui
- 4

1*4 II X < -4

n. / (U If, - SI -4 C » 4
2 1 SI 4 < »

hl lin iji ii ii un ‘Jt ii'/(). Imiiii lii Un u nl'uiiiv <iiu- íc

(iimplii«'/ u nn iiui ih I \ utor iiiii’niii ilio ¡nini lii tiiiu ion I, el in- 
li’niiloi i'rrniJii |u. b\ ^«IxiilortliiJoih í. ihlIrihc hi viiiliiiiilc 
I 1 hl reí til \ = km lu lirutU luliiin \ esliiiu. i oii i iiiilio i ifrn\ 
i/i el miiiieni i ile íii, I» luí i¡iie ftt ) = (r) i iiiilhiiu'
iiiuililu anu me h¡ eMinuu ion ilel im i\o Ibi: Uli tiibiiji hi \7íj/íi <» 
Je I m <1 inicniilo |íí. />]; niiitnire el punió (c, ki

W. /<U = r - 4í + = 1-1(1.1»|.A ^ II)

•>4. /M) = i- - 4v + = |(), l(l|.A - II)

*>5. /(u - t - ll> - X* - |II.41.L = -2

%. /(U i - .Ift t- = 1-4.01.A = -2

En bn ejen ii un 'J7 \ ‘JS, nnponJa lii\ ¡ireiiunitn ii purlir Ji lu 
:¡riifit ii iiiliiinlii Je lu liiiu uní /

07. ,('udl es el \alnr ile eadj iimi lie los limiies sijzuienles 
lü) liin /'ITI; Ih) liin /lu: Icl lim/lU, Id) liin f(x).

(el lim fU). (f) liin yiu, (i>l liiii J(u’ llii ,l-ii (|iie

miineriis es ilisumlinua / '' (i) ,Cu.íIls ile Lu (Jiscinilimn- 
iI.kIcs ilel inciso Ou son eseiKules ’ (j) ,,rii.iles itc Lis ilis- 
coiiiinuiJ.iiles del inciso llu son reimn ihies ’ ,'('óiiio 
redellnin.i Li tunuoii p.irii eliiiinur liis discontiimiJatIcs''

9K. ,( nal es el viiliir <le cada uno de los límites siguiente^ 
(u) lini JUi. (Ii) Inn /K): Icl lini /M); (di 1im/ii). 

le) Inn fdi.if) liiii/(t|; (}>| lim/(t)' Ih), Ln i|ué nú­
meros es diseonliniia ) ’ (i) ,,(’ii.iles de las diseoniinui- 
dades del meiso llu son esenciales' (j) ,,Cuáles de la> 
dis(.on1iiiuidades del maso (tu son remoutiles ’ .Comn 
rcdel'miría la liinuón par.i eliminar las disLonlmiiidades'

r - -I * I I

En bnijerm un O'/u l02. Jibiije lu iiniJUiiileiinuJuiu iinifipii 
\iilntui;a lu\ i onJit iones JuJin

-‘i. .1. -2. -I. 0. y 2 son los únicos ceros de f. 

]im yix) = 4, liiii yii) = -oc; Inn /U) = ■). 

Iim ft\) = +0C, y es continua en todos los números

de los intervalos ahierlos *-».-^). l-.í.-li. (-1.(1).
(0. «1.

1(111. f es continua en (•-«. -2». [-2. 11.11.1|. v (3. t-ecl.
Iim CU) = 0. lim fix} = -t-oo; Inn y(i) = »: 

lim/u) = -.1; lint /(i) ~-ox lini ¡Ix) = 2.I >i> I .1 1 .i>
lim /(VI = -1. Iim /(i) = -I. lini/(vi = 0

101. r.l domimovle / es (-«.-r cc); í'(-4) =• 2:-2. 0. 2. 4 \ 6 
son los linicos ceros de /. Inn /(vi = I). lini /lil = 

-w; Inn /(vi = Inn /'(ti = 0. Inn yttl = -3. 
Iini f(\> = 3; / es continua en lodos los números 

excepto -4. -2.0, y 4

102. / es conliniia en (-os. -4|. (-4. 4) y [4, -i- oo).
tim Mu = N. Inn /(i) = 2, Inii /(vi =+oo, 

lim /(VI - 0, liiii /(V) = ~4. liin /u) = 0.

Iini yiv) = 1. Iim Mv) = -2: Inn /(vl s= (I

f:ii bn i jen uim lO.I u llHi. obleiniu un niiuUlo iiiíiteiiuiluoJe 
bi Mliiiuuhi purliiiilur. Exiin nioJebn vc’ ihilurún mu\ tiJi- 
hinie imnidi» se upluiiu il Cúbiibi ii lu \itiuuioii. Dejliui lu 
Miiiuble til Jipi nJienle v bn \ ¡llores Je liini ion i oiiiii iiiiinenn 
e inJiipie bn iiniJuJes Je ineJii iiht. A\ei;iiiese Je ¡ oinplelurel 
ejen u ui c.V( iibu nJo iiiui»oiii limón

10.3. .Se construye una cacerola uhierta corlando cuadrados del 
mismo lanuíio en )a.s esi}umas de un Iro/o rectangular 
de lámina de 14 por 18 pulg y doblando los lados lucia 
.imba (iil lincuenire un modelo maletnalico iiuc exprese 
el volumen de la cacerola como una lunción de la lon­
gitud del lado de los ciudrados que se cortaran
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ih), l'it.il f- d il.iininiii Je l.i luin-imi i!d muso (.ii'
(cl IKmiit'irc ijiiL Ki t»iriLii>n C' umliniu i.n '■ii ilmniim» 

idi [ i> l.ipraluaili'M. e^lm1e eiin .i¡iii)Miii.i>.inn Jecaile-<i 
nu'v ik piilpjil.i 11 loneiliiJ Jel I.kI» Je lu> LU.iiir.iJus (|ul' 
Jdvii ^.o^.lí• ■ Je im'iti'i|iie d uiliimeii Je l.i eJLcriJ.i sea 
lia nuMiiio

/ (U - (SJJI1 \l ■ Ui\ -I 11

> Jiliiije MI pralaa , l-ii ijiic miriaTu-. es /•' Jisuonlitnu > 
piir ijue'

l.n lin tj{ n ¡¡ í»m ¡OS \ lll'J iiiilii c 11 ti un iiui ih’ ¡■\tn¡ ¡ luii ¡'.ira 
I lili lililr las lwiili-\

llM. I na sala .ibierta tiene l'ase euaJraJa s un \olunien Je 
4tii()|'ula' luU ikiienire un iiiiiJilu iiialeinalieiinueespíe- 
-e .1 ais .1 Je la supe [late lul.il Je la eaja.ti'imi una luf)i.iiin 
Je 11 luneiiiiJ Jel I iju Je la base uiaJraJa llil, C nal es el 
J.i,jimii> Je la limen'II Jel iiai'Uiai' leí Demuestre i|iie la 
lunui'ii es eKíilimia en su Jomimi) idl L.n la prafieaJuia 
Jeafnime.s.unapiii\iijiaeinu Je pilleadas, las Jiiiiensii mes 
Jeljsajai{uepiieJa simstriiirseeim la miiiiiiiaeaniiilaJ Je 
matenal

1115. Se tLijiiiereijueiinanunLiii. queLimlieiie.‘'(liirJe matenal 
mipresii, tenjia iiiar¿:enes Je 4 m en las partes supenor e 
mleriur s 1 m v.ii los uuos J<is laJus lal riaueniíe un 
mnJelti m iteiiialai' i[ue esprese el area Int.il Jel aiiunuu 
eunin una lunenm Je la Jimeiisicii huri/imial Je l.i reeiim 
cubierta purel material impitsn thl. Cual l sd Jimmmule
I.i lunuim Jel meiMi ia| ’ (ci Demuestre i|ue la lunenm es 
eun"niia en sudnimmu iJll ii la eratleaJura estime,um 
aprutimaeirm Je meinis las Jimeiisiimesilel ¡inuncin más 
pequerm ijue eiimpla eon C'las cspeeiHeaenmes

l'lf'. 1 'n están, jue puede manlener .i Hl (KH) peces, la tasa de ere- 
umieniudelap'ibl.ieiitiiJepecesesuinjimlameiiiepmpnr- 
enm ti ,il número Je peses presentes y ,i ladilerencia entre 
10 00(1 \ d niimeru Je peces presentes, l a lasa de crecí 
mieniu es Je 'X) pccCs semaii.iles eu.indii se encuentran 
presente- 1 000peces oo (•ncuentie un iiiMildiim.iteniaii- 
cm¡ue espíese la lasa Je cTeemiienlu de la pohlaciun.ci'iim 
unaliiiienm Je lac.iiiliJ.ui Je peces presentes (l^|^,('llal es 
el JnmiiiM Je la Iuiil mui Jel mcisina) ’ (el Demuesire ipie 
laltiHciriiiescornimi.iLii su Jmiuiiimi (d) i.n lapiallc.iJoia. 
determine el taiii.irmJe la pnhlavioiule peces, de inoJcn|ue 
la tasa de ciecimienlu 'ea iin m.iMiiU'

lOH. lmi i;IO SI |c’(>) ’ 31 < ^1-1 D' paratndai 

Illl'J. lili) 11 -Ir sen
> I

NO. Dibii|i la pr.itic.i Je / si /ui = ¡| I \-|| \ -2 í* 
I '■ 2 lii),l:usie lili) /(u' (hl, l.s / conlimia en 0 '

III. Dibiijelajrrál'ícadei'sic’IU - ii - lll|i||>0 \ rl 2
(al, ÍAiste lili) c'iu' (li), bs cimiiini.i en 1 '

112. (a)Demuestreipiesi/(») = c'(')p.ir.iinJuslnsc.iluresJe 
I evceplii ¡I. enlunees liin /tu - lini c’('l si lus limites 

eiisleii (h) Demuestro i|iie SI/(»1 = ¡,'t' I para loJiis lus 
calores Je c ecccpio ii, entimces si liiii ^'(U no ecisic. 

Iini /(O noecisie. Sinu'n iii iii iiuiesire ijiie l.i'Uposicum 

Je i|ue liin /(u ecisie ciinJiicc a una cunlraJicciiin

11.4. la) Deimic'slre ipie si lím ¡(x -c /j| - /u), enunices 

lim /(» -t- /o = liiii lí\ - /o

(h) Demue'Ue i[ue el ineerso Jel (eorema Jel inciso 
1.0 es l.dso proporcinnamio un ejemplo Je un.i liin- 
eioiiparalacual lim/(t -*■ h) - lim/(i - /D.peto 
Inn /IX + h) 0 U

114. .Si el ilomimii Je /'es el euii|uiilo Je lodos los números 
re.des y / es conliiiiia en 0. deinuestie ipre si

lili + />) - /lo) -I- /(/»)

p.ira lodooc h, enlonees/es continua en lodo numero real

115. .Si el domimode/es ekoniimio de Iodos los números reales 
s / es continua en 0. demuestre i|ue si

/(<! f h) - fia] /{/»)

p.ir.i todoií \ />, cntoiices/'esLonlmuaeii Indiimiinero real

lUi. Su|)onpa ipie l.i lunuon / está detuiida en el inlcr- 
\.ilo .ibjcno (0. 1) > cpie

yu) sen m 
lU I)

107. I' y sjui MUI |j^ iiinuoiics sallo imitarlo v siuno ddimd.ts 
en los ejercicios 47 > 10, respecin.iiiieiile. de t.i sección 
1 I I neueiiiie lorintilas pai.i ia tmicioii / defiinJ.i por

DdMia / en (l> I de inoilu ijiie / sc.i continua en el intercalo 
cerrado |0. 11



Derivada 
y diferenciación

\\S\ON

2.1 Recta tangente y derivada
2.2 Diferenciabilidad y 

continuidad
2.3 Derivada numérica
2.4 Teoremas sobre diferenciación 

de funciones algebraicas y 
derivadas de orden superior

2.5 Movimiento rectilíneo
2.6 Derivada como tasa de 

variación
2.7 Derivadas de los funciones 

trigonométricos
2.8 Derivada de una función 

compuesta y regla de la 
cadena

2.9 Derivada de la función 
potencia para exponentes 
racionales y diferenciación 
implícita

2.10 Tasas de variación 
relacionados

n la sección 2 1 se iniroduce lo derivado, con­
siderando primero su inlerpretación geomé­
trica como la pendiente de lo recta longente 

a la gróíica de una función Una función que tiene una 
derivoda se dice diferenciable, y en la sección 2 2 se 
estudiará la relación entre diferenciobilidad y continuidad 
La derivada numérica se aplica en la sección 2 3 paro 
aproximar la derivada de uno (unción en una graficadoro 
y en secciones posteriores para apoyar gróíicamenle los 
cálculos de derivados

Una derivada se calcula mediante la operación de 
diferenciación o derivación Los teoremas que permiten 
efecluor este cálculo sobre funciones algebraicos se 
establecen y demuestran en la sección 2 4, en la cual 
también se introducen las derivadas de orden superior 

Lo interpreloción de la derivado como uno lasa de 
variación |o rozón de cambio), se inicia en lo sección 2.5 
con oplicociones al movimiento rectilíneo En la sección 
2.6, se extienden las aplicociones a otras disciplinas Por 
ejemplo, la laso de crecimiento de una población de 
bacterios proporciono una aplicación de la derivado en 
biología La taso de variación en una reacción química es 
de interés para un químico Los economistas traten con 
conceptos morginales tales como ingreso marginal, casia 
marginal y utilidad marginal, los cuales son tosas |o 
rozones} de variación

Lo diferenciación de funciones trigonométricos se 
trota en la sección 2 7, y en lo sección 2 8 se estoblece 
y demuestro lo regla do la cadena, un poderoso 

medio empleado para diferenciar funciones 
compuestos Lo reglo de la codena se aplica en la 
sección 2 9 poro obtener la fórmula que 
proporciona la derivodo de la función potencio 
con exponentes racionales así como en lo 
diferenciación de funciones definidas 

implicítamente. Los problemas que involucran 
tasas de vonoción relacionadas, trotodos en 

la sección 2 10, proporcionan otro aplicación 
importante de la derivado
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2.1 RECTA TANGENTE Y DERIVADA

HC.i m 1

Mui.Ih»n prohleiiias iniport.inlcs en Caluulu Jcpcmloti de l.i dclerimn.iuon de 
].i rttiíi a la tirál'ica de una lununn en un pumo espeudltn de su
¡.Tatlea l-.sla scceion se iniua eon la detlniuún de In ipie signilieará raid 
uiiiín lili

Retuerde de su curso de geomeCna plana i|Ue la reda tangente en un 
punto de una ureunterenua se detlnio como la recta que inter'-ecta a la ur- 
cunferenua en s<i)o un punto Tal definición no es sullcienle para una curva 
en general Por ejemplo, en la tlgura 1 la recta que debería ser l.i recta tan­
gente a la curva en el punto /' iniersecla a la recta en otro punto (J I'ara 
obtener una dellniuon adecuada de la recta tangente a l.i grallca de una 
tuncion en un punto, se cinple.i el concepto de límite a lin de dcrinir la pai- 
í/ii’iiii’ ili‘ la rula lamiíiili' en el punto Despucs. la recta tangente se deter­
mina por medio de su pendiente y el punto de tangencia

Considere que la luncion f es continua en V| .Se desea detlnir la pen­
diente de la recta tangente a la gráfica de/en el punt«» /■’Ui. /(V|)l .Sea / un 
intervalo abierto que contiene a \|. en el cual esta delinida / Sea 
ytVT- '‘I’’*’ puní" sobre la gralica de f t.il ipie Vs 'amblen este en /
Dibuje la recta que pasa por P > (V Cuak[uier recta t|ue pase por ilos puntos 
de una curva se denomina rcclti secante; por l.into. la recta que pasa por 
P s Q es una recta secante Ln la llgura 2 se muestra la recta sec.inte para 
vanos valores de «2 La figura 1 muestra una recta secante particular Ln 
esta llgura Q esta a la deredia de P Sin embargo. Q puede estar a la de 
reclia o a la i/(]uierdj de P u>mo se muestra en la figura 2

La dilerencia de las abscisas lias coordenas v) de D v /' se denota por 
A V (j se lee ‘'delta i' ) de modo que

At = ts - T|

(Jbserve que Ai representa el cambio en el valor de i de V] a X2 > 
puede ser positivo o negativo Lste cambio recibe el nombre de ¡ncrcnicnlo 
dea. Note t|ue el símbolo Ai par.i el incremento de » no signilic.i ‘delta 
multiplicado pnr i"

Considere l.i rcct.i secante l’íj de la figura 'í; su pendiente esta deter­
minada por

ni/.y = /(i^) - /(i|) 
Al

/
Coinoi- -- ij 4 A 1.1.1 ecuación anlenor puede escribirse como 

/(ii -i I ;t»i'
in,V -----------------

.Mior.i considere d punto /’ como mi punto Iqo v que el punto (J se 
nnieve a lo largo de la ciirv.i h.ici.i P. esto es, íj tiende o se .iprovim.i a /’
[ sto eijuivale .i decirque S i tiende a ceio

Conloriiic esto sucede, la reda secante gira sobre el punto tln> /’ Si l.i teda 
secante PO tune tina posición limite, es esta posición limite l.i que se quurc 
como la tecla laugeiiie .i ia gráfica de /en el punto P Se desea asi. que l.i 
pendiente de la recta tangente .i la gr.ífica de I en P sea el limite ile /u/y 

conlorme Ai tiende a cero, si este limite evisie Si liiii es igu.il a
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+ co n .1 -00. cíilDiiLCs umlnrmu- /i i IiciicJl' a o.ti) la recta PQ tiende a Ij 
reda i|uc pasa por P y es paralela al eje Hn este caso se desearía que 
la teda l.ingeiile sea la reda \ A| P.sia {liscusiun eiiiuluee .t la si- 
tiuienie delmieuíii.

2.1.1 befíníciSn de recfd tdn8^fS.a ía ^T^fíca de úW^ 
función-:

Suponga que la fuiietón f es eonlmiia en i| l.a retín langenle a la 
grállea de / en el punto /•*( V], /'(.\|)) es

(íl la tecla que pas.i por P y tiene pendiente »;(\j). dada por

m(t|j = li.na»-it ai ni

si csie límite existe, 

(iil la recta i = .i] si

,, /i i| + Al) - /■< i, Ilim --------------:--------------- es+o3o-co
Al

/( i| + Al I - J( i| jImi ------------:----------------- os + 00 o - co
Ic-D- Al

La llgura 4 muestra la gráfica de una lundon J y su recta tangente 
cuando m{ i]) existe La figura 3 muestra la gráfica de una función J con una 
recta tangente \erlical en el punto (i|./(iii)

Si no se cumple ninguno de los incisos de la definición 2 1.1. entonces 
no exisie la reda tangente a l.i gráfica de / en el punto /’(i|./l i||)

L.i [)í'ii(lii‘iilc tic la recia a hi ^rafii a ilc una función en un
punto se denomina pendiente de la gráfica en el punto

o'i

^ EJEMPLO 1 Hncuenire una ecuación lie la recta tangente a la 

panihola \ = i- - I en el punto (2. .^i Dilnije la parábola y muestre un seg­
mento de la recta tangente en (2.

Solución l’rimeru se c.ileula l.i pendiente de la ícela tan.eente en (2. .-^1. 
Con /tu = i- - I. se tiene de (11

mi 2) = Imi
l> OI

lim
.ii-.li

lim
,\I OI

/|2 + Al) - /i2|
A.i

|(2 4 Al)- - l| - .1 
Al

4 + 4Ai 4- (Al)- - 4
.\ i

= Inn
.ll Mi

4^-4- (A.i)~ 
A.i

= lim (4 + A.i)
,\¡ 'til

= 4

M<;iRAS
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I

ii(;un6

Am, ki íclIj i.in^’ciitc en (2. tiene puulienie l De l.i fnniu punin-pi.n(Jien(e 
lie la eeuai.mn de una reeUi \ - \| = /;i(t - V]), se obtiene

^ - 1 = -1(1-2»
4i - I - 5 = 0

L.i lluiiM Ci presenta la par.ibola ) un segmento de la rect.i laneenle en
(2. 1) “ ^

2J.2 Definiciáydgg^lá normalSiüaSfSrofi:

La recta normal a una grafiea en un punto dado es l,i recta perpen­
dicular a la recta (•ingente en ese |)un(o

EJEMPLO ILUSTRATIVO 1 La recta normal a la grallca ilel
ejemplo I en el punto (2.1} es perpendicular a la recta (.ingente en ese punto 
Como la pendiente de la recta tangente en (2, 3» es 4. entonces la pendiente de 
la recta nonnal en (2. 3» es - . j una ecuación de esta recta normal es

I K.l K \ 7

V - 3 = - ;u - 2)
4\ - 12 = -i + 2 

X + 4\ - 14 = I)

La llgura 7 muestra la parabola \ la recta normal en (2 3» ^

^ EJEMPLO 2 (:i) Calcule la pendiente de la recta tangente a la

gnífica de

/(il = x’ - 3x

en el punto (xi. /'(X()) (h| Determine los puntos de la gráfica donde la rectc 
tangente es hon/ontal } udhee estos puntos para dibujar la grafíca de J

Solución
(ii) Al c.ilcular /(x, j > / (X| + A x) se obtiene

/(»,) = x,^ - 3x]
/(X|+Axl = (X| -I- Ax»' - 3(x,+Axl

De (1 j

iiH XI) lim
X. .11

lim
X. .11

lim
Xi -II

/( \| 4- Ax» - / ( t|)

Ax

I \l 1- Ax )^ - 3( X| + A\) I X|' - 3x| )

Al

Xt’ -t- 3 >,^A X ’ 3x| ( \ x |- - (Al)’ - 3 - 3A x - X|^ + 3x|

A X

Imi 
Xi •('

4i|L!X X ■> 3X|( Ax »* T (A X»' - 3 ix

Ax

Como Ax 0. el numenidor \ el denoimn.idor pueden dividirse eniie 
Ax par.i obtener

= Jim^J3x|- + 3x|Ax + (Ax(- - 3]

;íi(X|) = 3X|- - 3 (2)
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Á

M( lK\K

(h) I a recta l.in‘!c'nlc es hnn/onlal en los puntos doiule la pendiente es cero 
Considerando= 0 se tiene

Ir,- -3 = 0 
r,- = I 
i, = +i

Por tant«). la recta tanyenie es hori/onial en los punios (-1. 2| > (I -2) 
Al locali/ar estos puntos y algunos otros se obtiene I.i gráfica inosirada en la 
liguraS ^

El tipo de limite en (1 K empleado para dehnir la pendiente de una recta 
tangente, es uno de los mas importantes en Calculo Este limite es de uso 
•recuente y recibe un nombre especifico

< * ' ' ' 'i o
2«l.3 Pefiníclófi.de lo derivada de und función______ ^
La derivada de la luncion / es ai|uclla función denotada por /’. tal 
que su calor en un numero r del dominio de f esta dado por

/'(M) limCc-OI
/^( r -f At) -

SI este limite existe

(3)

Si C| es un numero particular del dominio de / entonces

,U„ = ,,m

SI este limite existe Obsene que el dominio de / es un subconiunio del 
doniinin de f

Al comparar las lormulas (11 j (4). se observa i|ue la pendiente de la 
recta tangente a la grallca de l.i luncion 1 en el punto (t¡ /U,)) es precisa­
mente la derivada de /'evaluada en i.

► EJEMPLO 3 IJelcrmine la derivada de /si

Solución Si t es un numero del dominio <le /. entonces de t^i 

/(V + Ar) - yi 11
/U)= hm

V> OI

liiii 
V> 01

Ar
t _ t 

I * X V V
A V

1(v + Avi
\l'*Vii A i(»)l V f A V1 

-lAv
OI A r( v)( V + Arl
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Por unto, la derivadü dc/üs la íiiiicmn/'cldlnidj por/ív) = -
x"

L1 dominio á\i J' es el eonjunto du lodos los [iuim.ros reales cxeepto 0 ul 
Luai es el mismo que el dominio de j ■4

níu R\ y

EJEMPLO ILUSTRATIVO 2 para la luiiLum / del ejemplo
3 se puede apliear/(r) a lln de oblener una eeuaeion de la reela laimente a 
la grafita de f en un punto parlieular Por ejemplo en el pumo (2 ’) la pen­
diente de la recta tángeme es /Í2j = - ^ Por tanto, una eeuaeion de esta 
reeta tangente es

^ - ; = -;(r - 2)
4x - 6 = - "íx 

3i + 4\ - 12 = 0

La figura 9 muestra la grafiea de/ > su reela tangente trazadas en el rectán­
gulo de inspección de |-4 7 4 7| por I- 1. 3 11 ^

Considere aliora la tonnuia (4) la cual es

/'(t,)
Ii,n /<T| ^ Ax) - /(t|)

Ai-.0 Al

En esta formula considere

t| + A\ = r (5)

Entonces.

'Ar —>0 ■ equivale a "v ij" (61

De (4). (5) > (6) se obtiene la tonnuia siguiente para/(V|f

/(t|j = lim
v.-.i

;(o - /<M>
r - M

(7)

SI este límite evisie La formula (7) es una formula allernalna a la (4) para 
calcular / (\ |)

Los cocientes -— ------- ------------ en (4| ) ----------------- en (7) re-
i X t ~ l|

ciben el nombre de Lucientes de diferencias estándar de la función /'en el 
numero t|

► EJEMPLO 4
cando la formula (7)

Para la función del ejemplo 3. calcule f (2i apli-

Solución

J(2)

De la fiírmula (7)

/(t) - /(2)
lim 

a.-2

finí
ai-2

lim
i>-2

r - 2

X - 2 
^[2 - X)

2x(x - 2l
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Inii
’ 2 V

= - 1 
I

lo Lii il u'iiLiu;rda i.on J <2) ticl eicm]5lu iluslrali\o 2 A

( 1 uso cJl‘1 símbolo /' para la ilLrivada de la hincuin / Iul introdutuJii 
por el matemalieo trances losepli Louis Lüí'rnnjje (17'^fi-lS1en U 
sielo \\ III hsia nolauon desiaca (jiie la luntion/ se lívina (o pr<)\ieiiei de 
la lunuon / V su \ alor en \ es /'(\)

Si (i \) es un punto de la eraliea de j. entonees \ = /"l \ \ ' se uli-
li/a laminen Lomo una nolauon para la derivada de j{\] Con la lunuon} 
detinid i por la euiauon \ = /(x) se considera que

A\ = ji\ + Ax) - /(i) (8)

donde A\ se denomina incroniento de^' > denota un camiMo en el valor de

la lunuon cuando i vana en Av Al iilili/ar (Si > escribir ^ en lu^ar 

de rui la lormula (1) se Iransforma en

</v
ih

1 Al lim — 
Vi-M Av

Ll símbolo — lúe empleado como nolauon para la derivada por primera

ve/ por el matemático alem.m (íoUfried Wilhelm Leibiii/ (164b-17lbi 
Cn el siulo XVII Leibni/ \ Sir Isaac Newton (!íi42-l727). ir.ibajandn 
de manera independiente, dieron a conocer casi simiiíianeamenle la de­
rivada Leibni/ probablemente pensó en </v ) d\ como pequeños cambiov 
o variaciones de las variables v j \. \ de la derivada de \ con respecto a i 
como la ra/on de d\ a il\ cuando d\ > d\ son pequeños Ll concepto de 
limite como se acepta actualmente, lúe desconocido por Leibni? v 
Ncvvion

I n la nolauon de I ajiMiiee el valor de la derivada en v = V| se ni 
diea por / (\ I) Con hi nolauon de I.eibni/ se escribiría

d\
,/i J ,

Se ilehe recordar que cuamio ^ se utili/a como notación para la de

uvada de una timuon a d\ y d\ no se les lia dado sijjmllcado mdepen 
diente li.isia aliora en el texto auiu|ue postenormenie se dellmran por

separado De modo que en esta ocasión ~ es un símbolo para la derivada

V no debe considerarse como una ra/on De hecho, se puede considerar

— como un operador (un símbolo para la operación de calcular la de*

nvadaj \ cuando se escrihe 4^. siunilica —(v i. esto es. la derivada de \ 
il\ i/i

con respecto a
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► EJEMPLOS c.,kui.ííl.,
(¡i

\ - M

Solución Se ha djdo \ = /(i) doiide/(xj = ,i

iíl
th

iiin 4^
it-,0 J V

hm ■Ad - íii)
Sx

lim

\ fin de evaluar este limite se rauiniali/a el niiiiiLraddr

~ = jini ~ - % tK ■ V Ar + s t )

‘/v Sf—i] At(%r + \\ + \ t

= lini -------------^-------------
A.-r) Ai(% t 4- Ax + . r)

Al dividir el numerador > el dtnommador enlre Si (va ijuc Ai 0) se 
obtiene

tix Ai-ii -V t + Al + % r

Otras dos nolationes para la derivada de una tuncion / son

> /J.l/Oll

Cada una de estas nolauones permite indiear la liinuon onemal en la 
expresión pañi la derivada Por ejemplo, se puede eseribir el resultado del 
ejemplo 5 tomo

4-(%i) = —^ o tomo /;,( ii = —!— 
ilx 2%v 2s!\

por supuesto si la luntion > las variables se denotan por otras letras 
diferentes dey. i j v. las notationes para la derivada deben intluir esas letras 
Por ejemplo, si la luntion i/ esta dLlimda por la etuation s = i;(n. enlontts 
la derivada de puede inditarse tii tada una de las siguientes lorm.is

ejercicios 2,1
" /f*i tjcrui it¡\ III rt, ohicm;ii mui uiuií nm ilt ¡a rnUi um

I'Iti finijuII (l, Ici iiiiiuii,II iii ii ¡tiiiuii ¡lililí) Piluiji 1(1
‘íra/iu ,/, ^ i,uii\in mi \ii>iiu/ilii ih lii nxlii
‘“"Ht'iU aulpiiiu,,

‘ ' = ‘í - i’ C 5)

-1 = 1-4- 4.(-l. 5)

' = 2r- 4 4i (-2 0)

4. i = í’ fu + ‘) i \ 0)

5. i - i^ 4- M1 4) 

f. \ = I - i’.C -7)

/ fi /(O iji H i( un 7 u 10 la) ih h riniiu la pt iiiluiifi lU la n tía 
ía;ii,’í ntí a l<i i;riif¡ui lu la fmu mu f i/i il pmiio (i| /"(i))) Ih) 
Dtli riimu lin pmilin ih la í;rafiia ílurult la rula /(i/ii,’«nn’ 11 
Imnzimtal \ iililu i c \/<>i punUn para ¡lihiijar la i;rafh a
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7. /(i) = }x- - \Z\ * H 
H. /ui - 7 - h.» - »- 

9. Un = »’ - «>»• 9» - 2

10.

29. yio = tot t: it = \i:

30. f\ tí = ese r; t| =

lili los l■Jt■rlutllx M (I J6, ili'hniiinv J'fx) iiplii iiiuln la fur- 
milla di.

¡’n loi tjfn ifiiu 11 a lf>. i'hlvii:;a t i tiac iiuii-x Jv la rii la tan- 
i¡aite \ </«' Kiia naniuil a la i¡níjii a de la ctiiaui'm en el pimii) 
aiduaJí' fíat e en la i;iaíuadi’ra la t^ru/icu junio i on lux reí - 
r<it taneinte v nonna! en < / munui rtílúni;u¡ii de inxpei t ii'ii

II. ^ =
12. V - \ 4 - t. (-5.

13. ̂ = 1\ - r':t-:.4i
14. V = t’ - 4i. (0, |l|

16. \ = __?-.,4.-4)
% «

17. Sea/Irí = 3t* - 7r. (u) En la ealculadiira JeCcimine lus 
salt)res del ciKienle de diferencias estándar

f<2 ^ ¿t) - t(2)
Sx

cuando Sx es i^iual a 0 10. 0 09, OOH. . , O.OI, >
-0.10. -0.09. -OOX. . . . -0.01 t_A qué \aJnr parece 
que se aproxima el cociente toníomie Ar tiende a 0 * Ih) 
Cakule r(2l aplicando la fórmula (4í > compare este 
iiUinero con la respuesta del inciso (aj. (c) En la calcu­
ladora determine los valores del cociente de dilerencias 
estándar

Mri - /l2i 
i - 2

cuando \ es igual a 2.10. 2 09. 2.08. . 2.01, y 1.90. 191.
1 92. , 1 99. ¡A qué valor parece que se aproxima el
cociente contorme x tiende a 2'’ fd) Calcule/'(2) .iplieando 
la iormula l7) y comp.ire este número con la respuesta 
del muso (cí.

18. Haga el ejercicio 17 considerando ahora/(.i) = «

19. Rc*suclva el ejetcicno 17 considerando ahora /I tj = Vf> - x

20. Haga el eiercicio 17 considerando ahora/(i) - —

Un lin ejercíaos 21 a MI. determine f'(.Xf) en dos /oinuis. la) 
aplii/iie la fórmnla i"/ ihl aplnpie la lonmda Id)

21. Jix, = = 6

22. /nj = -=- - I. i( =4
s I

23. A») = sen t:.ij - 0

24. /II) = LOS I. i| = o

25. A») = sen t;.V( = | lí

26. fix) = eos t; t| = .l/r

27. ytr) - see r..ij = 0

28. /(.r) = lan.x;.\] = 0

31. Hx) = -4 32. flx) - 10

33. /(t) = 7.t -s 3 34. ytil = 8 - .^r

35. flxt = 4 + 5v - 2i-
36. /(vi = 3v- - 2» + I

íui tos ejenicios Í7 a-W. lali ule hidensada inditada

37. 'f(H-.r’) 38. ~u^ + i,
dx di

En los ejen u ios día dd, t ni iienlre -—
dx

41.

43.

45.
s'-r-’l

42. y 

44. V
:.i - 5

Ohteiiga una ecuación de la recta tangente a la curva
V = 2x- + 3 que sea paralela a la lecu 8» - v -- 3 = 0

46. Detennine una ecu.ictón de la recta tangente a la curva 
v = 3i- - 4 que sea paralela a la recta .4t + v = 4

47. Encuentre un.i ecuacu'm de la recta norin.il a la curva 
y = 2 - [v- que sea p.iralela a la recta r - \ = (I

48. Obtenga una CcU.icion de cada rada normal a la curva
V = -t' - 3\ que sea paralela a la recta 2\ I8v - 
9 = 0

49. Demuestre que no existe una recta que pase por el 
punto fl. 5) que sea tangente a la curva V = 4i-

50. Demuestre que no extste una recta que pase por el pun­
to 11. 2l que sea tangente a la curva v = 4 - .X-.

51. Si es continua en a y/tu = it - «i /;(x). delermin.' 
/■|«í Siiitcrcncur utilice la fórmula (7)

52. Si j* es continua en a y f(xi = tx- - <i-| gtv). deter­
mine río) .Vin.’«'rc/i( (O milite la lórnnila (7)

Si

/•tv) hm
Vi-.11 Aa

calculey ’(a)si/tt) = ax’ + hx.

54. Emplee la lónnula del ejercicio 53 para determinar I i»i 
si/(r) = w/t

55. Si f'lai eviste. demuestre que

f\x) lim /<■« ♦
.vi-.li 2Ai

Sum’reneiu. fia Ail - fia - A\)
= ;i(í + At) - fia) + fui) ~ fui - AvI
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_ 2.2 DIFERENCIABIÜDAD Y CONTINUIDAD T09

por [-1 1.11] C'onfumic .iplii|Ui. el .iiimen!o Caniu) de
1.1 praliuidin.i en el punió (2. I) destriiu lo ijue sucede 
, l’nr c[ue iKiine e^tl)'

5H. rr.iLL'la parJbiil.i _i = > su rcel.i láncenle en d pumo
ii. Ij en el reUanpiilu de insptLeiofi de [-1 T7| por 
|-l 2 Ij ronfdrmeaplKjueel aumenliH'oom) de laprafi- 
eadiira en el punto (I. I) destrib.i In que siitede , Por 
qué ocurre esto'’

2.2 DIFERENCIABIÜDAD Y CONTINUIDAD
K1 prnccsc) de calcular la derivada de una íunuón se dciioinma dijeren- 
luuuiiv. csU) cb. la direrenciüción es la operación medíanle la cual se ub- 
nene la Iunción^'a partir de la función j

Si una función tiene una derivada en Vj, se dice que la función es 
diferenciable en X| Una lunción es diferenciable en un interviiln abler- 
lo SI es dilerenciable en cada número del inlervalo Si una función es dile- 
renciable en cad.j número de su dominio, entonces se dice que es una 
ruiición diferenciable.

EJEMPLO ILUSTRATIVO 1 l-n el ejemplo .T de la sección 
2 l./ív) = 3/v > f'{\) = Como el dominio de J es e! tonjunlo de
todos los números reales excepto 0, j J'(\) existe en cada número real 
excepto en 0. entonces j es un.i función dilerenciable Á

EJEMPLO ILUSTRATIVO 2 Sea fi la tunción definida por
^ . El dominio de j* es (0. + co). Del ejemplo 5 de la sección 2 I.

Í.''ÍU = 1
2s'a

Ctinu) jí'íO) no existe, j; no es diferenciable en 0 Sm embargo, j» es dife- 
renciable en cualquier otro número de su dominio Por tanto. j> es diferen* 
ciable en el intervalo abierto (0. +oo) ^

Se comien/a la discusum acerca de diferenciabilidad y continuidad 
con el ejemplo siguiente

► EJEMPLO 1 Sea

/n) ^

(u) Muestre que ] no es diferenciable en 0 aum|ue es continua en 0 (b) 
Trace la grállca de (

Solución
tu) Al aplicar la lórmula (7) de la sección 2 1, se tiene, si el límite existe.

/'(O) = lini

= lím 
«->11

/(V) - /(O)
V - 0

-0
r

= lím
■ -•II

I
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i |{,IR\ I

IVro u'slc limilo no t'MsIf Por I.11110 / no es dilcri.ni.iahlL-en 0 Noohs 
I inle t es coimnua en 0 porijiie

lim/U) = limI «h I «D
= 0
= /(O)

(b) La ligura 1 muestra la graliea de / ira/ada en ci reLlangulo de inspct 
eic)nde¡-6 61por|-4 4| 4

EJEMPLO ILUSTRATIVO 3 Para la lunuon / ülI ejemplo
I como

Imi =
-OI

fti) -f Ao - /'(O) 
Ax

lini
Xi—(I

lim
Xl OI

+ 00

A\
1

0

se Loneluve por la definieiun 2 1 1 (iij qui. i = 0 ls la rsLt.i tangente a la 
gráfica de f en el origen ^

Del ejemplo I ) de! ejemplo ilustrativo 4 la lunuon definida por /( r) = 
tiene las siguientes propiedades

!. y es continua en 0
2. / no es dilerenciable en Ü
3. La gr.ificade J tiene una recta tangente vcrtic.i! en el punto donde x = 0

Ln el siguiente ejemplo ilustrativo se tiene otra lunuon ijue es con 
tinua pero no dilerenciable en cero La gralica de esta lunuon no tiene recta 
tangente en el punto donde X = 0

ik;ir\2

l' EJEMPLO ILUSTRATIVO 4 Sea / la Itmuon valor absoluta 
delmida por

Uu = M

La gralic.i de esta tiinuon se muestra en la figura 2 De la formula (7i 
di 11 sección 2 I. SI el limite existe

I (0) lim /ixi /(O)

lim
X - í)

= lim

C orno IVI = X SI X > 0 V | \ 
mites laterales en 0

-X st X < 0 se consideran los li

liin = Imi - 

= lim I
1

liin ^ - lim —

Imi (-1)

= -I
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Üi-hidi) a que lim lim se deduce que el líniile liilaleral
I ^ j * -.II- « < .<1 t
~7” cxisle. Por lanío, / '(O) no evisle. de unido que / no es dderen- 

renciabte en 0
Dado que no se cumple la dellmcnin 2 1 1 cuando .r = 0. la grátlca de 

la tune ion valor absoluto no lienc recia tángeme en el origen. A

Como las lunciones del eiemplo ilusiratno 4 y del ejemplo I son 
continuas en un nümero pero no son dit'erenciables en ese número, se pue­
de concluir que la continuidad de una lunción en un número no iniplito la 
dilerenciabilidad de la misma en el punto en cuesunil. Sin embargo, la di- 
lerenciabilidad niipluu continuidad, lo cual se establece en el teorema 
siguiente.

Si una función / es dilerenciable en un nümero rj. entonces J es 
continua en \|

Demostración Para demostrar que /"es continua se debe probar que se 
cumplen las tres condieiones de la detinición I <S I Esto es. se debe 
probar que (I) M'i 1(II) lim/U) existe v (m) lim/(x) :s

*'l ’ •’!
Por hipótesis, / es diferenciable en .\\ Por tanto, existe Debido

a la fórmula <7) de la sección 2 1

/'(' I» = lim
.-.I, X - l|

f{ r¡) existe, en otro caso el límite anterior no tendría significado Por tanto, 
se cumple la condición (i) en .x | Ahora considere

lim \f(x) - /■|.X|)|
‘-•'I

lim
/(O - /(Mi

X - X,

Como

lim (V - X]) = 0 y
I l|

lim
1 -• l|

/(X) - /~IX|)
X - Xl

= n»i)

o»

se aplica el teorema del límite de un proilucio 11.5 7) al miembro derecho de 
(I) y .se obtiene

lim l/(v) - 7(xil| = lim (.1 - .X]) • lim
■ -1, • -i " 'i

= 0- /(X|)
= 11

Por el teorema 1.5.14. este límite equnale a 

]¡m /"(.x) = /(Al)
.-.«I

De esta ecuaciiín se concluye que se cumplen las condioones (ii) y (ii)> para 
la continuidad de/en Xj. Por tantx». el teorema se ba deniosir.ido. ■

Una función J puede no ser dilercnciable en un número c por alguna 

de las siguientes razones-
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MI • i--" JilcrtruuMi. lh i 
' miiiua en

1. { A funumt / es distontinu.1 en i I a yrjliea ele la li¡:ur.i es de esle 
tipo

2. La tiiiKimi / es eonlinua tn c. pero la gr.ilita de/tiene una recta tan 
gente \erlical en el punto donde \ = i i a hgura 4 muestra la gralica 
de una lunuun que tiene esta propiedad Lsta situación tamhicn ocurre 
en el eiemplo 1

3. 1 a tuncion f es continua en i pero la gráfica de/no tiene recta tangen 
le en el punto donde x = i I.a tigura 5 inueslra la gráfica de uní 
luncion que satisface esta condición Observe un cambio brusco 
(o pico) en la gráfica en \ = i Hn el ejemplo ilustrativo 4 se tiene otra 
función de este tipo

I ir.i H \ 3 Antes de mostrar un ejemplo mas de una luncion continua pero no 
diterenciahle en un numero, se presenta el concepto de cUnuiila laliral

I no es dirtrenoahk tn < 
I t-.ti'minujttii

IIGUU4

I m> c-i JifciiiitialilL' ui I 
/ es lunlinua in c

*Ti ilíUHÍdil 5*i-TtvTT f?l

(i) Si la función f cs\á detinida en V], entonces la derivada por la 
derctlia de / en jt¡. denotada por/".i vj). esta delinida por

/'.ítil

es- //Ui)

liin
W—cp-

lim1-. ii •

/( C| + Ac) - J( t|) 
A\

At) - J(\ii 
X - V,

SI existe el limite*

(ií) Si la luncion /Cstá definida en r¡, entonces la derivada por la 
izquíerdu de / en V] denotada por/' (V| I. esta definida por

Z'-ív,)

« /'-ÍV|)

lim

limr.

fU| + Al) - /(t|) 
Av

/I 'I - /(Vi)

l - V,

si existe el limite

A partir de esta definición > del teorema 1 Ci 3. se deduce que una fun 
Clon/definida en un interv.iln abierto que contiene a V| es dilerenciable en 
V| SI y solo SI /'tívi) y /'-(X|) existen y son iguales Por supuesto 
/'('l)./'JV|) '■«n Iguales

I k;lr\ 5 ► EJEMPLO 2 Sea (la luncion definida por

yti) = 1 I - V-

(a) Dibuje la gradea de/ (I)J Demuestre que fes continua en 1 
íc) Determine si/es diferenciable en 1

Solución Por la definición de valor absoluto, si v < -1 o r > 1. en 
tonces J(\) = -{1 - v"l. y si -1 £ t < I. entonces J{\) = 1 - t' 
Por tanto, f puede definir e como sigue.

/<U
r- - 1 SI V < -1 
1 - V“ SI -I < T £ 1 
V- - 1 SI 1 < r
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(u> Lj yr.íncj de/se iiiucslrj en la íliiurj 6
(I)) (’ara demostrar que f es continua en I se venfican las tres condiciones 

para la continuidad

lim /(r) = lim (x- - 1) 

= 0

(I) /■(!) = 0

lili hm f{x) = lint (I - I -)> -I > .1
= 0

0

(III) !im/(r) = /(I)I »l
Como se cumplen las condiciones (i)-(iii). enloiiccs/es continua en I

Así. Iim/(t)

ici J-J\) lim1 -1

= lint

= lim

/(t) - /(I) 
r - I

M - r-) - 0 
t - I

(I - r)(l + X)

/VU) = lim

= lirii
i-.i'

= liliin

/(t) - /(I)
X - I

(X- - I) - o
r - I

(X - iKt + 1)

lim t-(l + tilí-.i
_2

t - 

lim (t + 1)

Debido a que J'J)i tí /',(I». se conduje que/'I i) no existo, de modo 
que/ no es dilerenciable en 1 ^

(II) ‘I o • l 
'i 'I MI <■ I

ik;ik\7

La función del ejemplo 2 tampoco es diferenciahle en -I En el ejerci­
cio "Í2 se le pedirá que pruebe esto.

EJEMPLO ILUSTRATIVO 5 En el ejemplo ilustrativo 2 de
la sección I H, se ohltiv o el modelo malemalico

fíx)
J 2x SI 0 < V ^ 10
I I 4\ + 6 SI 10 < r

donde O x) dolares es el costo total de i libras de un producto La gráfica de 
C se preseni.i en la figura 7 !:n la sección 1 8 se mosiro que C es continua 
en 10 Ahora se determinara si C es diíerenciable en 10 Puesto que C está 
definida a tro/os. se calcularan las derivadas laterales en 10

r (10) lim C'dlO)

lim
I .111

liin : .11)

X 10

2 r - 20
X 10

2(x 10)
l - 10

lim
I .ID*

lim

lini
i-.n)‘

C(t) - C(10)
t - 10

(I 4.T -t- 6) - 20
r - 10

I )(t - 10) 
r - 10

^ lim 2 
> >10

lim 1 4
i->Uf

1 4

Como C" (10) 7^ C'*( 10). entonces Cno es dilerenciable en 10
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► EJEMPLO 3 Sea

=
SI o < t < 
\i h ^ \

ía) Determine un vaior de h tal que/sea eonlinua en h (b) Dibuje la gra 
tlea de /"eon el valor de h determinado en el inciso {a) (c) < Es dilc- 
rcneiable/en el valor de h determinado en el muso (íi) '

Solución
(a) La iuneion/sera continua en/; SI liin f(x) = fihiy liin /t\) = flh) 

lim f(z) - Itm — lim f(\) = lim (I - ' v)

f{h) - I - ^por tanto,/sera continua en/í SI

FIGtU\8

4 = 4/í - b- 
h- - 4/; + 4 = 0 

(/> - 2)- = 0 
b = 2

Así

f(x)
- SI 0 < r < 2
r

1 - ' t SI 2 £ t•j

> /cb continua en 2
(b) La gradea de/se presenta en la dgura 8
(O Para determinar si/es diferenciable en 2 se calcularan/'_(2) y/+(2)

/' (2) lim
^-.2-

f(x) - f{2)
X - 2

fJ2) lim flx) - f(2)
X - 2

= bm
«-í2

1 _ I
X___ 2
X - 2

= lim
3. -»2

2 - r 

2x{x - 2)

= lim zi
2x

= lim 2 - \ 
2- 4U - 21

- í

Como/_(2) = f'i.í2), se concluye que f'(2) existe, j en consecuen 
cia.y es diferenciable en 2 ^

^ EJEMPLO 4 En ia plancaeion de una cafetería, se estimo que 

la ganancia diana es de $16 por lugar si se tienen de 40 a 80 lugares de capa
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ud.Kl Sin emhjriiu. '^i se ciicrii.i con más de 80 lujzüres. íu ¿¡an-incia diana 
por cada lugar disminuirá en SO 08 \eees el niírnero de lugares ijue exceden 
a SO. (a) linuienlre un modelo matemático c|ue exprese la ganancia diana 
como una 1 unción del número de lugares de la cafetería (li) Demuestre que la 
lunciiin del inciso (a) es continua en su dominio, (c) Determine si la lunciiin 
del inciso í:i) es dilerenciahle en SO

Solución
(a) Sea x el número de lugares para la capacidad de la caleteria y P(k) 

dólares la ganancia diana P(\) se obtiene al multiplicar r por el nú­
mero de dólares de la ganancia por cada lugar Cuando 40 < x < SO. 
la ganancia por lugar es Sló. de modo cpie P{\) - Ifn Cuando 
i > 80. el número de dólares de la ganancia por cada lugar es 16 - 
OOSU - SO), de donde se obtiene P(x) = v|16 - 00S(v“- S0)|. esto 

es./'D) = 22.401 - 0 08 X-. Por tanto.

I, ^ I Kh si 40 á V < so

I 22 40i - OOSx- si SO < i £ 280

Rl límite superior de 2S0 para r se obtiene al observar que 22 4Ü\ -
()08r- = Ocuando.v = 280; 22-lOv - O.OSv- < Ocuandov > 280

Aunque, por derimción. r es un número entero no negativo, para 
tener conlinuidad se considerará que .v toma lodos los valores reales 
del intervalo |40, 2S0|.

(b) Como V) es un polinomio en [40. 80) y (80. 280|. entonces P es con­
tinua en esos intervalos. Para determinar la continuidad en 80 se 
calcularán los límites laterales en ese valor'

lim Plx) = lím I6t lim P(\) = liin (22 40v - 008v-)
, .'II l-.MI I .'ll‘ '

= 1280 = 1280

ComoP(SO) = l2S0y lim Píi) = 1280. P es continua en 80. En con-

secuencia. P es continua en su dominio (40. 280)
(c) Para determinar si P es diferencialtle en 80. se calcularán las derivadas 

laterales en 80.

P'JHi)) = lim1 iHp
Plx) - /'(80|

i - 80
P'.tSOl ^ lim

Plx) - /’(80)
V - 80

^ líni
16 V 1280 = hm (22-10i - 0.08V-) - 1280

1 80 V - 80

= hm
I6(.» - 801 ^ '"'M-

-0()8( V- - 280.V + 16000)
X - 80 i - 80

= lim
t • D

= lim^
-0 08( V - 80)1 V - 200)

V - 80

= 16 := lim1 •bí»-' 1'0.08(1 - 2001

= 0.60

Como/’’(80) ^ P' ;80). entonces/’no es dilereticiable en 80.

En la sección .1.2. se considerará oir.i ve/ la situación del ejemplo 4 > se 
determinará l.i capacidad necesaria para obtener la máxima ganancia diana.
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EJERCICIOS 2.2
Ln lo\ iji nu ios / n 2H. Iuh;íi ln \i¡;¡iuiilt lu> i/i/'ii/c Ui i¡riil¡ia 
ili hi lim ii'ií ih) Jt h riium m/« s«uniinuti eti sj. <i) uilniU 
I (S| 1 \ / .(i|) M « mfí/i iJ) ihli nmm n / i s ihfi mu nihh 
,i¡ i|

I. m> » -*- 2 M t tT -4 
- 0 SI -4 < X

\, = -4

2. nu 1-2» M I < 2 
1» - 7 SI 2 S t

3. M s> = ) i - 11 *1 = ^

4 nu=l+|t + 2| »,=-2

5. A ti M l < (I 
SI o £ l t, = {)

6. /(ti I t SI t í 0
I »- SI 0 < t

t| = (i

hn (jtriiiiin 2¡ ti 26 Iniliui titiria íli lafiiiuiiiii (iiiitimiitj 
ciño itiniiuun is rl ((Hijiiiilo (ti' liiihn lo\ niiim rm rmU s \ ui\j 

u imiistni ui la fn;iim iiiljiiiilii Siipiuu'u c/in uidu 
¡ion ion lU lo iirojlm i/i/c poriu ur un u í;hi</iío iIc la ruines 
un ui;ininlo lU ruin Ln lOila ijcnnio liui;(i lo Mniiuntc 
inl Jifinn f ionio una fuiu ion a trozos Du utiiiri- llif /' <-li 
(L)J.(-ll ír/í/-(0) íc|/.<0) lfir.iU\<KirjU (hl.Er 
<¡ui nuiiu ro\/no fi líifirtiu lahli ’

21.

7. /(II
I t- SI t C 0
-t- SI íl < t

r, = 0 22.

8. At)

9. fix)

10. /(t|

11. /It)

12. MU

1.3. /tu

14. AU 

Is. Mtl

I .1--
I (I - u’

i-
I -I - 2«

I 2c= - 3
8t II

I t* - y
]í>t IK

M - 2| -

j 5 6»
1-4 -

SI I < 2
SI 2 c t

SI r < I 
SI 1 £ t

SI t < -1 
SI -1 S t

SI r £ 2 
SI 2 ♦' i

si t 3 
SI 3 £ i

V, = -1

SI » r 3 
SI 3 < »

t, = 2

t, = I

V, = -I 

r. = 2 

t, = 3

V, = 3

16. /(U J-t-'’ Sif'l)
l t-'» SI (X T 'I “

17. /U)

18. /(«)

si V < 0 
SI o s \

SI t S 1 

SI 1 < t

t, ^ »

i, - I

ly. /u»
J 3»- SI I £ 2 

\x' SI 2 < T A 2

20. Au J T“ + 1 Si I < -I
I 1 »• SI -I £

i

24.

I
I
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26.

31. I'.ir.i 1,1 (Ic [K'lrtilcit ticl ejercicio 53 de l.i sccuon 1 K. 
delemiiiie m Ij iunuon res dilerenci.ible en 2

32. Deinueclre que l.i liinuóii del ejemplo 2 es conlinua en 
-i pero no es difereiiuahleen c-e número

33. .Se.i

t- - 7 SI 0 2 t -r h

.1

(ui IX'iemiine un s.ilor de h i.il que¡ se.iconlimi.i en h <li) 
Dibuje la {^rúik.t de f con el lalor de h delerimiudo 
en el inciso uj. (el , l'.s dilerenciahle / en el \.ilor de h 
deiermiiudoen el muso ij)'

34. .Se.i fix) = sjtiUti (iil Dcinuesire que f (il¡ > /’.lOi 
noecisien (b) Demuestre que liin /ui = 0>

lim_/'(rí = ü (c) Dibuje la jtr.ific.i dey

35. Dclermine los s.ilores de n ) h ules que l.i rimcion f sea 
direrenujhie en I ^ después dibuje l.t •zráric.i de/ si

f<xi »- SI T < 1
iix + h SI I í: r

36. Delerinme los dores de a y h l.ilcs que l.i Iunuon f sea 
dilerenu.ible en 2 \ después dibuje la jtrafie.i de/M

£»i lii, t'jcn h iin 27 u SO. thhujf la vrü/iuí de o/i;«híi /««i iiin 
I i'r.tinuij I. I iiMi diiniiiiiii i\ el t inijanlo de l«do\ lo\ minierox 
euih i. la lililí uiinfir^ii lili mridii iiiiiex i«</icí///(o

77. í) uinir.idimimio de f es i-co. + oo); f es dilerenci.ible 
en lodo numero eueptn en 0 y .3./(-3) = -!./(()) = 0; 
/(.3l = I. I MI) = 1./'.(()} = n.

I,„,ílü_íiíi _
• I .3

TU. E;l ctmiradommio de f es |(). i-ooi, / es diíereiieulile en 
lodo numero eueplo en -2. 0 y 2. A-2» = 0. /(Oi - 3. 
/'7|t (),; 1-2) -!:/ j-2) = 1. /• (2) -I.

• . s, I I M u - Md)I lini a---------- U— fco;
• \

l.in li-L' . _oo.
\

1.1 uiiiiradoiiiimo de / es (-oo. -i-oo). / es diterencia- 
l’le en lodo numero eucpio en ••2. 0 y 2; f(-2) = .1. 
'' '' /I'li - (J. ni) (1, ((2) - -3, /■ 1 2l = I. 

’ .'-2| - -I, ;• ,2i -!. /'.I2i 1,

• M coii[r.idoininio de/es (-oo, + oo»./ es diterenci.ib 
''"lo nuiiiem exceplo en 0. y 4. 2> - 0./(0| ‘

0;/.(()»-2:/'i4l - ].

lili, • /HU 
i

co. Inn liU-fli -

/■<») = <M + /»
Ir' - I

SI I < 2 
'I 2 r" I

lili li‘\ ejeríiiiox .17 u -10. iihiein:ii iiiui fiiiuiini tnmii nu'delo 
iiKileiiultno de la mí«<hú«i i'iiriii alar. Atiiuiiie pur dermii ir'ni 
la uiriahle iiuIipeiiduiUe niireaiile un ntínieiu mlern no iie- 
s'rtriio, uimidere í/i/c dii ha vanahle ri¡>rt\cnui u/i iiilnuro real 
no iiei;alno a fin de tener li‘\ rt iiiienmu nim ni i euirim de ion- 
liniiidad

37. Una agencia de excursiones encolares puede transportar a 
2.5(1 estudi.iiiies con un costo de SI5 si no mas de ISO 
csiudi.inies asisten a la excursión, stii embarito. el costo por 
.iluiimo se reducirá en 51105 por cada alumno que exceda 
a los 150 hast.i i|ue el costo sea de 510 por estudiante (al 
OIUencM un modelo m.ilem.ilico que exprese el inereso en 
bniio como una Iunuon del numero de csliuii.intes que 
.isisiir.íii a la excursión llil Demuestre (|ue la tuncion del 
inciso <a> es coiilinii.i en su dominio (c) Determine si la 
tunuon del inciso (a) esdilerenci.ible en 1511.

.3H. Realice el ejercicio .37 considerando ahoni que la reduc­
ción por cada estudiante t[ue exceda a 15(1 es 501)7

3*J. I os nar.injos ijiie crecen en <'alilmm.i producen ólKl lu- 
r.itij.is por año si no se pl.mian mas de 20 .libóles por aere 
l’or c.ida naran|o .idicumal plant.ulo por acre el lendi- 
míenlo por árbol decrece en 15 iuraiij.is tu) nncuentre un 
mmlelo mulem.ittco que expíese el lumieio de lunmias 
producidas por año como una tuncniii ücl luimcro de na 
raiijos plaiiudosporacrc. (b) Demuestre que la luiicioii d. l 
inciso (a) es coiitimia en mi doiiiimo le) Determine si l.i 
Itincion ticl inciso (a) es ditcicikiable en 20
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40. l ti t.Iiih pn%>iiIo kobij uii.i uiolj de memhrcM.i anu.il 
de SHK» por iiuenihío. meno'. SO ^0 por e.ida niiembro 
que exteda a (tOO > mas si) si) por t.ida iiiiemhro i|iie l.ille 
para eomplkl.ir 000 la) I iu.ueiilre im niodLio maleinatiio 
que CNptkse el mereso por las atólas anuales loiiui una 
liin.ion del numero de suk inu.nihros (l>) Demuesire que 
la lunkioii del muso (ales eoniinua en su dominio (O IX 
leniiine si 11 luiiuoii dkl maso lai es diÍLTenciahle tn 6(M)

45. I).ida/m = (T - «)||i|| donde 1/es un numero cntern 
imiesire que/ (o) + I = / .(«)

díi. Se.i/ la lunaon ildimd.i por

/«O
SI . « «

I - ii
fi'ill) SI X = ti

41. Fn lI I Miipto iluslraliMi 4 se iiiosito i)ue l.i tuiiLion salor 
ah'i'luio lio es dilereneiahle en (I Demuestre que

/> I I r I) = M i 71 0

Siíetr«mi(i eoiisiJere |i| = \\*

42. Dada 0 u - U ' II delenmiie /111) si T| no es un nuiukio 
cniero Demuestre que/t T| l no existe si rj es un nume­
ro entero Si i, es un numero entero., que se puede dear 
Ueerca de/' < t| 1 > de / .(r,)’

43. Sea flxi = U l)li»it Traee la jrrafita de/para x en 
|ll 2] Cakule. SI existen (Jl/ (11. (líl/'.( I). (c)/l I)

44. Sea/u» = (^ - t)|It|) Trate la traFiea de/para t en 
|4 <)| í akule, si existen, (a)/’ 15). (b)/'.(5). le)J (5)

Demuestre que si q (ol existe, entontes/es eontinua en 11

47. (si) Sean /(r) = |t| y i;(r) = -|i| nneucntre unr 
lomiula para (/ + ),’llt) y demuestre que /-)-),’ es di* 
fereneiahle en (I ütiliee las funeiones / > i> tomo ejem­
plos para explie.ir por que es posible que la suma de dn. 
Iiineiones es dilerenei.ible en un numero aunque ninguna 
sea dilereneiahle en el numero en tuesiion (bl Sean 
f(\) = r'* > G‘(») = -X ‘ r.neuentre una fonnula para 
If + G)ít) j.Hs diferenciable F + G en 0' < Puedem 
etnple.irse las funeiones I y G en lugar de / > j* tomi' 
ejemplos para la explieaeion dei inciso íai’ Explique su 
respuesta

2.3 DERIVADA NUMÉRICA
La Jcrivailíi nuiiu'rKii es inipurtjnie dchiüo a que su gradea puede trabarte 
en una gráfieadora Ademas, |j derivada numérica puede emplearse para 
obtener una aproximauón de la derivada de una lunuón en un numero 
particular siempre que la denvada exisia

Para desarrollar el coneepio de derivada numérica, recuerde que/'(«). 
la derivada de la función f evaluada en el número a. está dcdmda comt) el 
límite del cociente de difcreiieias estándar

fiíi) 1„„ + A\) - fia)
v«-'j A» (11

SI este límtte existe Hn el ejercicio 55 de la sección 2 I se le pidió que 
demostrara que si J '(o) existe, enloncos

J Ui) = liin
Vi .11

fia + Al) - fia - Al) 
2At

(21

riGUK\ i

Si no reali/ó este ejercicio cuando csiudio I.1 sección 2 1. regrese y hagalo 
alior.i Hi eoLicnte

fU¡ * - Jiii ~ Sx)
:av

que aparece en (2) se denomina cociente de diferencias simétricas de U 
luneión / en el número a (£1 icrnimo \¡iiwíiua\ es apropiado porque el cu- 
cíenle es la pendiente de la recta secante que pasa por tos punio' 
(« - ” A\)) V (íí + A\. fio + Al». Consulte la figura l Al valor
elegido de A.x se le llama tolerancia.
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► BJEfAPlO 1 s.-,.

J(X) = Vi

(a) Ulilicc el rcsulMdo del ejemplo 5 de la seeuoii 2 I para takular el va­
lor exatto de / (4) Obtenga uiu aproximaeion de /'(4j empleando el 
tctuenle de dilercneias simelritas tic f en A ton cada una de las tole 
rancias siguientes (b)0 l.(c)00l > (d)OOOI

Solución
(a) Dcl ejemplo 5 de la section 2 I

Asf./'(4) = 0 25

(í))-(d) De (1). el cotienle de diferencias simétricas de / en 4 es

^/4 + A V - ■</4 - A r
2Ar

Ahora se c\aluará el cociente con la tolerancia A v indieada 

(I)) Ar = 0 1

~ = 0 2500195166

(c) Ar = 0 01

^ ~ = 0 2500001951

(d) Ar = 0 001

~ = 0 2500000019 4

Observe en el ejemplo I que el cociente de ditereneias simelntas de f en 
4 projHiruona una buena aproximación de J <4), > la menor tolerancia da la 
mejor aproximación Si para una tolerancia especifica se compara la aproxima­
ción de J'(a} delemiinada mediante el cociente de dilereneias siméintas con la 
obtenida por medio del cix.iente de dilerencias estándar (1). se obsenara que 
el cociente de dilcrencias simetncas proporciona una mejor aproximación hn 
los c|crcicios I a 4 se le pedirá que realice algunas de estas companieiones 

Se utilizará el cociente de dilereiicias simétricas para calcular la ilcri- 
wn/(i iiiiiiifrua de una luncion en un numero exactamente como lo h.icen 
algunas gralltadoras ton la elección de 11 tolerancia del usuario Por tanto 
se presenta la siguiente definicioii lorinal

2.3.1 Definición de derivada numérica
I a derívadu numérica de la luncion f en el numero a. denotada por 
NDI Rt/tU fi). esta definida por

NDER(

donde la elección de A\ depende de la aproximación deseada de 
NDI-Ríyiv).fija7’íu»
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Pn este texto, se takulare NDERíf(x), a) ton una toleranLia de 0 001 
esto es,

NDFR, r«, «, =

Observe en el enunuado del ejerciLio 55 de la seceión 2 1 que 
NDER(_/(v). ü) proporciona una aproximauon para fio) solo si/'(a) exis 
te, es deur.

NDPR(/(r), íi) */'(«) SI/'(«) existe (5)

Consulte el manual del usuario acerca de tomo obtener la derivada numen 
ca en su graficadora particular Si su calculadora no tiene esta función, usted 
puede emplear un programa o el cociente de diferencias simetncas de (4)

► EJEMPLO 2 Sea

ía) Aproxime/í5) con cinco cifras decimales calculando NDER(/(t). 5) 
en la gralicadora (b) Confirme analíticamente la respuesta del muso
(a) calculando/ (5) a partir del resultado dcl ejemplo 3 de la sección 2 1

Solución
(a) En la graficadora se tiene

NDER(-^.sj = -0 l2fXX)00(MH

Por tanto, con unco ciiras decimales,/(5j = -0 12000
(b) Del ejemplo 3 de la sección 2 I.

Así,/(5) = -0 12. lo cual es acorde con la respuesta del muso (a) ^

La notación NDER(/íc). r) denota la derivada numérica de la función 
/en r. esto es.

NDERtyUj. V) = ^

Tanto para lab luneiones lineales como para las cuadráticas 
NDERf/(V), ti es exactamente f (t| Se le pidara que demuestre esto en los 
ejecicios 21 y 22

En la graficadora puede trazarse la gráfica de NDER(/Í\). i) Com­
prenderá la importancia de esta característica de la graficadora contornie 
avance en el texto

^ EJEMPLO 3 La función del ejemplo 3 de la sección 2 I esta 

definida por
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11(>( K \ 2

l liikc l.i cíe N'DI K( /( u. í| p.irj apojar d \.i|iir (Jl / ( u calui-
lacln en Li veci.inn 2 I

Solución 1 .1 Jijiiira 2 niueslra el rc.ultadi) de Ir.i/.ir Ia>. »ralicjs de 

M)1 k( “• ') > J*-' l'i Itineicm/’ derinida por

/ (U =-----p
»-

en el rcLlanuuIo de mspee«.inn de |-6. 6) por |-7. || hl hCk,lio de ipie las 
dos yralkas apareeen idenliLas apo\.i el \alor de^ (\) 4

De (“i) NDI,K(7(i), = J Ui) si /(cii exisle L.i eoiKliuon de i¡ue
I Un dehe existir a IIn de que NDLRt yn > a) proporc.ione una apro\iinac.ic'm 
de /1</> es indispensable c.omo se mostrara en el siguiente e|cmplo

► EJEMPLO 4
I (a) existe entontes

IJ ejertitio de la seieion 2 I esiahlete que si

= lini
V 1 .0

/(«/ Al) - /<fl - A»I

iTi

Demuestre, empleando la luiieion salor absoluto ijue es posible que 
exista el limite de la eeuaeion anterior aunque f loi no exista

Solución Con/Ir) = |x¡ ><i = o. se tiene

lim
/“i ii + .,\ U - H ri - A i) 

2Ai
lim.11

lim

¡O + Ai( - |0 - Ai|
Tü

lAi|-l- Ar]
Si •« 1\\

lim O\i .11

Asi. el limite existe > es i^'ual a O Sm embareo. se sabe, del ejemplo ilus- 
traliui 4 de la setenui 2 2. tpie la dernada de la tuiKion \alor absoluto no 
existe en cero ^

Á

IKa'R\A

Si se ealuila M)(-K(|\|.ü» en la prafieadora. se obiendr.i O lisie 

resull.ido es consistente con lo apiendidoeti el ejemplo 4. pero, por supuesto, 
esto no proporciona l.i deiixada de la Itinuon x.ilor absoluto en O 1.a tlgura 1 
l.mibicn apoja el resultado del ejemplo 1 bsta llinira es el caso especial de 
lafipura 1 donde/(d = |'| U eoeienle de dilereiicias simetrieas es la 
pendiente de la recta secante que pasa por los puntos t-Ai. |-Ai|l > 
(Al. i A11). la cual es O para uialquier elección de i x

I a discusión del parralo anterior debe toiueiicerlo de ser muy cuida­
doso cu.iiuio emplee el \alor de la derivada mimekica de l.i tuneion f en a 
para aproximar el valor de/uv) Los dos valores son aproximadameiile líma­
les únicamente si fia) existe Vea los ejercicios 27 a 2‘> para otros e)emplos 
(|ue muestran este lieclio
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EJERCICIOS 2.3
hi li'\ i'jiii u it>\ Iíi4 liux-ii U> \i\iunnU un tii hi (i¡hii!iuli>rti. 
t>hhm;ii hn uilotfs tUt u'iuíiíi </i Jiftrtiuias swutmtn

U2 • \u - /i2 Ail , ,
------------- ------------------  V«Uihori lina lahia para la Jiiiu lan f

ihiila i iiaiiilo A t (\ ii;ual a (I lU. I)0*>. OUK. (101 ) -0 10. 
(HH>.-1I0S. -001 , \t¡ut \ atar parí xc qiu seapro\wm
</4<></■/((< «/t Jifxriiuia\ Mnulrita\ iimfiimw Sk luiiih' II (>' 
ll'i hn la urajliaJorxi, NDLR(y(t). 2l v iiwiparc
X \h iiumx raum la rt xpiix\la ihl incito la}\ il \alor i lailoilc 
y (2) xahaliiilo XII xl imito ihl iltl ijcnnio inJuaJo üc la 
iítiion 2 I Ul Coiiipari lot \alorx\ xalailadot tn xl iiixiso 
uü ílx itli ijxnitio xon lot uilont xorritpomliiiiUt lahio 
laJot x’ii xl imito lal ihl cjcri tiio iiuliiaJo ilx la un ion 2 I. 
ilomlc \c ulili:o «•/ lOiftnrc ilc Jifxrcm im ctianilar , Qm la 
hhiili xalorct proporx lona la mejor aproxiiihu ion a/‘(2J'

1. fi\} = - 7i.cjcrciuo 17

2. /ui : t ’ L’ji;r«.iLUi 18

3. A\) = %() - t . ejcrucio 10

4. /(Ti - ------!------. CjLTtUIK 20
4 - t

V). /(t) = setUtOS t). T| s: 2

20. /(») = (.misen r). V[ = 1

21. DemucMrc i|uc :>i / es una fununn line.il. entonce 
NDERI/(»). j) es cxaUamcnluy (t)

22. Demuestre que si / es una funuón cuadrática, enliinvc 
NDERíf(\). T)es exactamentefix)

23. Sea J{\\ = \’ + 2 (u) Trace las ^fraileas de { \ de 
NDRRí/(t). t) en el mismo reclanyulo de inspeccnm 
(Para que s.iloms de \ se tiene que (h) NDERí jix} t) > (' 
j (c) NDERi flx). T| < 0’ ,Para que calores de c paras 
que (d) fix) ercce conforme t crece. > (el fix) dccrc 
ce conforme c crece ' (f) Compare las respuestas de l(>< 
incisos (bj y (d)) de los incisos (c) y (c|

24. Realice el cjerciciu 27 considerando ahora qu;

25. llaga el ejercicio 23 considerando ahora que 
fix) = V4 -

hn lot xjcrxixiot 5 a .V, iiiilm- la i•ra^l^a ilc la ilcmiula iiio 
Mitmw «/I « iraratia tn la i;raluailora para apoxur xl xiilor
dx la dxri\lilla ihlirminada 
\í 11 ion 2 I

5. (a) Ejercicio 73 (hl

f). lu) Ejercicio 74 Ihl

7. la) l:|ereicio 7y |t)|

8. la) Lje'rcicio40 il»

<»i xl xjerxiuo induado dx' la

EjcTcicio 75 (c) Ejercicio 77

Ejercicio 76 (c) Ejercicio 38

f.jercicio41 (c) Ejtrcicio43

Ljercicio42 (el Ejercicio 44

Ln lot xji Hit IOS 'f a 20 liai;a lo wi,‘m</irt la) iiiilii c la ilxrna 
da niinixriia ih la faiu ion fui xl niiim ro «j. t alt idadiula i n la 
^•ra^ll adora, para di h rininar la pi ndii nli di la rx i la laniu ih 
Ix a la prorna dx f in il ¡ninlo doiidi \ = ij. ihl tminii/r« 
tina XI lint lón dt la mta lamunli a la urnrii a di Jmilpiinio 
(T| (i i iroti la i:rafha de / \ la ruta laiiKxiiie iii xl
initmo rx t lam;iilo di intpi 11 ton

•). /(«) = (i ll- ii = 2

II). IIM = 2 2« - = 1

11. /iTi ^ \' 2» ( i, = 7

12. /U) - (2 u’ *- 5 r, = 4

l.E /(I) = \ t‘ lo i| = -5

14. /u) - %2i - r- . T| = 7

15. Ati = ----- -.xt - I
«- + 4

16. /(U -2
17. Ilx) - i sen I. r, - I
18. /Ul i* eos » \, = 2

26. Efectúe el ejercicio 27 considerando ahora qu; 
fix) = -JT- - A

27. Sea flx) = En el ejemplo 1 de la sección 22.se 
inoslro que f (D) no existe (a) Calcule NDER(/(t) 11 
mediante la ecuación (4i |b) Apo)c la respuesta dd 
inciso (a) determinando NDLR{ /I i). (lien la graficadori
(c) Explique por que existe NDERiytx). D) para csu 
función aunque no existe /’iO) (d) Trace la gráfica d; 
NDERi¡ix). T) ,0ue es lo que ohserxa cuando i = 0’ 
(e) ,Es consisienie la respuesta del inciso (di con L’ 
aprendido en el ejemplo I de la sección 2 2' Explique 
su respuesta

28. Sea yu) = (:i| Utilice la tormula (7) de la sccciei
2 1 para mostrar que /'(O) no existe (I») CalcuU 
.NDLR( fix), 0) mediante la ecuación (4) (c) Apose la re* 
pucsia del inciso (b) delemimando NDER(/(11. Ol en b 
gralicadora Id) Explique por que existe NDERi f(») 
para esta tiincion aunque no existe / lOl (e) Trace la era 
fiel de S'DI klyii), u ,Que es lo i)ue obserx.i cuanA' 
T = 0' (f), Es consistente la respuesta dcl inciso (el co­
la respuesta del muso lai * Explique su respuesta

2‘J. Sipa las instrucciones del ejercicio 28 para/(») =

.70. Compare los c.Hculos de f (0) de los ejercicios 27 > 2^) 
Después comp.iie el \aIor de NDERifix). 0) cakuladiicf 
el muso lal del ejeruuo 27 con el valor de íx’DLRt /tv).*" 
calculado en el muso (bi del ejercicio 20 Explique purqu* 
se obtiene una cundusuin scmej.inte pañi / iH) en las di*' 
funciones pero resultados complelanicnle diterentcs para 
NDFRi ytx). 0)
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2.4 TEOREMAS SOBRE DIFERENCIACION DE FUNCIONES 
ALGEBRAICAS Y DERIVADAS DE ORDEN SUPERIOR

Debido .1 que el proceso del edículo de la dernada de una función a partir 
de la definición 2 1 3 es muy largo, se esiudi:ir.ín ahora algunos teoremas 
que peniiitir.in detemiinar las derivadas con ma>or tacilidad. Estos teore­
mas se demostrarán a partir de la definición 2 I 3 En el enunciado de los 
teoremas se emplea la notación de Lagrange para la derivada, y la conclu­
sión se expresa con la notación D,(/<v» y en palabras.

2.4.1 Teorema Regla de difercmciácíon ’íde 'únd 
constante

.Si ( es una constante y ,si/(n = r. entonces 

/•(ij = 0

Demostración

A'fv) = lím í( K + Ax> - í(\]
A t

hmii—(I Al

lim 0ii—
= 0 

D,(<)= 0

4

5

k

t

1

s o ■<i

/ni s

I ua K\ 1

¿1/ i/rrixíiíhi lU' uiui amxliiitU' cero.

í EJEMPLO ILUSTRATIVO 1 Si /(II = entonces por el 

teorema 2 4 I

l'iU = 0

Este resultado es apoyado poi l.i gráfica de /(o = 3 de la figura I. Como 
la gráfica es una recta p.iralela al eje i entonces la pendiente de la gráfica 
seiá 0 en ciiali|Uier parte ^

2.4.2 Teorema* Regla de diferenciación de po^ncías 
(paro potenclgs con éxponeptes-enteros.áo.sltivos)

Si/I es un tulmero entcio postiivo \ si/(tt - i''.entonces 

/’li) = /m" '

Demostración

no = lin.„

= Iim

/(\ + Ail - M 
A i

(i -f Ai>” - y"
Al
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= hm•<!

Iimií -.ri

Al .iplu..ircl tcorem.1 del binomiojír + Axi" se tiene

t'' + Mi" 'Ax + "(At)- + + nxíAx)”'^ + (Aí)"j - j"

__

»u" 'At+ i"-2(dr)-+ +/lKAi)"''+ ÍAU"_
Si se divide el numeradiir j el deiiominudnr entre Ai se nhtiene

/(I) = -I- t"~-Ai+ + íLitAD" - + (At|"-'J

Cjdj termino cxeeplo el primero tienen un taelor A\ por tanto, todos lov 
términos exeepto el primero tienden a eero eonforme A r se aproxima a 0 A>-i

/■(I) = /ii""' •

= mi" '

U EJEMPLO ILUSrRATIVO 2 s./^io = .“.cnume^
/(II = 8l’ <

1/ EJEMPLO ILUSTRATIVOS Seay la tuneion identidad, esto 
es,/(ij = I Por el teorema 2 4 2

/■(I) = I t”

Observe que si i = ü. i^' se transtorma en 0” lo eual no está definido pero 
SI I ^ 0 i” = l.demodoque

/(i) = I SI I pt 0

Para ealtular/(0) para la función identidad, se aplica la formula (7) de 
la sección 2 1

/'(O) hmI >11
/•(I) - f(íh 

I - 0
!im■ -iii

I - ü
\

hm I
>-fii

Por tanto, para toda v. Ü^^ i) = 1

2.4.3_Teorema Regla de diferenciación para el 
 producto de uno función por una constante
Si/es una función, r es una constante y i* es la función definida por 

i;(0 = L f{\) 

y si_/ existe, entonces 

g'd) = L f'(\i
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Demostración

i,-(U limii .11

liiiiii .11

lim (
Vi .0

r + .^v) - 1.Í c)
A r

ífíx + Axi- (f[\)
A\

Jtx + At) - f( r)
Al

f(x+Ax} - /(i)- I |jin
\s—u A\

= iflXl

D,[( 7(r)| = c DJíx)

Im ikriMula de la iinillipluiuiíin de iiiui fiiiHinn por ¡iiiii íoiiuanie t’i 
lipial a la di ruada di la fiiiii ion miilnplitadu por la umuaiili

Al Lümbmar los teortiius 2 4 2 > 2 4 "í, se obtiene el resultado siguiente 
Si f(\) = (v". donde ii es un numero entero positivo y t es un.i constante, 
entonces

/(i) = tnx"-'

= inx'‘ '

L EJEMPLO ILUSTRATIVO 4 Si/(o = 5 J. entonces 

/m = 5 Id'
= 35 <

%4A Teoremo Regla de diferenciación para lá.s.umct
Si son lunciones y si li es la lurición definida por 

/í(\) - /"(i) + gil) 

y siM'i> g'(i) e’it'*l'-'n. entonces 

lt{\) - f‘U) + g'(ii

Demostración

lii\) lim
V . .11

lini
V > .11

lim
Vi OI

i_¿
Al

[ / (i + Al) ♦ g( I i- ii)] - ¡/( r) + gt 11|

Al

f(\ ■> Al) - /(i) ^ g( i + Al) - g( i) 
Al Al

/{i 1 Al) - f( I) , g( i + Al) - g( i)
lllll —---------;-------------  + liin ------------ ;-------------\i .n Av A^

f'i\) + g’dl

/>,¡y(i) )- g(i)| =
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La (IcnvaJa <h' la suma di' dos ftau ioiifs es i^iial a la suma ile sus din- 
t odas si t'Wiíf derivadas exislt ii

El resuluido del leorem;i imienor puede extenderse a cualquier nilineríi 
Huno de tuneiones mediante inducción maleinálica. Este hecho se esiahleic 
en el siguiente teorema.

2.4.5 Teorema
l.a dernada de la suma de un número llnilo de funciones es igual a la 
suma de sus derivadas si estas derivadas existen.

De los teoremas anteriores, se tiene que la dernada de cualquier tuneiún 
pnlinominal puede calcularse lácilmente

^ EJEMPL0 1 Dctennine/ '(v) SI 

/(T) = 7.x’ - Ix' + + 5

Solución

/'(X) = - Ix’ + Hr + 5)
= D,(7.x-‘) + D,(-2.x-'') + /J.(Sx) + /J,(5)
= 28x' - 6v- + 8 <

La derixuda del producto de dos funciones no es lo (|ue usted espera; esta 
es, no es el producto de las derivadas, como se mostrará en el ejemplo ilus­
trativo siguteiile.

l> EJEMPLO ILUSTRATIVO 5 Sea

/í(xj = (Ix-^ - 4.r-)(3x‘' + X-)

Se puede calcular la dernada /i'(x) con los teoremas anteriores si se desa­
rrolla el miembro derecho y se diferencia el polinomio resultante como .sigue

//(X) = 6.r” - llx'^ + 2f‘’ - 4x-^
//'(X) = 48x’ - 84x'’ -I- lUx* - Ibi'

.'\liora considere

J{\) -= 2x' - 4x“ demodotjue f\\) = 6x- - Sx
[’(.i) = -3x^ I- X" liemodoque g'li) = I5x‘* + 2x

Observe t|iie/itx) /(x) • j-(x) pero//'{i) ^ f'is.) ■ íí\\)

2.4.6 Teoremo Regla de diferencioción para el producto

Si f y fi son fuiicione.s y li es la liincum definida por 

/nx) ^ /'(X) • j-ix) 

y ‘‘i./'(') y .v’l.x) existen, entonces 

h\x) =/(i)í?’t.x) V .t,-(x)./'(i)
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Demostración

. I A\

_ ||„J /(< + V) + ÁK] - H\.\ !,■( U
\i .(• A \

\ Lunlinuai.Hin se re.ili/ar.i un poto de ni.inipulatinn hábil que uindu- 
uraa los hiniicsque dellnen/’(i)> jifír) Al restar y sumar/íx + Ao-i;(\) 
en el numerador se obtiene

/mi = lim /(\ ■*• Ati el r + - /(r + Ax) x) + /(« + Ati el x) - /(xi e( xi
A X

+ ílL±A21j_iííll + +

limÍi —I /(X + Ail

Al

r + A t) - el r)

A X

Ax
, r . /( r + Ax)
lim el») ------------i>-"L Ax

- fiU

I , , el' + Ax) - el r) , , /^( X + AxI - /(X)lim /Ir + Ac) lim ------------ --------------  + lim elx) lim ---------------------------\i—<i M—ii At i« -'I Ax

Como/es dilerenuable en x. por el teorema 2 2 1. / es continua en x. 
portante), lun /(x + Ax) = Jlx) También lim e(U = i/IM.

\i . X t-.u

lunAI -♦*)
el X + A t) - el I) 

A r íl’l'» > lim
\ I -»ll

/~(X + Ax) - ri X) 
Ar

= J (r)

por lo que se obtiene

/i'(\) = /Ixie’lx) + el'l/'lT) o

0^[/lx)elx)l =/lx) D,e(x) + t;|x) D,lí\)

¡M ihnMuhi <lt I prodtn ¡o di dox fiiiu /u/it’s t’x if’iuti ci la ¡tniiura liiiu ion 
por la dirnada di la u'i;iiiida mi\ la si’i;iiiula fian ion por la demuda de la 
prinii ra w esUn dernadas e\i\Un

EJEMPLO ILUSTRATIVO 6 Se aplica la reyla del producto
para calcular li(\) para la tunción li del ejemplo ilusiralixo 1 

/;lx) = (2.x' - 4x-)Mx‘’ + X-)

De la reela del prxidiicto,

/Ttxj = llx’ - 4x’)(Mx^ T Ix) + (Ti'' + x-)l6x- - .Sx)
= nox’ - bOx' Al-* - Sx’l + ll«i’ - 24r'’ + 6x‘ - Sx'l 
= 4Sx’ - X4x'' + lOx-* - I6x'

I o cual es acoidc con lo obtenido p.ira lii\) en el ejemplo ilustra- 
iixo ^ ^

No ilude en concluir i|ue el calculo de hix) en el ejemplo ilustratiu) 
lúe mas simple que en el calculo del ejemplo ilustratixo b Pero recuerde que 
/i(\) en estos ejemplos es un polinomio Se aplicara la rejtia del producto a 
muchas otras funciones dilerentes de los polinomios
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l’uL-sKi i|uc la dcm.ida dd pnidiiclii de dos limuoncs no es d produu, 
de sus derivadas, la derivada del touenle de dos tunemnes no es ei couen 
te de sus derivadas, tomo se vera en el sijiuicnle teorema

2«4.7 T»oremq Regía d« diférendación para er codwite
Si f \ 1» son (unciones j h es la lunuon dd'inida por 

hU) = donde «(V) 0

> si/ (r) ) ji* (i) existen, entonces

/,(0 = s'ín/ít) - jUie'm 
[kU)|-

Demostración

V1-.I» íit

/■(t 4- At) _ f(\J
= l„„ _£LL_LA2I------SLÜ

Vi-11 S\

liin ~ ./<d A‘(v + Arl
Vi-o At ^’(v + Ar)

Como se hi/o en la demostración de la regia dd producto, se decluorJ 
otra tiabil manipuLicion Cn esta ocasión se resta > suma Ji r) • rj en el nu 
merador para obtener

h'l\) lim
V I '• (I

f{ \ + A V) d V) - /( íilx) - t{\) + Ax) + f(x) ;!,•( V)

Av c’t d g( t + A t)

dd
= lim

/( r + Av - /(\) 
Al

/(d (>( t + Al) - dd 
At

i V i) c’l I + A i}

= Iiin L'lt) 
Vi »l)

tiin
»i)

/( i + Al - /■( U
^i

lim c'tii
Vi >11

lim /(i) lim 
Vi •'!Vi .11

lim L’t i + Al)
Vi •'!

d ^ A t) j c'd I
' ~\i

Como j> es dileienuable en i. entonces g es continua en i. de modo que se tu 
iie lim c'ti + Al) = di) l.imbien lim dil = c'(r)v lim Av) =Vi .(I Vi .11 " Vi .(I

Con estos resultados ) las ddlmciones de/'(i) > ;t,’’d) se obtiene

/i'(i) d d /') d - Av) A’'< V)
!.'( d !,'( V)

^Mdnv) - y(dcdd
ldv)P

ñy}
fí(v)

),>(v)Ar/(d - /(d^),g(d
[«(di-
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Im (It'rivíuht ih-¡ Í7jn'c7iíf de dos funciones es ikiuiI a la frat ción t¡uc ne­
ne coino denonnnador el cuadrado del denominador original, \ t oino su 
numerador nene al denonnnador original por la derivada del numerador 
menos el numerador por la dernada del denominador orií;nuii st estas 
derivadas existen.

6.r'^ + 6r- - 4r-* - Sr
í.r- + 1)2

2-t'* + 6j2 - 8t)
(.X- + 1)2

Si f(x} ~ .x~", donde -« es un número entero negulivo y .v ^ 0. 
entonces

flx) = -/J.r""-’

Demostración Puesto que -n es un número entero negativo, entonces 
n es un número entero positivo. En consecuencia, se expresa f(.\) como un 
cociente y se aplica la regla del cociente. Así.

^ BJEMPLG 2 Determine

Solución

■

^ EJEMPLO 3 Dcicnnine

Solución

11
X*'

◄
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Si r es uijkjtiier lujinem entero positivo o negativo, enlonees se tiene la regla 
para potencias

= rx' '

De esta forimila y de la regia del producto de una luneión por una eonstanlu 
se obtiene

l),(i = irx' '

SI r es una constante y r es cualquier número enteni negativo o positivo
Si la íunuón / es dilerenci.ible, entonces su derivada /' se llama, en 

ocasiones, primera derivada de J o primera función derivada. Si la luii- 
uón /' es dilerenuable. entonces la derivada de (' se denomina segunda 
derivada de / o segunda función derivada. La segunda derivada de/ 
se denota por /" (i]ue se lee "J biprima") De la misma manera, la tercera 
derivada de f o la tercera función derivada, está definida como la deri­
vada def". suponiendo que la derivada def" existe l,a tercera derivada de/ 
se representa por J ” (lo cual se lee como "f triprima”)

La /i-ésima derivada de la lunción /. donde n es número entero mavor 
que i, es lu derivada de la (ri - l)-ésima derivada de/ La/i-ésima derivada 
se denota porDe modo que si/'"* es la /i-ésima derivada, entonces se 
puede representar la función f misma como

► EJEMPLO 4
Unida por

Kncuentre todas las derivadas de la luncion / de-

lix) = 8r-» + - V- -t- 7

Solución
rtv) = '^2x^ + \5x- - 2x
/ 'tu = 4 lOx - 2
r\x) = \92x I .ifi 
/'■‘'(I) l‘/2
/'^'(v) - 0
l'"Hx) -(1/1^5 ^

La notación de l.eibni/ par.i la primera derivada es ~ Kira la segun- 

d.i derivada ile \ con respecto a i l.i notación de I eibni/ es debido a
(/V

que ic|iresenia símbolo es una notaeión para la

ii-esima dciivada de \ respecto a v
Otros símbolos para l.i H-esima deriv.ida de I son

Par.i denotar la segiind.i derivada numérica de la lunción / en i se un- 
\]/:i la notación NDI:R2( f{x), v), esto es.

NDRR2(/’U)..v) ^ NDHRtNDI Rt/(vi. x). \)



2.4 TEOREMAS SOBRE DIFERENCIACIÓN DE FUNCIONES ALGEBRAICAS Y ... 131

r c t) - ' t ^ \ NUI.Rl I ' 11

R(U R \ 2

► EJEMPLO 5 Calcule

y apoye las respuestas grJIieamenle. 

Solución Sea = r'\entonces
X '

-fíx^^ = -íx--* 
ü\

r<\> - I2t ' > NDER2(I ■, u

I-IGLRA3

= 12x-'^
il\-

Para apoy ar grállcameiite las respuestas, primero se tra/a la gráfica de la 
lunciiín definida por /'(.x) = -3x * y NDER(\'’..r) en el rectángulo de 
inspección de [-ó. ó| por |-4, 4], La figura 2 muestra i|ue las gráficas son 
idénticas, lo cual apoya la respuesta de la primera demada. Ahora se trazan 
las gráficas de las funciones definidas por J"{x) = 12 x'^ y NDr:R2t x‘ .x)
o. eijunalenlenienie. NDER(-3x v). en el rectángulo de inspección de 
[-6. 6) por |-4. 41. para obtener la figura 3 En esta figura se muestra que 
las dos gráficas son idénticas, lo que apoya la respuesta para la segunda 
derivada. ^

EJERCICIOS 2.4
En liis ejfnwios I u 24. iihlcii\;a la üernada de la linuitin par 
medio de Un icorcmin de eila xetí ión. 

i. Axi = 7r - 5 2. ijirj = 8 - 3x
3. t'tri = I - 2x - r- 4. /txi = 4r* x •*- I 
5. /(VI = x' - 3,í + 5t - 2 

f>- yix) = 3.x^ - .Sx- + 1
7. /Hí = l.v-' -

8. íU) = / - 2x' + 5r’ - 7x
/(,) = 1,^ ^ ip

Id. //i xj = ‘ r’ - X + 2

U. iln = ,T/ ’

12. r;,x, . ^ „ ^.X ,

13. Fii, = i- ... + J_
‘ ,5. = 4.^ - ^

Ifi. Ax) = _ 5 * ^ 4,j J

‘7- ;¡txj =4^3 jfj, ^
t- x^ f.t^

J'-l- /A) = V3tr' - X-)

"'*■ «At = t2t‘ + 3k4x - i)
-I- ytrl = ll.x-’ - l„5x’ + 6x)

^2. ftx¡ = ,4^: ^ 3j:

23. G(v) = (7 - 3y'')-

24. l-u) = U' - 2/ * I)(2t- + .tn

En tas cjiniaas 2? a .Ki. udtiile la deneada aptuanda las 
uareniüs Je esta seuiím. En las ejen iliiis 25 a .10. apase la 
respiu’sia Iraraiida en la i^rajleadara la }¡rúfiía de su respuesta 
X de la densada nuiiuiua tii .x, t/i el iiiisina rnianiíula de
iinpi i (ion

25. /J,[(x- - 3x + 2)l2.x' + 1)1

2ÍI.

ni ^ 1 2x *- n
X - 11 .3x - 4 1

2'J.
,/ j i’ .f 2x 1 1 d 1r

»/ X \ t ■ - 2 X + R di ' X - 2

3J.

J / x' - 2i- * 5x i '1
dx\ X^ 1

33.
x/ (X* - K\ d [- "■ 1
.A K ' + 81 ds i s' X- ll- '

35.
'..u-h]

36.
' "J
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III li'\ tjtniiun í" > i.S tlihriiiiiu loíIti\ hi\ ih n\iii¡ü\ lU lil 
lliiu l»ll

.17. /lu ín' + 1»' ♦ Si- - s, (. ')

rn I 2\ I' f 5»‘ K \ + 4

.i‘>. tdkuk-/),

4(k DL'tjniiiriL r|«' -----rl
./iM |S,‘/

T/i />M i'jtrihi'n 41 \ 42 {lihniiiiu \ <í/m*w ¡¡rii/Ua
th-

iiHiilt Mí í( \¡<iii U(i Iriríinilo iii lu ^rafhíuliiru hi i;nifmi ili lu 
ri\piit\lu \ tu \ei;uiiilu ilerixiulu minuruii iii r </i il iiii\ 
ino r< (luiu;ulo dt iiispn ■ ion

41. \ 42. \ 3'_ J_
« 1i‘

fn lin iji n ii lux 41II 46 ií/kí £i (/m »</h </< lurutu
luni^tiilt o di lu nilü nurmul uyií/i w iiuluii \ upine xii 
rrxpiií-Mii tni:undolu ruin \ luiiiniiciuliiumiioruluiit;iilodi 
inxpufion

43. I.J rtU.i (an^Lntc j laturv j t ~ x' - 4 en el punti>(2.4)

44.

45.

lu rcetu Untenle a la euna \ =
«2. 1)

1.a aela nonnal a la eurva \ = 
(4 -S|

8
c* + 4 

10
14 - t-

en el punm

en el punui

46. 1.a recia nnniial a la curva v = 4r~ - Xt en el punln 
il -4)

47. Ohicn[!.i una Lcuauun Je la recia langcnle a la curva 
V = Ir* - 4r que cea par.ilela a l.i reda It - » ■»• 
1-0 Apuje su respuesla ira/anJii la recia > la curva 
en el mismo rcci.ini!ulo Je inspección

48. Determine una ecuación Je cada una de las recias lan 
gentes a la curva 1v = r* - 1v* + 6t -i- 1 que snii pa 
ralel.is .111 reda 21 - \ + 1 - 0 Apo)e sus respuestas 
ira/aiiJii 11 curva ) las redas cii el mismo rcdanpulo Je 
inspecciim

V). í ncuenlre una ecuación Je cada mía Je las redas norm i 
les a la curva \ - t' 11 (|iie sean p.iralelas a la reda 
i -f Kv - 8 = 0 Apoje sus respuesias ini/anJo la cur 
va > l.is rcc'l.is cii cI mismo rectaii{rulo Je inspección

50. OI)leii(.’a una eciucion Je la reda tangente a l.i curva 
\ »' 6c i|ue se.i perpendicular a l.i reda

i - 2v + 6 = 0 Apo>c su respuesla Ira/ando la curva \ 
las dos rectas en el mismo rectángulo de inspección

51. Deicnmne una ecuación de cada una de las redas que pj 
san por el punto 14 11) > que sean langeiilcs ,i la curia 
I = 2i* - I Apoje sus respueslis ir.i/ando la curvas 
las redas en el misino rectángulo de inspección

52. Sea/íd = Jr’ + 2t* + 5r + 5 Mucsta*quc/U) a (i 
p.ira lodos los valores de c

53. .Si/, g y/i son funciones y OIrl =/Irl «Iv) /i'i). di
mucsire que si/{r). (v) y /i (t) existen entonces

íiit)=/(t) eti) /|(»)+/(C) t-lt) /i(t)
+ /(V) g(T) /lio

Siigc ri 111 tu aplique la regla del producto Jos v eces

l'lilit I il rt Miliado lili prohlímu 53 pura difmiuiur lux Jim 
I wiu X di lux fjfri u un 54 u 57

54. /U1 = íx- + 1)(ir - 5)(1x + 2)

55. /i(0 = (Ir + 2l*(r* - 1»

56. r.'ld = (1t’ + + 1)(x- - 5»

57. dto = <Zr* + t + ll’

58. Si f y g son dos tunciimes tales que sus pnineras y según 
das derivadas existen y si li es la luiicion detlnida porb 
ecuación/i(x) = /Ix) gtrl demuestrecjue

ll (rj = /(r) fi U) + 2/ír| e‘(xl + J'íx) gio

59. Si X = t" donde II es cualquier numero entero positivo

d" XJcmiieslrc por inJueeion m.itenialie ique -----  = ii'
dx"

6(1. De un.i denuislnieion alteniativa de la regla de ditcrin 
elación de potencias Ipara potencias enteras positiia'i 
mostrando que SI/IO = x". enionces/(<o = ikj" ' apli 
cando la fomiula (7) de la sección 2 I

Siigi rim 1(1 radorice x" - (/". einpleamio la íomiu'.* 
(12) de la succión suplemenl.ma 1 5

61. Dciiiiieslre que si /" y g son dos funciones difcrcncuW.' 
t.iles i|ue /(O) = glO) = 0 entonces d producto de I v 
no puede ser la lunción identidad, esto es/(X) glxi - ‘ 
Siii’iniK III aplique 11 regla de dilerenciacion del produd

62. 1 xpliipie por que tres teoremas sobre dilcrenci.icion p.f 
iiiitcn dilerenciar cu.ilxjuicr polinomio Induv.i los enun 
ciados de los icorenias en su explicación

2.5 MOVIMIENTO RECTILINEO
l,a lieriv.id.i de una limcmn f en el numero i] nene uiu inlorpreiacum i»' 
porlanle como l.i inui dt uinm uní (o rii:oii di tainhio) niUimlíiiuti di I 
X| l.i cu.i) se lr.d.ir.1 en csUi sección > l.i siguienie Esta seeeioii se tius'-' 
Lonsider.indo uu.i apiic.icitm en tísica el inoviinienio de tin.i p.irlicula sob''-' 
mu recC.i Dicho movlímenlo recibe el nombre de iiioviniIctUo rectÜíni*' 
Se elige arbiir.iri.mieiite un seiiiido eomo posiiiui en la recta, y el seiiiiJ''
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upucMí» es lI ncg.itno P.ir.i Mmplilaar usu distusion supi)ni¡.i ijuc la 
paríanla se muevo sobre una reda lutri/onial. tu>o senlidn (o dirotuonj po 
siiivo cs haei.i la derteha > el seniidn nejialivii li.aia la i/i|ua*rda Selet- 
tione aleun punto sobre la reda y denótelo por la klra O Sea J la fundón 
i|ue determina la disianeia dirigida de la parlaula a partir de O en euakjuier 
lampo p irtaul ir

Para ser mas espeeificos. sea s metros (nu 11 distancia dirigida desde O 
a los I segundos (s) l-ntonees v es la luneion detinida por

V = JU)

la dial proporeiona la dislaneia dirigida desde el punto O hasta la parlieula 
en un iiislanle parlieular

U EJEMPLO ILUSTRATIVO 1 Sea

V = r- + 2r - 1

rntonees. eu indo r = 0. v = -1. por tanto la partícula esta a 1 m .i la i/- 
i|uierda del punto O cuando / = 0 Cuando / = |. \ = (). de modo que la 
panícula se encuentra en el punió O en el segundo I Cuando r = 2. v = 5. 
por lo que la panícula se encuenlra a 5m a la derecha del punto O a los 2s 
Cuando I = 1. r = 12. de manera que la partícula esta ubicada a I2m a 
la derecliadel punto O a los 3v

La figura 1 ilustra las diferentes posiciones de la panícula para valo­
res específicos de /

í o 1 I I 2 f t

■I l-•-^—>-r- (-1 , I i ♦ i IH---------^
S o d .1(1 |S '

1 l(IUK\ I

I ntre el tiempo / = I \ r = L la panícula se mueve desde el punto 
donde V - (I liasia el punto donde v =t 12. por lo (|ue en el mtcrvaUi de 2 
segundos el c.imbio en I.i dist.inu.i desde es 12 m Ui uloniíad proim dio 
de la partícula es la ra/on del cambio en la distancia dirigida desde un punió 
hjo al cambio en el licinpo De modo que el numero de metros por segun­
do de la veloud.id promedio de la panícula desde / = I a f = 3 es “ = 6 
Desde / = I) .i í = 2. el cambio cii la distancia dirigida desde O hasta 
la p.irliciila es de 8 m por lo que el números de mclros por segundo de la 
velocidad promedio de la panícula, en este intervalo de 2 segundos, es
? = ■'

l:ii el ejemplo ihisiralivo 1. la velocidad promedio de la partícula evi 
denlemeiile no cs consi.inle. > la velocidad promedio no proporciona in- 
lorm.icnm especifica acerca del movimiento de la partícula en cu.ilquier 
insianie p.iriicular Por ejemplo, si un .miomovil recorre una disiaiicia de 100 
Iviloinelros (kimen el mismo seiiiidoen 2 hor.is (h). se dice que la velocidad
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protiKiliii (o \c1()i.kI uI media) um que recorre esa disianua es de 50 1 m/h 
Sin Lmbaryo a parlir de esla miorrnauon no se puede determinar la lectura 
del seloumelrrt del auiomo\il en ninjiun tiempo particular en el inicn.ilo Ja 
2 lloras La lectura del \cloumciro en un instante determinado se conoce 
corno \ilixulail iiishiiiuiiiui I a discusión siguiente permitirá llegar a una 
delinicion de lo t|Uc signiHca \iltnid(U¡ ¡iiUíiittaiua

Suponga (|ue la ecuación t = Jln dellne a \ (el numero de metros de |j 
distancia dirigida de la partícula desde el punto O) como una función de i lel 
numero de segundos en el tiempo) Cuando / = /[.= S] f! cambio en la 
distancia dirigida desde es (\ - S|) metros durante el intersalo de lieinpvi 
ir - r|) segundos y el numero de metros por segundo de la \eloudad prie 
mcdio de la partícula durante este mti rvalo de tiempo esta dado por

^ " q
/ - /,

o como I = /■</)> 5| = Ju¡¡ la\elocidad promedio se determina a pirtirJe

í ~ r,

Ahora entre mas corlo sea el iniers alo de / ] a i, mas cerca estara la selncidaJ 
promedio de lo que pensaríamos que es l.i velocidad instantánea en t]

Por ejemplo si la lectura del selocimeiro de un automóvil .il pasar pnr 
el punto P| es de S0km/li.> st un punto P esta a lU mdo entonces la velou 
dad promedio del automóvil conlorme recorre esos 10 metros estara pro 
xima a SO km/h >a que la variación de la velocidad del automóvil en este 
pequeño espacio probablemente es ligera Ahora bien si la distancia de /'| a/' 
se acortara a 5 m la velocidad promedio del automóvil en este intervalo es 
lana aun mas próxima a la lectura del velocímetro en /■’i Este proceso se 
puede continuar y la lectura del velocímetro en P] puede representarse 
como el limite de la velocidad promedio entre P\y P conforme P tiende a/’i 
Fsto es la ulmulad iii'itanhmKi puede definirse como el limite del co 
cíenle í 1) conlorme t tiende a /j, suponiendo que este limite existe Este hnii 
te es la derivada de la tuncion f en ([ En consecuencia se tiene la definición 
siguiente

•2«5.1 Defínición de velocidad instantánea
Si / es una luncion definida por la ecuación 

V = /m

y una partícula se despla/a a lo largo de una recta tal que v es el nu­
mero de unidades de la distancia dirigida de la partícula desde un 
punto fijo sobre hi lect.i en i unidades de tiempo entonces la velo­
cidad instantánea de la partfcul.i a las i unidades de tiempo es \ uní 
dades de velocidad donde

1 = /'(/) <=> I =
di

SI existe

La velocidad instantánea puede ser positiva o negativa, dependiendod'-* 
(jue SI la partícula se despla/.t en el sentido positivo o negativo Cuando lJ 
velocidad insianlanea es cero, la p.trticula esta en reposo La rapidez de uiW
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p.iníaila en eu.ilc|uicr ncmpo es el s.ilor .ibsnluto de l.i veloeidad inslan- 
l.iiie.i í;n ciiiisecuenuj. la rapidez es un numero no negativo. Los lér- 
iiunos "rapidez j '‘seloeidad instantánea" se Lonlunden ton trecueneia. 
Observe ijue la rapidez sólo mdiea cjué tan rápido se está inosiendo la 
parlitula. en cambio la velocidad instantane.i también indica el sentido 
del movimiento

^ EJEMPLO 1 Una panícula se desplaza a lo lar^to de una recta 
horizontal de acuerdo con la ecuación

V = - I2f- + Mm - 24 r > 0

Determine los intervalos Je tiempo en losijiie la partícula se está moviendo a 
la derecha y en los que se mueve hacia la izquierda. También determine el 
instante cuando la panícula cambia de sentido

Solución

= 3/- - 24/ - 3f) 
= Ml~ - Ht + 12) 
= 3(/ - 2)(/ - ó)

La veloeidad instantánea es cero cuando / = 2 > cuando / = 6 Por tan­
to. la partícula está en reposo en estos instantes La partícula se mueve hacia 
la derecha cuando e es positiva y se mueve hacia la izquierda cuando r es 
nejjaiiva. Se determina el signo de i en dilerenies intervalos de /. y los re­
sultados se muestran en la tabla I ^

Tabla 2

Tabla /
1 2 1 h C'iini/iisinri

U •' / < 2

/ 2
2 ■■ 1 ■ (,

(1
♦

i p<i-.ili\o. I.i panícula « rmicse lucia la
(IoclIi i
V CN wcni. I.i junículj csIj en reposo
V es Iicj-Mlivo, la partÍLUIa se mueve luua la 

i/i|uierJa

1 ii . II i cv cero, la padiuil.i csla en reposo

6 ' 1 ► * V es posiliui li p.irtícul.i se mueve tiacia la 

JeiCLlia

EJEMPLO ILUSTRATIVO 2 Paramlerprelarvisualmente
el moviniiento de la partícula del ejemplo I. consulte la llguia 2 donde el mo­
vimiento de la paiiíeula es a lo largo de la recta horizontal de la ligiira. Sobre 
la recta se ha indicado el eomportamienlo de la panícula, descrito en la ta­
bla 1. donde hi.s Hechas indican el sentido del moviniienio de la partícula 
.sobre el eje liori/onlal. La tabla 2 proporciona Itis valores de v y v para los \a- 
lorc.s enteros de / de 0 u 8. Kl valor de r indica la posición de la particnla 
sobre lu recta horizontal par.i un v.ilor deiennmado de /
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1 = 1 í - H
I ^ fí » > ' ---------- » >

1 = 5 I = -t 1=3
I - 6»- • <-----------------......... ....... ■« • •---- 0 1 = 2

r = I
I - ÍJ •.................. » » « , ■_» , = ;

-----*-4——t —i—- t t I . .-i-—   . . _

-25 -2ÍJ -15 -m -5 O 5 10

FIGURy\ 2

Ahora se describirá el movimiento de la partícula. Cuando f = 0. h 
partícula está a 24 unidades a la izquierda de O y se desplaza hacia la dereclu 
en r = i. la panícula se encuentra a 1 unidad a la derecha de O y sigi: 
mosiéndose hacia la derecha; cuando r = 2, la panícula e.stá a 8 unidades 3 
la derecha de O y en reposo (se detiene por un instante) y despué.s cambu 
de sentido o inicia el movimiento hacia la izquierda; cuando / = 3. la par­
tícula se encuentra a 3 unidades a la derecha de O y se desplaza hacia h 
izquierda, en r = 4, la panícula está a 8 unidades a la izquierda de O y sigue 
desplazándose hacia la izquierda; cuando / = 5. la panícula se encuentras 
19 unidades a la izquierda de O y el movimiento es hacia la izquierda; ea 
r = 6. la partícula está a 24 unidades a la izquierda de O y en reposo, dsv 
pues cambia de sentido e inicia el movimiento hacia la derecha; cuando 
í = 7, la partícula está a 17 unidades a la izquierda de O y se desplaza hacu 
la derecha; en í = 8. la panícula se encuentra a 8 unidades a la derecha di 
O y sigue moviéndose hacia la derecha; después la panícula continúa mo­
viéndose hacia la derecha i

El movimiento rectilíneo puede simularse en la graficadora. El método 
implica la representación del movimiento mediante ecuaciones paramé- 
tncas, por lo que se debe activar el modo paramétnco de la graficadora. Si 
usted no ha estudiado ecuaciones paramétricas en algún curso anterior al di 
Cálculo, consulte la sección 9.1. El ejemplo ilustrativo siguiente muesirJ 
el procedimiento para el movimiento rectilíneo del ejemplo I y del ejempli’ 
ilustrativo 2.

RGURA 3

[/ EJEMPLO ILUSTRATIVO 3 Para aclarar estas ideas. 

simulará el movimiento de la partícula sobre la recta v = 2 en lugar del eje' 
Active la graficadora en modo panimétrico, Sean

.t|(r) = - 12/" + 36/ - 24 y V]{/) = 2

Hn el reciángtilo de inspección de [-25. 10) por [-3. 5]. conside^’ 
^mín = ^máx = 10 y /step = Ahora presione la tecla |TRAcI](nii-
¡reo) y después presione la tecla flecha a la izquierda y manténgala opri­
mida hasta que el cursor oslé en / = 0. La figura 3 muestra la pantalla de 
graficadora con su nuevo aspecto. Observe la inl'onnación en la pane inf>r- 
rior de la pantalla; f = 0, .r = -24 y v = 2.

De este modo, .se está preparado para iniciar el movimiento de la 
tícula. .Se presiona la tecla flecha a la derecha y se mantiene oprimida- 
cursor representa la partícula que se mueve a lo largo de la recta v = * 
Observe que la partícula se desplaza hacia la derecha hasta que / = > •' 
.V = 8. cuando .se detiene y cambia de sentido. Después, la partícula
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muc\e hacia la i/ijuicrda hasta / = 6 > r = -24. cuando otra \cv se du- 
ticMic y cambia de sentido Luego, el cursor se despla/a hacia la derecha \ se 
pierde de la pantalla por el lado derecho I-sie HKuimicnlo apo>a los re­
sultados del ejemplo I y del ejemplo ilusiraiiso 2 4^

El moviiniemo rectilíneo puede visualizarse en otra forma en la gran­
eadora. como se muestra en el ejemplo ilustrativo siguienie

' I 12/ •» V<f - 24 ,1/1 - 2
OI / 12/ ♦ Vi/ - 24 ; i/i (

Hf.t R \ 4

EJEMPLO ILUSTRATIVOS Seeonsideraoiravezelmn-
viniienlo rectilíneo del ejemplo I j de los ejemplos ilustrativos 2 y 1 A la 
graneadora en modo paramelrico se le proporciona la informaLion siguiente

t2(í) = r’ - I2í- + 16/ - 24 > = /

En esta ocasión se utiliza el rectángulo de inspección de [ 25 Kl| por 
[-1. 101 ‘■on f considerada como en el ejemplo ilustrativo 1 Se trazan las 
gráficas para T| (i), v |(f). Vsí/j. y en el mismo rectángulo de inspección 
y se selecciona l^mucl (^inniltaitat) del menú Ii'opeI La figura 4 mtiestra las 
dos gráficas la recta v = 2 sobre la que realmente se desplaza la partícula, 
y la curva sobre la cual las coordenadas son (\s(/l > que representa
una amplillcacion vertical del movimiento de la partícula Se puede obser­
var que la partícula primero se mueve sobre la reda horizontal como en el 
ejemplo ilustrativo 3 Después se ve que la partícula se mueve sobre la curva 
(recuerde, esta curva no es la trajectoria real de la panícula) Par.i esto pri­
mero se presiona la tecla Jlulia luuui arnhn o Ihiltii fnuui ahajit hasta que 
el cursor esté sobre la curva Luego, como anteriormente so hizo, se presiona 
la tecl.i Jh-dia a la ¡zqiiunla > se mantiene oprimida hasta que el cursor este 
en / = 0 Ahora se presiona la tecla/hilui a la tlt rulia v se m.iniiene opri­
mida Este segundo procedimiento muestra el movimiento de la partícula de 
izquierda .i derecha, después de derecha a izquierda \ luego de izquierda a 
dercciia oirá vez Observe en esta curva que l.i p.iriicula cambia de sentido 
en el punto donde r = K y \ = 2 Ib unid.ides .i la derecha de O a los 2 s) y 
despiics olr.i vez en el punto donde v = -2 1 y v = 6 (24 imid.ides a la 
izquierda de O ,i los íi s)

^ EJEMPLO 2 Se lanza tina pelota vertiealmeiite hacia .imba 
desde el piso con una velotid.id imci.il tle (i4 pies/s ,Si el sentido positivo dé­
la distanu.i desde su punto uncial es liacia .irrib.i / segundos es el tiempo 
que ir.iiisuirre desde que la peloi.i lúe lanz.ida. y v pies cs l.i disi.uiLia de la 
pelota desde el punto inici.il a los / segundos, entonces I.i ecuación del ino- 

viniieiilocs

\ - -ll)/- 4 Íi4/

(uj Simtih el movimiento de l.i pelota en la gralicadoia (10 Estime que 
ian alto llegara la pclol.i > cu.intos segundos le lom.ua p.ir.i alc.inzar su 
iniiiio mas .illo leíConllrme .inaliticamente las estmuciones del muso 
(lo (ti) Oliieiiga la velocidad iiisiantaiicM de la pelotaen 1 s\ Is (cOCalttile 
la rajiidez de la pelóla en I s y 3 s (f) C'alcule 11 veloeid.ul iiisiaiiiane.i cuan­

do Mega al piso
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Solución
(al Siiponjja que la polola se mueve M)bre la rcLla vcrliLal \ = 2 Atuve |j 

grafu-ailoM en modo paramelrieo Sean

V|(/l = 2 y viín = -I6í- + (yAi

Para determinar los valores ilc l de ínteres en la etuaeion dada se eo” 
sidera v = 0 > se obtiene

1I(,LRA5

-16f(r - 4) = 0

/ = 0 í = 4

Por tanto la pelota e*sta en el piso a los 0 s y 4 s, lo que mdiea qu. 
0 £ / 4 I:n el reelangulo de inspeeeion de [0. 4|por|-25 1(K)| sea"
í,m„ = O = d y = I) 0‘í Ahora se presiona la leela iTnAC^i 
después la leela Ihiha a la izíiiin nía manteniéndose oprimida hasta quv 
el cursor este en í = 0 I-a ligura 5 muestra la pantalla de la grafleadur. 
con su nueva apariencia Presione la teclaJlcdta a la thrt’ihu y obsenj 
que la pelóla, representada por el cursor, se mueve hacia arriba y haii- 
abajo a lo largo de la recta vertical r = 2 

Ih) Al aproximar el valor de \ como 64 y el valor de í como 2 cuando la fx 
Iota esta en su punto mas alto, se estima que ht pelota alcanpara su al 
tura maxima de 64 pie a los 2 s

(c) Para confirmar analíticamente las estimaciones del inciso (b) prinicrn ^ 
calcula lU). el numero de pies por segundo de la velocidad insiantanu

de la pelota a los / segundos Comovin =

\ln = -32/ + 64 l2i

Debido a que la pelota aican/ara su altura maxima cuando el sentid' 
del movimiento cambia esto es. cuando i(/) = 0. se sustituye i(/l pvr 
0 en la ecuación (2) y se obtiene

-32/ + í)4 = 0
/ = 2

De la ecuación de movimiento ctiando / = 2. resulta que v = 64 P'’' 
lanío, la pelota alcan/a su maxima altura en el punto a 64 pie del puní'' 
uncial a los 2 s Fsios resiiltiidos confirman las estimaciones del m 
Uso (b)
1(1) ~ -32(1) H 64 c=> Kll = 32, de modo que al final de 1 s la pi.l''- 
ta se elev.i con una velocidad instantánea de 32 pic/s ;(3) ss -32(3) * 
64 <=> 1(3) Sí -32, de manera que al fina! de 3 s la pelota cae con uiu 
velocidad instantánea de -32 pie/s
I i(/l I es el numero de pies por segundo de la rapidcv de la pelota al'" 
/ segundos, asi, | il l) | = 32 y 11(,3) | =32
Se determmti anteriormente que la pelota lleg.irii al piso a los 4 s CoiH'' 
1(4) = -64, su velocidad instantánea cuando alcance el piso será 
-64pie/s ^

\> EJEMPLO ILUSTRATIVO 5 bn d eicmpl.. 2, I.ls

Clones paramelricas de la traycciona de la pelota están dadas por 

Li(/) = 2 y V|(í) = -16/- + 64/ l3'
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I /I f '!i Ifi -• lyil

\ sus gr.ilicas su muusir.in un la hj;ura 5 I.a cuuauáii de nit)\ límenlo es 

\ = -l(i/' + fv4/

Para ira/ar la frailea de esta eLuaLiuii en mndii par.iinelriLo, se consideran

\2in - I y \2(n = -16/- + 64/ (4)

La "rallca es utia parahoia cu)o punto mas alto, el \erlice esta en el punto 
(2. 64) La jtralica se muestra en la figura 6 La velocidad i de la pelota esta 
dada por la ecuación

I Ui / iti 12/ • Í4

I !(,l R \ 7

I" d p ir I ;s lOd)

■|iO

' '/I

i'i Kii . i,\i
’íi Ha r>|/ 
"i í }

IK.l H\H

' ’ 'i'O 1(1/ , ( 1/
'‘ \i<i • til/

' ,01 I I'/ . M|

I lí.liRA V

\ - -32/ + M

cu>a grallca es una recta t|ue tiene pendiente negativa Las ecuaciones pa- 
ramelncas de esta ecuación son

= / > vdn = -32/ + M (5)

I..1 ligura 7 muestra esta recta Rel'ierase ahora a la ligura K que muestra 
las gralicas de los tres conjuntos de ecuaciones paramelricas en el mismo 
rectángulo de inspección Observe que la velocidad es cero ten el punto don­
de la recta iniersecla al eje x) cuando [a pelota esta en su punlt) mas alto 
También observe tjue cuando la pelota se esta elevando, la velocidad es 
positiva, mientras que al caer, su veIoud.id es negativa Ademas la velocidad 
es siempre decreciente como lo indica la pendiente de la recta que represen­
ta la velocidad

Como la rapidez de una partícula es el valor absoluto de su velocidad, las 
ecuaciones paramelricas de la rapidez de la pelota son

Ut/l - / y vp/) = |-32/ + 641 (6)

I a (igura presenta las gialicas de (3). (4) \ (6l trazadas en el mismo 
rectángulo de inspección Observe (|ue la rapidez es decieeienle cuando la 
pelota se esi.i elevando, la rapidez es cero cuando la pelota .itcanza su puntvi 
mas .dio. V la rapiilez es creciente cuando la pelota esi.i cavendo ^

EJEMPLO ILUSTRATIVO 6 /Mmra se considérala cl moví
miento del c|eni[)lo I ) lo. i lemplos iliisiiativos 2 a 4 Observe en la labia 2 
i|iie la veloud.id pareie ser dectecienle i liando O < / < 4 v ciecienle 
ciiaiulo -1 • / Lsle hecho piude .ipoyaise gialicamente obseivando qtie el 
movimiento de la panícula de los eiemplos ilustrativos \ y 4 Cuando 
O / - ? i 0 y la i.ipiilez de la |)iirlnula es decreciente, cu.in 
do 1 I I. i • (1 V la r.ipidez de Li panícula es cieetenle de modo que 
para I) • / 1. i es decrencnle ( liando 1 / • (i. i • II v la lapidez
es di’cioiicnte. mando 6 • / • S. i - O \ la lapidez es cieucnte. de ma 
neta que ¡laia 4 • /• H. ees ireciente ^

I II lisien, .1 la tasa de Miiiacion lo ra/on de camino) insiiinlane.i de la 

velm idad se te llatna iieeleniiloii instnntancn. I’oi tanto, si mu paiin ula se 
imieve ii lo laigo de una tecla de acuerdo con l.i eemuion de movimiento 
V /(/). lioiidi- ti los / scgiimios la vOoml.ui mst.iiitancM es v metros poi 
segmido y la m eleiac ion insiamiinea e- <i im líos poi segundo poi segundo.
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entontes ii es la primera derivaila de t ion respeilo a / o. eqimaletilemeiiie, la 
M-riimla demada de ' u*n respeilo a /. esto es.

Cuandoo > (I i es«.reiiente. v uiandoo < I). i isdecreuenle (’uaiulu 
(i = I). I ni' esta tambiando ('orno la rapidez de la panícula a los l segun­
dos es I u/> I m/s. se llenen los resultados sieuicnles

(i) Si » “i (I \ (í > 0. eiiloiites la r.ipidez es ireiienle
iii) Si i S n \ (/ < o. eiiioiices la rapiilez ts dccnuenlc

liiil Si i ¿ l) \ íí > o enimiies la rapidez es deirtuenie

(isl Si I £ I) \ «; < 0. entontes la rapidez es ireuenle

EJEMPLO ILUSTRATIVO 7 Para el moMinienlo reitilí
neo de! ejemplo I \ los ejemplos ilustramos 2 a 4.

i = f' - I2f- + .Vi; - 24

X = — => V = V* - 24; -I- V>
Jt

i¡ Si — => <i = 6; - 24
Ji

F\'r tanto o = (i(/ - 4|. de modo ijiie para 0 < r <■ 4. r; < 0, > para 
4 < ; < S. <1 > n hsios resultados son tonsistenies con la discusión dei 
ejemplo ilustraiiso 6 A

EJEMPLO ILUSTRATIVO 8 Para la pelota del ejemplo 2 

i = -Ui;- 64/ > i =s -.12/ + 64

La aceleración de la pelota es o pies por segundo por segundo donde 

a = ‘4- => II = -12
t/i

Por tanto, la aceleración es ptes/s- Hsia aceleración constante de la pe­
lota en la direcctón hacia .ihajo. ja sea ijue la pelota suba o baje, se debe .i la 
luerzj de gravedad ^

^ EJEMPLO 3 l’iu partícula se mueve a lo largo de una recta 

horizontal de acuerdo a la ecuación

1/- - r S 0

donde i metros es l.i distancia dirigida de la partícula desde el origen a los / 
segundos. Si i metros por segundo es la velocidad insiani.inea j ¡i metros 
por segundo por segundo es hi aceleración msianianea a los / segundos, en­
cuentre I y </ en lemiinos de / Describa l.i posiuon v movimiento de l4i par­
tícula en un.i t.ibla ijtie induv.i los intervalos de tiempo en los ijue la partícula 
se mueve a la iz(|uierda. v en los que se mueve a la derecha, los intervalos



2.a MOVIMIENTO REaiLÍNEO 141

en Un íjiic la \i*UKulail es Lrctienle > en Un que es lietreeienle Un iniersa- 
li*sen Un i|iie la rapule/ es ueeiente v en Un i|iie es detieeienie, \ la posiuon 
de la parliiula ton respctio al origen diiranle esios intervalos de tiempo 
Muestre el eomportaimento del moviniieiilo mediante una ligiira analoga a 
la h^nr.i >

Solución Como V = V I =
til

^ - tu - ir* (8)

Puesto que o =

íi = (i - 6r (9)

Ahora se determinaran Un valores de / tuando alguna de las tantidades \ 
o íi es tero De(7|.

T = 0 tuando r = 0 o r = “i

De (h I.

1 = n tuando r = 0 o 1 = 2 

De (91.

ir = I) tuando r = 1

1-j tabla 1 muestra los valores de í. i j a tuando / es igual a 0. I. 2 y 3 
También se lia indicado el signo de a. i > <r en los intervalos de r sin incluir a
0. 1 2 > ^ Lnionees se puede hater una tondusión aterta de la posición y 
del movimiento de la partícula para los diferentes valores de r

Tabla .t

s 1 a Caiicluswn

í 0 n 1) LapartiLulacsliencI(iri¡;cn l.u\cl<K.idjJcs (1 > OLrccicntc La 
rapiJe2cstrckicnic

0 < f < 1 ♦ * La panÍLUIa Cili a la ilcrctha Jd orillen > se mueve ha>.ia la 
ilerc-ha La vclotulaJ es trccieme rapidez es (.reciente

t S 1 2 11 1 a panícula esta a 2 tntlros a la dircdia dd tinten > se mutse 
Iulu Ij derecha a 3 m/s La \elix.idad mi cambia de iniKlo (|ue 
la rapidez lampoco

1 < í < 2 + La panícula csli a la derecha del nnpen ) su moitmienio es ha 
cía la derecha La seloudad es decrcuenie 1.a rapidez cs de 
crL«.ien[e

t= 2 4 0 6 1 a pariLula csia a 4 mcinis a la derecha dil nniicn } Lamhta el 
scnlidn de su mos imienlo de deietha a izijuierda La velocidad cs 
decrci.ieme La rapidez es devrcs.icnie

2 < f < t ♦ La panícula esla a la derecha dd onpen y su inov límenlo cs ha 
sia la iZ(|uicrda la vdiH.jdad es detresienle La rapidez cs 
tret lente

i 3 II -V -12 1 a panisuld esiaencl ungen > su inuviimenioev hacia la izquierda 
a1ni/s La vdosidades dctrcuciUc 1.a rapidez cs ctcticnie

t < 1 1.a panícula csia a la izqmudadi.1 origen y su iims imienlii es hacia 
la izquierda 1.a sdotidadesüecrcticnie lasrapidezcscrctienie

La figura 10 presenta e! movimiento de la pariitula a lo largo de la rec­
ia hori/ontal El comportamiento de la partiuila. desento en la tabla 3. se in­
dica sobre la recta donde las flechas señalan el sentido del movimiento de la 
partícula sobre el eje honzontal ^
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I K.l H\ II)

I.ON k-'uIIlIiIos di;l I 'C piici!i.-ii .ipo\ur .il simular el mu\ milen­
io Je la pailiuila en la eialuaJora eoino se hi/o en el eiemplo iliislr.ilno 3 
para el nuniiiiiento Jel eiemplo I > de*l ejemplo liiisiraino 2 lili el ejereieu) 
24 se le pedirá que hatra esio

^ EJEMPLO 4 l'na parné lila se iiuie\e a lo largo de una reelade 
aeuerJo a la eeuaeion de ino\ imíenlo

donde 1 metros es la di'tatieia dirigida de l.i parlieiita desde el origen a los i 
segundos Si 1 metros por segundo es la eelocidad iiisianlánea v a metros 
por segundo por segundo es la aeeleraeion msiaiitaiiea de l.i partícula a losí 
segundos, deteriiime/. s \ i eu.indoo = 0

Solución
di
ih

I + -....■.
(; 11-

íi ih
f/r

u t- ir

Meiuisideraro = Use tiene

II + I)' = K

De domle el único v.dor real de i se obtiene de la r.uV cubica principal de 8. 
de modo que / 4- I = 2. esto es. r = 1 Cuando / = I.

4 1 
1 4 1

i I 4 l___
7l ’ h-

- 2'i

Qiju'liJsjóni La aceleiaeioii es 0 en 1 s eiiaiido la jiailíciila está a 2 5 n> 
del origen y se muevo li.icu la deicdia a una velocidad de 2 m/s ^

EJERCICIOS 2.5
¡.II fin i-ji n II luí J <t H, iiiui¡iiirlii Illa w nuil u ii I" liin;o ilt‘imii I. s )/*•[/, )
r« í hi Itiinruniiil di' ui urnín u lu < t uiu n>n iiidu adn ¡¡luidr \ iiu
tr/n lii dlUüiuui diri>;idii ii [iiinir di I i>m;i II ti Im I \it;iiiiilti\ ' 8 / ,/| s
/)i li niiiiic lu \el(u uliid nisUiiUiíru ¡i mi nuiiiii p.ii M'viiiidi' " ^ I I
loMsfiiMidi’i.dnpuihiidiidi \ll,i¡uir,itliiil,irihiriiiiiliiidt " ' 1/ ?
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A. . 4. fi =

5. V « - f* + 5; /, -- -1

ft. \ m At' * 2l - l.f, -- i

tn lo\ rjrniiioiVti ¡4. una ¡lanii ula \e Je\p¡iizu a lo lurfioiie 
una rn la hon:onia¡ de ai uerdtt a la c< uai ion mdn ada. donde i 
tneinn e\ la dntanaa dm>(ida a ¡lanir del punió O a los l 
\riiunilos. El \enHdo¡himiixo es luu iii la derecha Detennine loi 
inlerx alos de tiempo en los ipir la panícula se rntiex e luu ia la 
derei luí» en las ¡fue se mue\e luu iu la izquierda También de­
termine donde la panii ula camina su dirección. .Muestre el < oiii- 
ponamienlo del nuiunueniu incdiaiile una fípura similar a la 
/mura 2. i elija xalores de t al azar pero inclusa los l alores de 
I mando la ¡hinuiila lainbia de seiilido. A/>ose sus restilludos 
simulando el niox¡míenlo de la pana ida en la erafiiadoru.

9. j = /’ + 3i^ - y» + 4 

1(1. s = 2/' ~ .3r - I2l + H
11, j , + 2,2 - 2t - 4

12. í - —í-r 13. s
I + r

I
9 * I-

15. Para el mov imicnio rcciilíneo dcI cjeracio 9, (race en el 
lnl^nk) rectángulo de mspeeci()D la recta v = 2 sobre la cual 
se dcspla/a la poitfcula rcalmcmc y una cur%a la cual re­
presente una unipljricacidn del movimiento de la panícula, 
semejante a la del ejemplo ilustrativo 4. Apoye los resul­
tados del ejercicio 9 visualizando la panícula que se mueve 
sobre la curva tía cual no es en realidad la trayc'ctona de la 
panícula) Dibuje lo que ve en la pantalla de la graficodora 
y desenba el mov imienlo de la panícula sobre la curva.

1(>. Siga las instrucciones del ejcrcicii) 15 para el movimiento 
leciilineo del ejercicio 11).
Pura los ejenuios 17 a 21. uiiliie la .uf¡uienie ecuaciiin 
de nioximienlo para un objeto i/iie ic muexe sobre una 
rri la xcriical y sujeto solo a la fuerza de uraxedad. donde 
el sentida (o direti lónlpositivo es hacia arriba:

s= -Kii- + i„r + í(, 410)

donde s pies rv la altura del objeto a los l xrniindus. Sapie.s es la 
abura inicial del objeto y v,xpies por seniindo es su veloiidad 
mu tal.

17. Una piedra cae desde un edificio de 256 pie de altura 
<ul Utilice (10) pura cscnbiruna ecuacidn del movimiento 
de la piedra y simule este movimiento en la grufícadnru. 
<1)1 Deicmiuie la velocidad mstunlánea de la piedra en I sy 
2 s (c) Determine el tiempo que le lomará a la piedra lle­
gar al piso, (d) ¿Cuál es la rapidez de la piedra cuando 
llega al piso'.'

r
a Q s B B e B e [) 
e o 8 B B 8 B 8 B 
B 8 8 6 8 B 0 e B 
B 8 8 B 8 B B 88 
B B B 8 B 8 B 68 
0 (U) B Q B 0 eo 
0 0 B 0 B B 8 BB 
BBQB6ed6B
5 QB
ff'8
QB

2S6pie

18. lin un teatro, la base de un candil está a 160 pie de altura 
sobre el piso del vcsiibuln. Suponga que el fantasma de 
la opera suelta el candil y lo deja caer desde c] reposo has- 
la estrellarse en el piso la) Utilice (10) pora escnbir una 
ecuación del movimiento del candil > simule su movimicn- 
lo en la graflcadora. (h) Determine la velocidad instantá­
nea del candil en 1 s y en 1 5 s. (c) Determine el tiempo que 
le tomará al candil llegar hasta el piso, (d) «.Cuál es la rapi­
dez del candil cuando llega ul piso'*

19. Realice el ejercicio 18 considerando ahora que el fantas­
ma es capaz de darle al candil una velocidad inicial de 
4b pic/s.

20. Se lanza una pelota verticalmcntc hacia omba desde el 
piso con una velocidad uncial de 32 pic/s. (a) Emplee (10) 
pora escnbir una ecuación del movimiento de la pelota y 
simule este movimiento en la graricodora. (b) Estime que 
tan alto llegara la pelota y cuánto tiempo le tomará llegar 
hasta su punto más alto. |c) Connrme analíticamente los 
estimaciones dcI inciso (b). (d) Determine la velocidad 
instantánea de la pelulu en 0.75 s y en 1.25 s. (e) Determi­
ne la rapidez de la pelma en 0.75 s y en I 25 s (f) Deter­
mine la rapidez de la pelota cuando ésta llega al piso.
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*

21. So l.iiw.i mi.i i'ii'ilra uTlu.iliucnlL' I1.11.1.1 .irrih.i um titu 
wIikkI.uí mi^ul lio .^(<0 pic/i cal l ciIki.' i I0> p.ii.i c-sitilnr
iiii.i cvii.u'ioii (Il'I moMinicnto Jo la pioJra > Mtmilc esto 
nioMiiiioiiiooii la OI al lea Jora (IM I -'limo <|iio laii alio lio 
pala la pioJi.i > etiaiilo lioiiipo lo lómala licpar liaela su 
piini>> mas alio (el Conhimo analiluamonio las ostima- 
eioiios Jol iiuiso lili Ich noiormino la solooiJaJ iiislari- 
laiioa Jo la pioJra on III s \ oti 25 s lol Dolonninc la 
lapiJo/ Jo la pioJr.i 0*11 Id s > en 25 *>. Ifl Dotcrnmic 
la rapiJo/ Jo la pieJra euanjo osla Hopa al piso

22. I’.irala potoiaJolo|orou.io2l).hapalosipuicnio (ulTraec 
en el mismo toolanpulo Jo inspoeoion la traioetoria Je 
la polola, la praliea Jo la eeuaeion Jo moumionto v la 
eraho.i Je la eeuaeion 4110 expresa la xeioeidaj instan 
lanoa 1 como una liincion Jo t. Dihujo l<< sjuo xe en la 
panlalta Jo la pralicaJora x Jesenha por que csia 
xisuali/aeion apoja la respuesia Jol ineiso Ihi Jel ojor- 
eleio 20.

2.5. .SiL'j las msiruecionos Jel ejercicio 22 para la piedra del 
ejereieio 21

24. Simule el moximienio Jo la partícula Jol ejemplo 5 en la 
praricadora Explkjue por que esto api»xa los rosullaJi>s 
Jol ejemplo 3

Kn ¡o\ fjfii u íi'f 2? X 2(i. iin.j ;ijrn» ii/.i u- jniui o u !(• Iiirí;i> Jv 
iinii nchi . i>/i huiiuiii’ii ir.ílnaJít Jon.U s pu'i 01

lii í/m;ü/ihíí <//ríe»i/ii </( hi p.inuiilii JiuU fl «n\nii o ln\ t 
M ewiJoi Diumuw ti ií.hi/’o m el i/u« lt¡ aulcriuun) im- 
i(j/i/on«u ex < I ro. Jec/nn » th unmtif lo íIiUüiu iu ilin\’u¡a de 
lt¡ i'iiriii Illa (/esJe el x la uliHuJaJ iiistuiituiicíi in ese
lumpa

25. X ^ - 2/ I; / > O

26. s = 2/' - (if- s- 5, - 4. r 2 (1

/./I liistjin <■ ii»i 27 X 2.S'. ima/hirlii ida u'Jefplaraalnliirí^i/di 
una rata de amerjo ion la eii«iu«r» indiuida donde u hn 1 

st ei»ii/m. X meinn es la JiMaihia í/i/fx'iJu dr la ¡•anuida des- 
de il orieen i nurrov ¡>or seeimdo es la xeimidud inuanlu- 
m a de la ¡hiilii ida x u melms por i< i¡imJo por seitiindo es la 
(í<e/iroii(rfí instiiniaiua de la punúida. ¿itremime v x a m 
hniiiiíos di I Elabore una tolda seimjonir a la tolda 3 que 
pioj'-iriione una deu ripi uin de la posit ion \ del moMinientodi 
la pa/tuida Ir.ritisa iii la tolda los míen idos de tinnpo en 
los ipie ¡o parlu ala se nniei i luu la la derei ha x en los i¡iic se 
desplaza a lo tzipiierda los inienalos en los ¡¡iie la selondad 
11 ir«c;iH/e x en los <¡iie ex Jeemienre. los inienolos en los 
ipie lo rapidez es erei lenle v en los tjue es dti reí unte, \ la po- 
su ion de la partuida i on n \piito al onum durante estos in- 
ten tilos de tiempo .l/«e‘íri ti 1 í/m/»/efííwi»( nio dtl niosinurnlo 
nieduinte una Ihuiia similar a la Jiaiira 10

27. X = / ' - ‘ir- + I5r; / 2 u

2«. s i,‘ - 2r * iii - 2. / 0fl

29. Siimite el nioximionlo de la p.irnoula dol ejoreiein 27 en la 
prafikaJora > e\plic|uc por ijue esto apoya sus re uilados

.50, Simule el inoximientn do la p.inikula dd ojeruuo 2K en la 
pralieudota y explitjue por c|ue cstu apoya sus resiillados

.51. I n l.i eaiauon 110), el x oeln.ienle l(i ile l' es ipiial 4 
l(-'2l Jomie -52 pie/s* es l.i aselerai.1011 dehula a Ij 

praxeJaJ Je un olsjclo i|iie se mueve sciisre una recia xcr 
Uval verv.iiio .1 l.i -uperliue do l.i I lorr.i, Jomio la rosisloii 
lia dol ano no ' o lonsidor.i ('omu la aielor.ivióii dohida j 
la pt.ixod.id lio la I una Os -5 5 pie/s\ la euiaviim de iim 
X límenlo par.i un uhjelo ijue se desplaza snhre una rciia 
xeiiival I en ano a la suporliiio do la Luna es

X = -2 7Sf- » i„r + i|,

Suponpa quo un astronauta deja vaor una piedra desdo |j 
orilla Jo un riseo y la piedra llega al pisu en 4 s Despui-x 
un segundo astronauta, en la parle inferior del risco, lonu 
la pudra > la laura do regreso al primer asironaui.i 
lu> ,('iial es la atiura Jd nseo’ (h) ,.Con qué xetocidaj 
llega la piedra al piso' le) ,.Con qué xelocidad, por lo me* 
nos. debe laii/ar la piedra el segundo .istronauta de modo 
que le llegue al pnniem ’

.52. En lugar de la Lun.i. suponga que los dos iisironaulas dol 
ejercicio 31 realizan lo mismo en .Murió, donde la acelera­
ción JchiJa a b gravcd.id es de -12 pie/s*. Esenha la 
ecuación correspondióme al muximionlu y responda las 
mismas preguntas que en d ejercicio 5|. considenmJo 
aluiru que la piedra llega al piso en 3 s.

33. .Suponga que un corredor un una c.irrer.i de KHl meirns 
está a X nieiros de la Ifiiea de mol.i t segundos después del 
inicio de la carrer.i. donde

V = KH) - i(r= -f 5.5rj
A

Deteimiiiela r.ipiiJe/Jd coricJi>r(ti).il inicio Je la carura. 
y lli) mando d conedor cruza l.i línea de niela



2.6 DERIVADA COMO TASA DE VARIACIÓN 145

q St w [vlol.i cu un pl.iiio in>.lHi.ulii cmi mu \c
I.MtlJil iiiKi.ll Je J-l pic/'-cnioiKCN \ = M» * 10/* Jim 
,k' < piCM'N 1.1 Jl't.lIKI.l lie l.l JC'.JC el pmilil lllKl.lI .1 
|,t> í sCíiiiiiJi". ' i-1 JiivCiixri p<i-.ili\.i se i.tiU'.Kli-M li.kia 
aKih’ "^^•e el pl.itu» iiulmaJii la) ,1'ual c< l.i \diK.ul.id 
in>r.iuUiicd tic 1j jvlol.i .i los /, ‘.cpiinJi».' ilii ,Cujnti< 
uiJjM la X fltv I J.iJ en llcp.ir .i 4X picv/s ’

)5. Se (!i’l|va una N<l.i Je hillar Je nK<Ji< t^ue m: Jespl.i/a en 
linea ivtU Si ' ecniimeliON ei la Ji'-tunei.i Je l.i bola Jet- 
Je Mi p>>Mi.ion inuial a U>s r se^unJnt. eiiiniiees 
, liKl/’ * 100/ St la l>otd p’Ipea un.i haiuU i;ue se 
ciKuenir.i .i un Je mi ivsunni initiat., .i que \eli*i.ul.ul 
la jii'lpea ’

^ . l«/tm * ^

M>. Diis p.iilieui.it. ,l > II. M! muexi-n luKia laJeretlu Mihie iiti.i 
letl.i ll•1ll/<>n(al I ll.it inician Mi mminiieiilo en iin piinio 
/). I inetrut es taila JitiaiiLU JinpiJ.i Je caila parikul.t Jet- 
Je /) a lut / seeunjits. y l.it eeuauonet de inoMinien/ii M>n

I -Ir* 5i (para l.l partieiila.1)
I 1/-' i lp.iM 1.1 par1ícul.i//I

Si / - 0 en d mit-iii., paiaqué valii/es Je l l.i \clnciJ.id de
1.1 p.irtiinl.i.\ eticJera la xeliMdad de la paníuil.i II ‘

2.6 DERIVADA COMO TASA DE VARIACIÓN
En ÍJ toeeiun 2 5 se dijn que m una p.u'lkulj se muexe a lo laryo de una 
recia Je acuerdo con la ccuaeíiín de inoxiniiento x = /(/). entonces la velo­
cidad de la partícula a las / unidades de (lempo eslá determinada por la de­
ntada de i con respecto a i Este concepto de velocidad en el inoviniiento 
rectilíneo correspc'nde al concepto mis general de luui ¡iisianitiiuu tk vurm- 
i ton. esto es. la ta-a de variación de r por unidad de variación de / es la de­
rivada de 1 con respecto a /

De manera semejante, si una cantidad y es tunción de una cantidad .x s¿ 
puede evpresar la lasa de variación de v por unidad de variación de ,x. l la 
discusión es análoga a la discusión de la pendiente de la recta tangente i la 
grallca v a la de la velocidad instantánea do una partícula que se mueve a lo 
largo de una recta.

Si la relación tunci'^nal entre ,v y x está dada por 

V = /{XI

y si A varía del valor T| al V| + At. entonces v varía de/(V|) a /(V| + Ax*. 
De modo que ia variación de y. denotada por Ay. es f(x¡ + At) ~/(vj) 
cuando la variación de x es Av Ea tasa promedio de variación de y por 
unidad de vanaeión de t. eonforme x varía de X] a A| + Av. está dada por

/(ti -f An - f(xQ _ ^
Al Av

Si el límite de este coeicnic existe cuando A i ^ 0. este límite es el que se 
considera como la lasa insianlánca de variación de y por unidad de variación 
de A en A| En consecuencia, se nene la definición siguiente

2.6.1 Definición de tasa de variación instantánea
.Si V - fix), entonces la tasa de varíadón Instantánea de y p»»r 
unidad de variación dex en X| es /'ít|| o. e()uivalenlcmeiile. la de­
rivada de y con respecto a ten t|. si esta existe.

Para ilustrar esta definición geomctricamenie. sea f'{\\> la lasa instan­
tánea de variación de y por unidad de variación de a en .vj Entonces, si / '(viJ 
.se multiplica por Av (la variación de aI. el producto es la vanaciiíii que ocu­
rriría en V SI el punto (r. y) se desplazara a lo laigo de la recta tángeme a
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hua K\ I

(rj. \ |i ili-1.1 i'i.iliwa lio \ /Ul \'oj 1.1 fii-’iir.i I 1 .i l.is.i proiiioilio ilc s.i 
ri.ioion lio 1 pi>t iinuJ.iil ilo N.iri.Kion do t osla <l.ul.i ])in la ti.iLi.iun ott (11. y 
Liunilu L'st.i li.iLiiuii so mullipliL.i pot \i. ol pfuditLlo os .\\, 1.1 Liul os Ij
N.injLion lo.d do \ laiis.id.! por una vanaiiun \i oii i ui.uidu o) piiiiiu (t. ^ | 
so limoso a lo Lupo do la pr.dtia

^ EJEMPLO 1 So.i \i\l Lonliniotros uihioos ol \oliiiiion do un
lulxi ^usa» alistas midon i lontimotros. modidas con aiairo dipilos sipm 
luativos i 1) una ialLUl.idoi.1 otuoiipa la l.is.i promodio <io saii.iuon do lii) 
loii ros|KMii a i oonlonno \ vana Jo lal HKK) a 12(K) (h) HHMJ a í |(K)
(c) 1 ttOii a ^ Ull). Id) ^ (KH) .1 1 (M)l (o), Ciijl es la tasa instaiilanca do s.iria- 
Lion do \ (11 Lon rospcilo a \ LiKindo i = 3IHMI'

Solución
1 j lasa proinodio do \an.uum do l'lii ton fospcLtoa i Lijando i sarí.i do i| a
t| + LS

VI i| * A VI - \ I i| 1
\i

(a) t, = ’IKH» Si = (i:iK)

-^í(s(1(1(1) (i:iH)i’ - (1000)’
II 2'H» o 2l)i»

= 2S84

Ih) i, _ liKM). Al = (I 100

I i1 100) - Ij 
II 10(1

(1 ino)^ - (i(iit())‘
o lili)

:?yi

IC) i| ~ 1000 Al = 0010

I 1'üloj - I l3 00(1) _ I^IIO))' (KlOO)’ 
•MIKI ” (Hilo

^ 27 00

(d) I, •- '000 Al - OOOl

I IJUOI) - I MiidO) _ (U)í)l| -<1()I)(|)‘ 
0 001 0 001 

= 27 01

Í:n el iiiLlsu la) so \o i¡uo LunloniiL l.i lonpiliid do Lis .uislas dol lubo 
laría do 3 000 luí a ^ 2ÍK) lio. la tasa prumcdiu de laiiaLiuii iIl'I lulionen O' 
2H 84 em’ pur tenlimelro do lari.icmn en la lunpilud de Lis .irislas I,us imi 

sos ib)-íd) pueden inlerpiLMarse de ni.iiieia seme|anle
(e) La lasa mstanlanea de i.inaLinn de \'(t) luii le poLlu a « Lii.iiido i ^ 

os V'|3)

l '(U = ^I- n^) = 27

í!ílDiJo*'iy*U ruandu la lunijiliid de las ansias del luIui es de 3 luí. I.i l.isa 
insianianea de laroiuun del lulumen es 27 lid* por Loniiinetri» iL laria.iun 
en la lunjjiiud de las ari'ias ^
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^ EJBMPLG 2 I II un Liiuiitii clfLlrun. m /. \nlls es l.i Inoi/.i 
olfLliomnln/. / aiii|vrcs cs la (.nmciilo \ A’ uliiiis i-, la roMsiuiua. L'mniu.cs 
ik‘ la Ifj iIl- ()lml^

/A’ l

(aj Si m.' Mipono que l. es una unislaniL’ pi»iii\.i, Jemuestre que / iktreee a 
una lasa propureinnal al imersu ikl uiailrado iJe A' (h) ,('ual es la lasa 
insiaiilanea Je \anaeiun Je / emi respailo a A’ en un eiieiiilo eleeliieo Je 90 
uills uianJo la resisieneia es Je 15 nliins ’

Solución
lul Si se resuehe la eeuauun JaJa para /. se nhliene 

/ = A' • A '

Al Jitereneiar / enn respeelo a A’, se nene

(2)

lisia eeuaeion establece que la tasa Je vanauun Je / con respecto a R 
es neealisa > proporcional a \¡R- Por tanto, / Jecrece a una lasa pro­
porcional al irnerso Jel cuaJrailo Je R 

th) De la ecuación (2) con A = 90 \ R = 15. se tiene

d¡ _ _ 90 
dR 225 

^ -04

roncinsíón; I.a comente Jecrece a un.i lasa Je 0 4 amperes por olmi ^

Kn economía, la \anacion Je una canliJaJ con icspeclo a otra pueJe 
Jescribirse rncJianle el concepto Je uiitiuiún proiiii-iho o Jel concep­
to Je uiriíuiíin iiiiiri;¡iu¡l hl concepto Je ^aríiicíón promedio expresa la 
\ariacion Je una cantidad sobre un intervalo Je valores de una seuunda 
cantidad, mientras que el concepto Je variación n]a^^inul es la variación 
instantánea de la primera caiitidaJ que resulta Je una pequeña unidad Je 
variación de la secunda cantidad .Se inician los ejemplos en economía con 
la definición de r m/o pronwiho y i nMo nuininnil.

Suponga que Citl es el cosio total para producir i unidades de un ar­
tículo La función C se denomina función de costo (iitul. Hn circunstancias 
normales r y Orí son positivos Delmlo a t|tie r representa la eantidad ile 
unidades de un artículo, usualmonte \ es un número entero no negativo Sin 
embargo, a lln de aplicar el Cálculo, se supondrá que v es un nómern real no 
negativo para satisfacer los rei|uenmicnlos de continuidad de la luiicinn C 

ni costo proiiitdio de proiluecn'ni Je caja uniJaJ Je un arlíeulo se ob­
tiene al dividir el costo total entre el número de umJaJes producidas, Si ()i u 
dólares es el costo promedio, entonces

y ^ se conoce eomo función de costo promctlio.
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•\lmr.i Miponj!.i que fl minii-ui ilc iiiiiii.uk"' pnuiiiLul.is es i|. y qiii; S(. 
iiii.ri;mciil.i on A v i ntoiKos l.i \.iruiu>n ild Li»ln tol.il (.••.t.i ili'li.'iinin.iijii 
piti (■{ i| + .\ii í 'i »|). \ 1.1 \ .iri.u.ii'H im'nauli" cu 11 toslu ti'l.il mn res- 
[VlIu .1 l.i N.iiKiLii'ii ilcl mimcm ilc iintii.idcs pnuluuil.is csl.i il.uin por

( ( i, • ''' ■ ‘1'

I i's ci.niuimi''l.i'« ulih/.in el icrmino umo mt» p.ir.i lI litnilc Je este 
vuciciilc ciunJii \\ iionJc .i 0. supnnicruli' i|iic el Imiilc existe hste Imtiii-, 
que es l.i Jern.iJ.i ile (' eii \j. esialikae que ei cusió iii.irninul, eu.imlu 
» = ij. esi.i d.iJv) por (■ n¡ I. M existe l a luía ion (" leulie el nombre d¿ 
runciún de cusió marginal, x Ciii) piieile inlerj'rel.ir'e eomo la lasa de \ .i 
nación de! eosio toi.il Liiando se producen V| umd.ides de uerto .irlíeulo

EJEMPLO ILUSTRATIVO 1 Suponíase que C(\) duia-
res es el tt‘s[o lolal ptir la tahraaeión de i juj:ueies. y que 

í'm - 11(1 * 4i ♦ oo:i-

(a) 1.1 tuneion de costo m.in:inal es Cy est.í derimd.i por

< (11 = 4 * 0U4i

fi>) 1:1 Ltisio niareinal cuando i = 50es^’i5n).y

C (50) = 4 + 0 04(50»
- (1

ronclusít'm; La lasa de xariacion del costo nnal. cuando se labricaii 
50 jueuetes. es Sfi porjuuueie

(O hl número de dolares del loski real de t.ibricacion tiel juttueie '^l es 
051) - r(50).y

051) - 050) = |110 + 4(51) + 0 02(51 )-l ~ |1 10 + 4(‘!0) + 0 02i5(b-| 
= 366.02 - 360 
= 6 02

Observe que las respuestas de (h) y (c) diHeren por 0()2 Rst.i discrepancia 
es debida a que el costo marginal es la tasa instantánea de v.iriación de Cu) 
con respecto a una variación de una unidad de « L.ii consecuencM. C'(50) es 
el número aproximado de dolares del cosio de t.ibricacu'n del juguete 51 ^

Note que el cálculo de (.'(50) en el ejeiii|ilo ilusirativo I es más simple 
que calcular C(5li - 050) Con t’rcciienua. los economistas .iproxinun 
el costo de producción de un.i unid.id adicional mili/aitdo la Itincion de 
costo marginal.

bspecíneainciitc. ( (Ai dolares es el co-.to ajmiximado de l.i (A f I )-c‘si- 
nía unidad después de que las prmier.is A uimi.ides se lian producido

Otra función impórtame en ccoiioinia es la liinción de ingreso total< 
denotada por R. la cual esta definida pot

Ri\) = /n

donde R\ r) dólares es el ingreso Iota! recibiilo cuando se venden v unidades 
u ¡t dolure.s por unidad.
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1 I ¡nuri'so m.irniii.il, ui.iiuhi \ \^. cM.t .Iclommt.nl.) pi.r «'(x,».
'-i ! .1 liiiKinn A" SL- ik-finmin.i hiiuiim de iiiKrcso m.imin.il. /Í'U|)
|'ik-i!e M-i i'UMiiui ik’iMtix» o v pikkL' iiik-tpi^i.iisL* utniu l.i t.is.i ik
\.in.iLii'n del mpreso int.d ituiulu «.o u-iiilen x, iiimLides U'ikí dokircs es el 
iiie'iCM* .ipiHMiiMdi* i'nr l.i \eiil.i de l.i i/ + 11 e im.i iiiikI.kI «le .pues «le i|iic
l.ts pimu.r.is l. uiml.ides se h.in \emlkln

^ EJEMPLO 3 Siipi>ui.M «pie A’íX) dt>kiies es el inores»* uiul p«ir 
|j venl.i de i ines.is. \ «jue

A’iu - ’’fKU 'x'

Deteriniiie la» J.i liineinn ile inefeso in.it”in.d (b) el in^resu iit.ir^inal «.ii.in- 
dii X - 4i). íct el inereso le.d pur I.i xetila de l.i tues.i 41

Solución
(a» la tmieion de mi-resi) mariiuial es A' \ esta delluida por 

A’ (X1 - ^(Ml - V

(hl r.l int:reso marginal Lijando X = 40 esta dado por/í'(4n). y

A't4Ui = KK) - 4(1 
^ 2f)0

(’oueUisíón: 1.a lasa de vanaeion del injjreso (oial euando se han
X etididix 40 mesas es ‘5260 por mesa

(el hl numero de di'tlares del ingreso real por la sema de ki mesa 41 es 
/í(4h - «(4(0. \

/04I» - A(40) 100(41) - .100(40) -
- -

11 4.‘?y 50 - II 200
= 250 50

roneliislón; hl myres*! real por la senla de lu mesa 41 es S250 50 ^

Observe que en el inciso ibl del ejemplo 3 se ohiuso /r(40) = 260. y 
■5260 es lina aproximación del ingreso recibido por la senla de la mesa 41. el 
cual es S259 50. según el inciso (el

Como /(x) proporciona la lasa inslanlánea de variación de /ixj con 
respeclo a x . /"(r>. i.i cual es la derivada de proporciona la tasa ins- 
lanlanea de variación de y'lx) respeclo a x Además, si (x. vj es cualquier
pumo de la grátlca de x = fi\). eiilonces ^ piopttrciona la pemlieiile

de la reda tangente a la grálica en el punto fx. xt Ikir lanío. es la

lasa de variación de l.i pendienle de la recta langenie con lespcclo ,i x en el 
pumo (X. XI

^ EJEMPLO 4 Slm /utxi la jxeiulicmc de l.i recta t.inuenle a la curxa
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ai ».'l punió < \ . \ I DckTiiiint* l.i (asa instanlaik-a ik- \ aiianon du ui(») con 
tcspcslo a V ai d pnnlo (2, )

Solución
,t\wm —
./1

h * 1

I a lasa in .laiitanL-a de \ariaaon de itn\) con rcspcclo a i está dclcrniinad.! 

poríiíHMi CL]ui\alcmanaitc,

HJ I \ I
t/-\
j7-

-• - 4

}'n c! punto (2. 2). ^-r = ◄

EJERCICIOS 2.6
1. Sea tui ceniimciros «.uadiadu' J aiea de un cuadrado 

cu\os lado-, miden \ i-eninneirio. medido, ton cuair.' eiiras 
M^nitualuas Ln la t.akuíaJura ol'lciiea la lasa promedio 
de \anaeiirn de \iii umi a-spiMo a i tUaiiJo v cana 
(ÜI de 4 000 a 4 «MI do de J ot"» a 4 ’OO (ci de 4IHK1 a 
4 l(Hl, (dide 4 (HKKi 4 0^0 (lO, l'ii.il es la Loa ni'lanianea 
de laria.ii'ii de \u) eon re-p.. lo ,i •. stanJu i - 1000’

2. Li lareo de un revLitiieuliv mide 4 pule mas ejue su aneho. \ 
las 4 pule de dilereiuia e maniierkti tutilorme el retían 
euin aumenla de tamaño Sea \in i paleadas tuadraJas el 
arca del reeian/nlo uno an^tio es de n pilleada', medido 
son cuatro titras siemncaloas f.n la cakulaJora obienea 
la lasa prumedii» de vari.ii.iiin de tiui uai rcspetlo a n 
euanJ ' n vana (ai de ^ 'HKla ' 2*1*1 do de ^ IMHI a klO*). 
itlde 4 0(K)a.>0)o idi de ^'KIO .i 4 0<)l lel.rualesia 
Usa in'Untanea de •..irutiun d^ loa ton rc'peeio a n 
..uandoi; -• ?000'

l a lev Je SteLn e ’al'kve ijue un euerpvi emite encreia 
tuJiame Je a.ueidu ton la loniiula A’ t. f ^ donde A‘ U' 
la medida de la u..i de eiiiisioii de «.nereia radiante por 
unidad tuadiada de area. J Cs la m 'Jida de la tcmperatiir.i 
Kelv tn de L su;Hrlieie, \ * es una eoiManle Delennnii. 
Ij) la i.is.i promedio de v.iria.ioii de R ton respeeto a I 
vUaiiJn 1 se inerfiiienta de 2(M) j tOO, do la tasa JiisUlUa- 
iiea de v.iriation de A'ton respecto a / tuando / - 201)

4. .Siip.mea t|ue un tilindio tiiwiil.ir retío nene una almra
..oiMaiite de 10 00 pul” Sea l pilleadas tuintas el volu­
men de! ..ilindio tneniar rw>.lo r pule.: Us el radio de -u
base Deiermme la tasa pioinedio de variaen'ii de l ton 
respe.-lo a r tiiando > •■aria dt oo de 5 IKI a -¡O, do de 
?.o*) .1 5 lo. lil de '0*1 a .*>01 (di Deieniime l.i las.i 
iiislanlanea de v.in.itioii Je V ton rtspttlo a r lu.iiuío 

t - ^ ff).

5. Sea r pulpadas el radio Je an plato mcl.ilito vio ular de 
are.! din piik’.iJas tuadr.iJjs) tiivunlereiieia de ( m pul

e.iJas Si el calor cvpande el pialo, delerminc (a) la Us] 
instamanea Je vanatnm de /Hr) ton respeclo a r. > (b| |j 
las.i msl.inlanca de variación de ('(/) con revpetlo a r (ci 
Pompare las respueslas de los incisos (a) > (b) y exp!u|ij; 
en tuaiilo difieren csias lasas

(i. l'i! solido tunsiste de un cilindro artillar recio > una h'- 
init'slera en cada exlremo. \ la loneilud del cilindro es el 
doble de su radio Sean ruindades el radio dcl tilindro s Je 
l.is scmiesferas \ Vrn unidades cúbicas el volumen del 
solido Delcnmiie Li tasa nistantanea Je varution de lin 
con rcspctl.i.i /

7. .Sean i la luneilud total del solido del ejcreiao fi v l'iti 
uiiid.ides tubita. el volumen del sólido en léniinios de t 
Delcmiine la lau instantánea de variación de l<u con 
respecto a i

8. La A V i/í fíi'.tf para la apansmn de un ^as es /M' = P. 
donde /' unidades de tuer/a por unid.ul cuadr.ida de arca 
es la presión. 1' unidades tiibit.is es el volumen del cas v 
P es una tonsuiiie (a) Miieslrc i)ue T decrete a un tasa 
propoitionaí al inverso del tuadr.ido de /' (l>) Deleimine 
!.i l.r a msianl.ine.ide vanatioii de Ptoii re-petlti ;i /'cuan 
do /• - 4 V r 8

I -i icmperaiuM de una persona es Jm prados I alirenlicii 
/ días después de .idiiuirir iin.i enlennedad i|ue dura Ib 
di.is, donde

l>n bSA • I 2f - 0 12r- <1 '■ i ■ 10

(ni Delermine la Ia-,i de vanauoii de Un ton rcspetio a l 
eiiaiidoO < / < lo , Piial cs la leiiiperalura de la jK’f-o-
ii.i V 1.1 l.is.i de van.iuon de la lemperaliita tii.nulo la per 
solía lia esl.ido cnlerma por ilil ' días. > lo 8 día'" 
Idi I ratc 1.1 prafiea de A estime tuaiulo la Icniperaiura e- 
un mavniio asi eonio la leiiiperaluia iiLiMina
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|li Supui^.i iiut imtHT dkl «le mu |vimiii.i nene
li'iin.i l'Kik.i IHiuimiie Ij Us.i «).. \.iun.n'n «K1 vnlti 
rrwn imimt««'ii h'|x.«Im a sii i.uln>«n m lu «sie nti.L 
laM'^«ni N it'l I «ni

11 I lu iivn« l'Hiiu CNleiuu IKteriimu la l.iu «le
«ajijvU'ii «Kl u'liimeii de la «.«'II i«.«i'u.ln al la.lm
,uaikl«'e'ie mi Je lal I ^ (iiii (iiiilum. \ llii 2 |iiu

IJ l’jtaeliunu'r«lele|eiu..i<> 10 deiermine lala-. ule\a(u«,inn 
jcl .«rea Je la Mip«.iliiie Jcl liinmr «.«ni tevjVLln al r.iiho 
vuami«'eNte miiic tut 0 5 em. \ (lil I un

1.1. [’.ifj la hacienaiiel ejeaieto II ileliriiiim.'la la'aile\.uu 
eii'H Jel area «le la >.upcrlleic «le la ha«iena mn ie'p«..(<i al 
raJa'«.iiaml«'eJe itmie (ui I “I iim (mitrasi v (hi 2 lim

14. Se uerle arena en un innruaulu «le Itiniu e«mka Je iii <«li> 
.jUt la altura Je C'le es el doble «le «u ia«lio Dwiennme la 
Usa Je «anaemn del u Jumen Jvl ninntiLulii «on respctlu 
al raJuiLUonJo la altura Je eMe es la) 4 m. % ibi S m

15. l na nusa de aire íno se apnixmia a un eampu- uni\er- 
«itanii de modo ijue si la tempuralura es 7in ^rad>u 
fahrcnheii / horus después de la media nothe. entontes

7im = 0 li4iK) - 4üf - r*i l) 7 S 12

iBi IXterniino la tasi promedi«> de vanatiiin de 7l7i eon 
rc'pctio a7 entre 5 a m \ f) a m (hi rjeiemiinc la lasa iiis 
ununcade «anation de /i7i t«>n res^vtti) a 7a las 5 a m

16. Se csunhi que un trabajador en una tienda don«lc se labri- 
«.011 mareos para pinturas pueilc pintor « mareos i horas 
después de c«imen/ar a irol).ijar a las b a in donde

« - + S\* - t' 0 •' i á 4

lili Delemiinc la tasa a laque d trabajador esta pmiaiiiln a 
las 10 am thi Deiertnme el numero de nuactis que d 
irahajaihirpimarácrirc las lU) las II am

17. So esta extras endis el agua de una pistma } d \olumen del 
jcuj después de f minutos de iniciada la exlraiciun es 
li7i litros, donde l(7j = IStJilWX) - SÜ7 * /-i.lalDe- 
icrnnnc la tasa promedio de la salida dd agua de la pis- 
tina durante los 5 pnmeros minutos, v (h), que un rápido 
sale cl agua de la piscina 5 minutos después de imtiada la 
exiTattiun ’

Se lanra una piedra a uii charco, generándose ondas 
urtularcs tonccnlntas Determine lu la «a de vanation del 
arca de [a superl'icic afettaJa cuando su radio es (a) 4 tm,
> Ibi7cm

El numero de dólares del costo total de lahncaciun de t 
rd(ije« en cierta fabrica esta dado por C(x) = 1500 + 

f j* Determine lu) la función de costo marginal: 
Ib) el costo marginal cuando x = 4f). (c) d costo real de 
fabneaeion dd reloj 41

El mgrcs«) loul recibido por la xcnla de x cscnlonos 
dolares, donde Rix) ~ 200 r - | r. Delennirw 

'10 la íurteiónde ingreso marginal. Ib» d iiigrc.so marginal 
cuando x - 1(j, (c) d ingreso real por la xenla del esen- 
limu

21. Si A'u I «lij iits i-, cl ingreso l«'l il lu Jmlo pnr 11 tenia ile
1 Oíjiiij’os d.. idetisi III donde/i’ni (>lHli «'.de
temiiiK (a) l.i tuiiuon d. iiigrt'o niaii'iii.tl, ihl cl iiigreso 
in iigiiud i ii.iiidi« « 2H leí ti iiigrtMt nal [Mir l.i tenia 
del u|iiipo lie leLtisioii 21

22. Si ( U) dnl.ties es el uisio inial p«ir labiitar « pisapapc 
les. s

deltriniiic tul la lunumi de costo margiiul Ib) el costo 
miiimial cuando \ 10 (cl cl costo re.d pir li f.ibraa-
I ion «Ll imt cae o pisapapeles

/ n lo\«;«íi/i «n 2í u 2^ «• ii7í/í'íí cl <o/i(r/)7í* tic Una n lutiia
«/«iiiu.h' í «iiiii OVIO’ 11 I f\xt líj la\a relama de \aruiciá/i

i!i \ ii'ii usfuild II t tn X., I Mil dil< nmiuidij por ‘ o

I I I< i/Hn<;/t;i7(7;ir/i7t --------  \ «iu/híh/íuvi í t,

23. I as iililnladcs .muaL bruUs de una compañía t .u’ios des­
pués lid lo de enero de 1W4 es /> millones de dolares, 
donde/» - ^ 7' + 27 ■« ID Determine (a) la Usa a la (|uc
l.'s utilidades hniUs crecieron el lo de enero de 1*'%. 
ibl Id Usa relativa de cmemiienlo de las utilidades brutas 
d lo de enero de l'T'lfi con aproxinucion Jcl 0 1 'í-.(c) la 
tusa a laque las utilidailes brutas «.(eneran cl lo deunerode 
2UIK) (rt) l.i lasa rdatita de creeimienio prevista de las 
utilidades bnilas d lo de entro de 2(MM) con aproxim.i- 
tu'm del D I '1

24. Cierta tunipañia inicn'i sus operaciones el lo de ahnl 
de IM')t las utilidades anuales brutas de la compa­
ñía después de 7 años de opcracii’m son /» dolares, donde 
p = stj(KK) + IKüOOr - 6007' Determine (u) la lasa a la 
que crecieron las utilidades brutas el lo de abril de 
iy95. (b) la tasa relativa de crecimiento de las utilida­
des brutas el lo de abril de 1995 con aproximación del 
U 1 91. (cl la usa a la que crecerán las utilidades brutas 
el lo de abril de 2(KD. (d) la Usa relama de crecimien­
to prctisla de las utilidades brutas el lu de abnl de 2003 
con aproximación del 0 1 9r

2?. Suponga que el número de personas de la población de 
cierta ciudad 7 años después del lo de enero de 1995 se 
espera que sea40r^ + 2(X)7 +IÜ(XXJ Dclenmne(a)lalasa 
a la que se espera crezca la población el lu de encni de 
20(M. (b) la lasa relatisa de crecmuenlu esperada de la 
pohlacK^n cl'lo de enero de 2(XM con aproximación del 
0 I (cl la lasa a la que la población se espera que ca*z- 
ca el lo de enero de 2010, (d) la Usa relativa de ercci- 
mieiiio prevista de la población el lo de enero de 2010 
con aproximauun del 0 I '4

26. Sea r el reciproco de tm numero n Determine lu tasa ins­
tantánea de vanaeii'm de r con respecto a ;i y la tosa relati­
va de vanacidn de r por unidad de variación di* n cuando /i 
es iguala(u)4. y(li) lü

27. lacs utilidades de ui.a tienda que vende ¡il menudeo son 
1(K)\ dólares cuando se gastan dianamcntc t dólares en 
publicidad y v = 25(K} t 3f« - 0.21'. Utilice lu den-
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x.iil.i i'.irj ilvtiimnur •■i i vcni-ii"''" H'*'- iiKr>.iiiLii 
I.i'i' ol ]'usiipiiL-std p.ii.i |nihlii.iil,ul SI oslo C'. >L (ii) \ 

(lil s^lK) uo , Cu.il i‘s el s.ilui iiidMiiiii pjT.i V I' i|>> el ui.il 
I. imumeiit.ir el pieMipiicsli' ile piiblu.ul.iil ’

28. I .1 esii.Kion ile nKii.i p.ir.i oiiiu lipu ile pl.isei.i- S' 
\ í/’’ • 2/', iloiule /) ilol.ites es el pieeiu ieb.i).uli> pur
pl.ivu.i eii.imii> se otteeen KMKIi luí Delernime l.i l.is.i 
pri'ineilii' >le \.injsuut ile la olen.i p.it.i una v.in.iuon ile 
'•1 1.11 el preui' ieh.i|ad<' viiaiuli' esle auiiienl.i Je SKi 
.1 Nll llu Delerinine l.i lasa mstaiii.inea lo ciurem.ili iL 
s.inasU'ii par.i una sanasuin Je $1 en el preeiu reba|i 
Ji> eu.inJo ese pieein es Je $10

2y. CaLule la pcnJienle de la leela láncenle en cada pvmlu Je 
la erallca de 1 _ ‘ - 3»'dunJe la Ij'a de\ana
Liun de la penJienle es eeru

30. Deiennine la lasa insianiaiiea de \anauun de la penJienle 
de la reua laiipcnie a la crafica de \ = 2i* - Oi' - 
1 s- I en el punlu 13, -2)

.11. l’ara el deiT.iine de pelroleu del ejueieii' $1 de la secunn 
l S \ iÍlI ejeisiLid II de l.i seteiun 2 2, LalLiile la i.isa j |j 
ijiie el r.uliii de la abenura esta van.iiul» .i los l:i) 0 4 unn 
Ibi 2 iimi lel 1 2 iniii

.12. Deimicsire i[ue p ir.i eii.ili|iiier limeioii lineal (. la l.na pm 
niediu Je \anaeiun de í(») eiundo i sari.i de i| ai, i- t 
es la misma i|ue la loa msi.mlanea de \ari.iuun de yin 
Ul l|

.1.1. nemuesiieiiiie en euali[uier insume l.i) la ra/unde la tasa de 
s.ifi.uiiin del aiea de un eireuto a la i.oa de \anaunn d,.l 
radio es lyual a la Itmgiiud de la ureimlerLiKia, > (b) la ra 
/un d- 1.1 lasa de vanaeiun del uilumcn de una eslera a Ij 
ias.1 de san.ision del radio es icual al arca Je la supertiu. 
d> la esfera

2.7 DERIVADAS DE LAS FUNCIONES TRIGONOMÉTRICAS

En la sección I 10 se demostró que las funciones trigonométricas son con­
tinuas en sus respectivos dominios. En esta sección se demostrara que 
también son diferenciahles en sus dominios. Después se emplearán csioi 
hechos para dibujar de manera lorma! .sus gráficas, las cuales se obtuvie­
ron en los cursos previos al de Cálculo aplicando sólo consideraciorie' 
intuitivas

Antes de calcular la derivada de la función seno, trace la grállca de 
NÜERísen T. i) en el rectángulo de inspección de (-2;r. 2ff) por [-4. 4) L 
cual se muestra en la figura 1 Puesto que esta gráfica se parece a la gráfica 
de la función coseno, con la que se familiarizó en los cursos previos .al de 
Calculo, puede sospechar.se que la derivada de la función seno es la fun 
Clon coseno A continuación se confirmara esta sospecha analíticamente al 
aplicar la identidad trigonométrica

NDLH( en a ii sen(« + h) = senil eos -i- eos ii sen b

FIGLR.A 1
asi tomo los teoremas I 102 y 1 10.5. 

.Sea / la función seno, de modo que

(!)

/(\j = sen .í

De la detlnieión de derivada.

fu, = I„„ >n

ss liin >■*-•$ 11 - seiK XI
\

Se einpiiM 11 lorinul.M 11 ¡ui.i -'.ii'v • *»>) j-oi loque
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lim '•en X ui'>i \ xl 4 eos » scin \ xl sen » 
.\ \

SL-n x|eOs( l| ^ seinAo
Iiin------- i-—;-------------- 1 4 liin  ------------------
\l •II ax \»

lllll
I - cOsI \ l» I liin sen x) 4 ( lim u»s x| hm «2>

' \ 1 »n I t \. .11 I \ i ..11 \ \.11 \x

De los ic('rcm.is I 10 5 \ 1 10 2 se nene

, I - tO'( \ XI ,, , sem \ x I
Inn --------;---------- 0 \ Inn ------ ------  = I
il-.li Jix ■ ii-.U

•\1 sustituir de estas eeu.iuones en (2) se obtiene

MU = -0 sen X eos i • I 
- eos X

De este modo, se ha demostrado el teorema sigiiieiiie

2.7.1 Teorema Derivada de la función seno
/>,isen U = eos.t

^ EJEMPLO 1 Caleule/iUsi

yi\l — X- sen \

Solución Al aplicar l.i regla del producto se obtiene

J'(\i = x:-D,t‘‘X-*f*+ P,{\-hc\\x
= i- COSI -4 21 sen r “ ^

Ahora esta preparado para obtener la derivada de la función coseno, 
pero antes se trazará la gráfica de NDl.Kicos.i. uen el rectángulo de inspec­
ción de l-2rr. ln\ por |-4. 4|, la cual se nuiesira en la tlgiira 2 La grallca se 
parece a la gráfica de la luncion semi retlejada con respecto al eje i. lo xiue 
sugiere (|ue la derivada de la lunuon coseno puede ser la negativa de la lun- 
ción seno Para confirm.ir esta sospecha analíticamente, se procede coiim 
con la función seno l'.n este caso se aplicara la ideiitiilad

costil 4- h) - cosíicos/i - sen (I sen/i (4)

Si g es la función coseno, entonces

gtxi = eos X

V'iil lim
X —o

tji X 1 A X) - el X1 
\

II(,LR\2
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l.' u I

s.-(.•tiiplt-.i 1.1 loniuil.i ( li i'.iu t \ii ili-d'PiHli.'SL-iii.MiL'
I . I's I UlM » I SL'II \ SJIH \ I I lHi \

\ I .ll \ '

Lii-, iku.l \ V 1 
lim -!■— -

.11 \-
'1 lini

^ I .11
M.M1 i ‘.t'iii \ \ 1

hm
\ I .11

m^i \ 1 I
Tx lim Lii--

.h
liin 'uMi xl lim

\ 1 .U / \ I .11
sL'ni A \)

IS)

Si se siisiKuse lie t.is lliulU’IIl-s i en i5i se hImilmk*

e i u - -'1 LOS \ sen i I 
••en »

De csle riu'ilii se lu ileniiisli.uli> el lenreiiKi siemeiile

2.7.2 Teoimna Derivada de ta fundón cbiénó
¡) iLi's il - -sen I

()hser\e ei sieno nieiius mies ife sen \ pera l.i dLmail.i ile eos \. ostn 
es. 1.1 ilemaJa de uis i es e! neji.iii\n de sen i. !iiienir.is que la derivada ile 
sen i es n’s t

► EJEMPLO 2 Delermme ^ s,
tl\

^ ___
1 - :LOS 1

Solución
,\! apliear la reel.i del niLienle se obiiene

J\ _ il - 2 eos \)/J,(seri u - sen \ I) l] - 2 cus v)
f I - 2 LOS i r

(I - 2 LOS ineos i) - sen \(2 sen u
S; ---- ---- ---------------------- ---- --

11 - 2 eos I )“

- ^ ~ 2(e'i»s~ V seir t)
11 - 2 uis XI-

eo■ \ - 2 ^
11 - 2 uis i )•

► EJEMPLO 3 raleiile

íi _ , J-----12 sen i T s cos i - x i
th '

Solución

-7- (2 sen I ‘ 3 ms x - t ’i - 2 eos i - I sen x - 3x ’ 
i/x

ri2 sen X 1 ^ eos x - \ ' -2 ■ en x - } eos x - (n
<h-

----- 12 sen X • X LOS X - X -
ih

2 lOs X + 3 sen i - fi 4
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I .is Jci ix.iil.is lii.- I.is linK iiiriL's l.miH'íili.' MiLiiijii-nK- \ cosfLanli.'
‘•i- iihliciu' lie l,is ikleiiliil.iile> li ii'(imnnL-liii.as ijue LnimenL-ii al seno y tosetio. 
asuunio laMlen\ atlas ile seno \ i oseno \ los leoicmas Je ilik'rcnuai.ion l'.na 
la JemaJa Je la lurision lani:cnk- se aplican la> iJenliJailes

. sen i 1 , , ,tan i------- see i — sen-^ a ♦ ms' i 1
sos \ ^,ns I

2.7.3 T»of ma Privada dm lo función fongente
/>,ttan »I -- see- \

Demostración

.. .. / sen i 1/Jjtan u = /), --------
' sos X '

sos \ />,tseti t) - sen t /->,(s'os xi
LOS" i

ICOS líteos tt - (sen ii(- sen \i
sOs' i

- s'os~ t -t- sen- r
LOS- \

i
LOS- l

= se..- I ■

‘2.7.4 Teorema Derivada doJa-función cotangeñ
\ t = -L'SS- l

I a demostrauon Je este leoreiiia, anaiojja a la Jel leorenia 2 7 3. se 
deja como ejcrsicio Cllm el eieruno 1) Eui la demostración iilili/ar.i las
idcnlidaJLs

eos V I
^.oi » = ----------- lsc V = ------------

sen i sen t

2.7.5 Teorema Derivadó dé Id fondón recamé

/)|tscc.O = scL T tan i

Demostración

I),íscc u = ^1

' eos \ '

_ siis X /;,<I) - I />,(LO' <I 

cos-^ \

_ eos X • 0 - I (- sen \ I
LOs" t

_ sen t
LOS- i

_ I . sen \ 
sos i COs \

= ses \ tan \
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► EJEMPLO 4 Okuk

,h
ii.m t scc \i

Solución

— (t.in \ sc». = Uin \ (scc \) + ~(i.in vi scv v 
il\ <i\ r/i

l.in visL'i. V (.111 ü + scc’ vt'-Cc v)
- scl‘V i.m'1 scc'i i

íl.icsc vi = -ese tcOt V

Lu iJemosiniLiiin ile esie (eiircina también se deja eonm ejereiun írefiu 
rase al cjeruei» 2)

Como se diju al prinupio de esta sescton. aliora se mnstr.ira como puc 
den dibujarse las crallcas de las funciones (ngonométricas aplicando la con 
tinuidad V la ditereneiabilidad de estas luncioncs CnmcTo se trataran las 
jtraheas de las tuiiciones seno \ coseno, cunos dominios son el eonjunioili; 
ios numenvs reales y sus contradommios son el intervalo ¡-1. 11 Sean

H\) = sen X y / (i) = eos t

Para determinar donde tiene rectas tangentes liorizuntales la grallca, se 
considera/'(t) = 0. de donde se obtiene que .x = + kn. donde k c-
cualquier numero entero Fn estos valores de x. sen v es igual a +1 o -I > 
estos son los valores mas grande y mas pequeño que sen v puede lomar la 
grallca interseeta al eje ten ios puntos donde sen v = 0. es decir, en los puntos 
en los que v = kíT. donde k es cualquier número entero Ademas, cuando f 
es un numero entero pAr.f'iknt = 1. y cuandt» k es un número entero im 
par J {krn = -1 Asi. en los puntos de intersección de la gráfica con el eje i 
la pendiente de la recta tangente es I o -1 A partir de esta intorinacion sc 
dibuja la gráfica de la tuncion seno la cual se muestra en la figura ^

A

/(I) sonx

Uta lu 3

Para la grallca de l.t función coseno se utili/a la identidad 

eos V = sent v + \7l)

Por lo que la gráílea ilcl coseno *e obtiene a p >' n la i ili i 'L! s .. I 
iiasiadai a niiidides a la ilereclia al eje > \ e.i 1 i l.jiira I



2.7 DERIVADAS DE LAS FUNGONES TRÍGONOMÉTRICAS 157

I K.l U\ 4

^ EJEMPLO 5 uhicnt.i im.i de Ij rcaa i.in^etnc a l.i
de la lun\.i><tu.O'etiii «.n el pimtK I n Ot

Solución
Si M X1 - n" ». M' I - -^en X Por hi i|ue / x , ;ri = -sen , ¡T Cnnio 
sen 'T = -I.M "t I De la íxirriu [uinni pendienle ¡MM 1.1 ccuaLion de 
la letlJ Unceme i|ue nene pendiente ! \ ipie pasa por el punto ( ,';r. 0). se 
obtiene

X - (1 = lu - -|
\ = X - " ^

\liora se wonsidci.ira la ¿iraliua de la liineion láncente Debido .i cpie 

lan(-il = -lan x

la ^r.it'isa es siinetrua (.«m respei.li> al ixricen \dem.is. 

tatn X f .T' = taii X

por lo i|ue la taiiciente C' penodua um pern»ilo 7l I a tunuon tanjjeiitc es 
vixntiiui.i en eiialijuier numero de su üninuiio. el sii.d es el soniunio de lodos 
Ixts números reales evsepto los puntos dt l.i lorma ' n + í.T. donde k 
es tuali|uier numero entero I ! eoiitradominio de esta lunvion es el eonjunio 
de lodos Ixis números reales Si k es uiakjuier numero entero, enionses un 
A,7 :s 0 Px«r tanto. |j j:ratita iniersesla .d eje x en los puntos xle la lorma 
ot,7 Oi .Sean

/i XI = lan X > / U) = see- i

Como C(Í.7I - see- kr: \ scl* A/T = i p.ira x.uali|iiiei numero entero k. se 
deduce que donde la craliea inlersetU .il eie x. la petidieille de la reda I.m- 
ji..iite es 1 Si se considera /(x) =11 entontes set- x = 0 Puesto ipie 
set- X i I para toda r. se t«intlu\e que l.i pralic.i no tiene reetas láncenles 
hori/onult's

('onsidere el mler.alo |H. '.ti en el que la Inneioii laiijiente esta de 
llmd.i en eualquiei numero

lim 1.1(1 X lini
, -I tos X

Puesto que iirn 'fii \ 1 s Imx eos i f). tiomie tos x tiende a 0
, .s/. ' . .f/-’

a Ir.ives de valores positivos, eiltiiiites

lim lan x -
. .t/2

reo
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Tabla I
1 hm \

0 n
' * ' 0 SK

(< ^ 1
1* I

1 jr . < I ’*

l’or t.mtii. I.i tcct.i \ .Tcs un.i \citic.ii ile l.i pr.ihi.i 1.a iahl,i i
imiostra aljumus \ali>ies ilc i dd ititcrvalo |0, [;n y lus \alnres cntrcspon- 
kiiciitcs lie* tan \ Al lotali/ar Iti>. |iiiiilo> aiy.is cimnlcnaJas s(iri Ids pares (Je 

luinieros n lan \l. se ublietie la jitireidti tie l.i pratka para \ en |0, 1;t) 
Del'iiln a la Minetna cun lesjH-eio al mijien. se obtiene la porunn lie la tiráti 
en para \ en t 1 rr. OJ foino el jH-iioilo ilc la hinuon lanj;enle es se enm- 
plet.i la itráliea de lan eoino se nuiestr.i en la heñirá

I a graliea de la Uincion wolaiiíienie se puede obtenei a partir de la 
^r.diea de la tanyenle empleando la idenlidad

Fir.l R \ 5

COI - -iam\ * ‘;ri

De esta identidad se deduee que la eráfica de la eolanyenle se obtiene de la 
gráftea de la táñateme, al irasladar ' ;r unidades a la dereeha ai eje s después 
considerar la relleMim de la gráfica con respecto al eje t. La gráfica de la 
lunw'ion cotangente se presenta en la llgnra <*

Fita K\

Como

stíd.t + 2ji) = sec.r

la lunctón secante es periódica con periodo 2n. fil dominio de esta función 
es el conjunto de todos los números reales excepto aquéllos de la loriiu 

+ kn. donde k es cualquier número entero. Fil coniradotiiinio de esta 
función es (-oo.-IJ U |l. +co). La función es continua en todo núineru 
de su dominio. La gráfica no intersecta ul eje .t porque sec x nunca toma el 
valor cero.

Se utilizará la derivada pura deiermmar si lu gráilca tiene alguna recta 
tangente boriz.oniaL Sean

/(.rj = sec.v y J'ix) - sec a tan .r

Al considerar f'ix) = 0 se tiene que .sec x tan .i = 0. Como sec v ^ R. en­
tonces f'íx) = ü cuando tan x ^ 0. It» que ocurre cuando x = kir. donde k 

es cualquier número enlerii.
Primero se obtendrá lu gráhea para x en l-jzr. U ( \ju ,‘w.Sc 

tienen recta.s tangentes hon¿oniules en.V = Oy.v = Además, como
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lim SL-L \ hm — lili] sec V hm ‘
. . í/" . »/:• eos \ or/J 1 .S/J eos l

- «■00 - -t 00

Iini sec i = hm — lim sec i hm
.*/J • eos \ •*/' . " «i/: eos X

— *00 - -00

1 monees l.is redas v \n. 1 ' 7 \ X <7 son •ismioias sertic.iles
di' 1.1 ¿:r.ili>.ti

(’on la iiiInrnKMiin .miLTinr \ liK.ili/.indo .il^unos ¡ninliK se dibiiia la 
LMaliia di: la liinunn saaiitc para i en K-' K ‘ .T» U ( \ n. ñ) Dehiiln a 
que el peiuKlii de esta liiiKion es 2.7. se ohiiene la urálica ninsirada en 
la lluiira 7

De la ideniiil.id

ese i = see(» - ',7)

rdt

I K.l RV 7

se iibuene la "rallca de la luncion eosecanieaparlirde la graHea de la seeame 
al trasladar \¡: unidades a la i/quierda al eje \. I a gr.'dica de la tuiicir'ii 
coseeanle se muestra en la llguia K

i>ii

/III ese l

fk;i ha k
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I

H(.l K\9

^ BJBMPLG ó Til pcmliili) (lo 1(1 cm de longitud lia nsuKiili) «Je 

iiuhIo i|iii’ 0 i‘s l.i mcilid.i en Miliancs del ángulo tomiado por el péndulo ^ 
una rala Nuriical Si hHi centímetro'' e^ la altura \crlical del extremo del 
jvikIiiIo |>or arriba de mi posición mas baja, tletermine la lasa instantánea di 
\anacion de/í(</icon respi'cio a dtuarulofi = ¡ /r.

Solución
Keliérase a la ligara ó C'onio/iiíji = - | Wf|. se tiene

/Kíli = 10 - lOcos 0 
JifOi = -lU-sen Oi 

= 10 seno

Así./i t ' nt = 10 sen ' ;r. esto es. /¡'( ‘;n = 5^ Fi h

(’nnclusMiti; Cuando íi = /T la tasa de sariación mstunlánea de /ilO) 
con respecto a (íes 5 cm/iad. i

EJERCICIOS 2.7
1. Demuestre /),(col u = -ese* t
2. Demuestre /i.iesc u = -ese i eot i

tn ¡o\ irjt ri icim 3 u ¡íi. uilt u/c la Jenunlu Jv UiJuru uiit 
y NjI ^ Iscnx
4. »I = sen X * civ, \

5. eiO = tan a -r eot t

(>. /(rl = 4 sce \ - 2 ese »

7. lit) = 2/eiís/
K. /ui = 4»-eos i

9. eirí = i sen i + ciH i

ID. ?(\» = 3 sen > - » eos I
11. fttr) = 4 sen » ciH I
12. fix) i í'sena 2ieosr

lí. /la) = i'eos r - li sen T - 2eos i

14. h{\)Ts >’ - i\'oi\ + 2vscn\ t 2eos»

15. f(xi = 3 sec i tan t

16. /(O = sen/tanr

17. J(y) - tos vcot 4

18. /rtal = cc*txc«J

tn Un rjfrrictoi /V a M ohienna Id demaJa.

2 ciH: i19. D.
z -t- 1

21. —
di sen a 
di

23.

25.

1 - eos X 

ton Idi tan / \ 
i/r' co» r - 4/

d r 1 sen y I 
U - sen V /

2ü.

22. JÍ.(U:Í\
dx \ COs X I

l COI y \ 
\ 1 - srn yj

24. ±

26.

di 11 - srn

d / sen a - 11 

eos j + 11
u

27. D,|(i scnriíi ■» eos tij

28. l> (•* + ctis.'il2: - sennl 

2 tsc f - 1129. D| i». D tan V ■' l 
tan V - 1.ese / + 2 '

En lo\ tjtrni im Jl o 42. xüUtdf NDER( /I tj. af en la grafito- 
dortt. Ofxpuéx tonfirme tu rcspueUa analíucumenif ontt 
mendo d valorexdito def 'iai
31. /UJ = JCüs i. d = 0

32. M») = tscn.i; n - ?;r

33. tix) = 

,M. 0 ti a •; <1 - TT

35. ji t) = tan t; u = ;r
36. /lr( = j’cos.r - sen «; a - 0

37. fíxi - sen ricos,r - Ij; u = ir

38. fixí = (cos.t -r litjscnr - 1); u
39. /(rl a rtosí rsen t: « = In

4(1, /(»i - lan.r + seca, o = n

41. Ati s: 2eotA - ese r: u = \n

42. /(rl = --------í------ .« = 'ff
aH X - \ *

4.3. (ui l'tiliee lu cuiculudoiu p.ini tubular con cuatro cifni'
scn(' /r + /il - sen ’ '

h
cuamlo li es igual a I. (I..5. 0 I. 0.01. O.ÍKII, y cuando/ic' 
Igual a -I. -0 S. -Ü.l. -0.01, -0(X)1 ¿A qué valor parcif 
que se aproxima el cociente conforme li tiende u 0’ d>' 

sciK/r + /i| - sen '

decimales los valores de

Deicrmmc lim
S-.0

como una derivada.

imcrpreiámloli»
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44 (,il l ni».'-' ).i vuli-iil.Klni.t i'.ir.i i.iluiLir coii uli.i'

‘"'I - r /jl - tos II ' ,7
J,uiii.ilc' U's x.iiorcs di' -------- :------------------------------1—

¡I

^u.inilo /; Os h-ii il a I H U I. (Mil. II (HM. \ luaiulo /t is 
loual a 1. I> ^ - (M, -t'lH, - (MMll , \ une \ .ilnr pa- 
lOvo i|uo '0 apri'Miii i ol nv.ionio innlorino li lionJo .i (I’

lOsI 7 * /l 1 - U's _ 7
ii>i noiirmino hin --------^— mior-

' .0 h
prJjnJaU'ivniK una ilorivaJa

45 iji liilisO !a lalsuladoia para tabular lon luaim oilras

laiK ' 7 * /i I - laii ' 7
d.Mmalos los valores do -----------------------------------  luan

II

do/;0'lOUalaM l.(Mll.(M)IH.mUMll (MMKXn.v mando 
/losipual J-(M -oni. -0(K)1. -IKXKH. mXXKII . 
que valor paroio quo so aprovima d uvionto tonlomic li

lan( 7 /i) - un ' t
tiendo a O’ibi Doiomiino lim ----------------------------- =—

.11 /;
iriorprotandolo lomo una Jomada

46. lal Liiliio la lalouladora para labular lon uiairo ciiras

«Cil ' .7 - /ii - soo ' 7
doiimalos los valores do --------- ---------------------------'■— luan

h
J i/ios ijual aO 1 iMll.fMKtl. (MHKll. 01)0001. v luandu 
/lOsuuja-l'I -OOl.-IM)01.-(HKKH,-0(X)001 ,A 

qu. valorparoio quo 'O aprovima ol loiionio uinformo li

son ' .7 * /j) - SOl 7
Hondo a (!'ib) Doiormino Inn ------ ----------------------- -—

—a h
ir’.rp'oijnJ do lomu una JonvaJa

47. (j( 1 iiIko la lakuladiira para tabular um cuatro ulras
IOS l - LOS * 7

d.vinillos los valores do --------------- ¡—'■— cuando t es
i - 7U

ipual a '7. .7. ''7 7. 7, V lUanJo t
I 1: : 1; ■!

o.icuala "7 '.7. ‘-''7. '''7 7 , A qué valor
I’ - I ' .a» r^«j ‘ ‘

pafOiO quo 'O jprtiviiiu ol coiionie confonno r tiendo a 

LOS I - tos ' 7
lili Dolirmine liin ------------- 1----- -— inlerpro-

V - 7

tandulo tomo una don\.ida

4''l- lat Liiliic la taltuladora para tabular ton cuatro cifras 

sen V - sen ' 7
d.sinidos lo, valores de ---------------- 1-----^— cuando v es

I - , 7

uua) a -7 '*,7. j' 7. '• '■liando »
, * <yi IH) i.»t ioi«)

V ii’Ua!a-'‘7, '7 "''7. ''7 7 , A que valor
•m j’o .iro ‘ ^

|aro.e quo se apioMina el totienie tontornie i tiende a

, . sen \ sen ' .7
•• (lov^viomune liiii ------------------------iiilorprtlan-

.-.-/l V - , 7 
i!"l<'comotn.i derivada

4'). lili ruine la talvuladota para lal'ular ton tualro tiír.i 

e.c I - tst * 7
dotimulcs los valores de ‘— tuaiido « es

i - ; 7

ipual a '7, '''7. ”7, '-''7 7. > cuando i es ipual
S >0 ‘0 U.l «I») ■' ^

a " 7, '7. "" 7 7 7 , A quo valor paroio
|s i'i i'o Hit i‘i,i ' ' '

quo se aproxima d LOLieiite Lonloniio i iiuide a '7* 

Lse V - ese ' 7
lb| Dolomiino luii -------------^--------- intenirtlaiidolo

> •-/’ V - ■ 7
Liimo uiu derivada

50. (ul l iiliLO la L.iltuladora para tabular ton cuatro cifras

col t - tot ] 7
detim.des los valores de ------------- ;--------- cuando i es

V - , 7

Igual a ■' 7 ‘' 7, ‘''7. 7. 7. y cuando t
-o OI ar.i ^ ,, ii,t, J

es Igual a ''7. '-7, '‘-7. '-'7. ‘"'”7 , A que valor
^ a<» >•! inj f li iiiyi ' '

panto que so .iproxinia ol touonlo tonlormo x Hondo

, tot \ ~ col ' 7
a - 7’ (b) Deioriiiinc Ion ------------- ^--------- inler-

" i'-'T/a 1-47

prcUndolo como una denvaila ^

51. r-iituontrc una ctuauon do la rttla tangonto a la grafiia
do la función sono on ol punto dondo («| i = 0. 
(bla = |7. (cM = 7

52. lintuonlrc una ocuación de h roda tangonlo a la gralita
de la tunuon coseno en d punto donde (u) i = ' 7,
(b| l=-Í7(C)t='7 

2 h
5¡. lincuenla' una etuatiún de la recta Ungente a la grafie.i

de la luntión tángeme en d punto donde (u) t = O
Ib) r = J-7. (c) V = - ' 7 

4 4

54. lintuenlre una ecuación do la recta tangonlo a la graf.' a 
do la luneion SLLanlo on d punto donde ía) i - ^ 7. 
(bl i = - j 7, (c) V = ^7

Lii Im i'jerutiiii 55 a 5H. imu ¡>iinú iilu u- /nucí o ti lo Itiríiii de 
ii/iii ruta de iiaicnlo a la 11 iiailáii, diwde i to/iíi/ric/ror 
¡a la dirigida de la [lariiiida di ule el onqo/i a lin i ve
i’imdin la) , Ciiiile^ um la \elinidad onroiiííoito 1 la 
tireliriit um iii\limtaneii de la ¡uirthiila a las t| o itimdin ' Ih) 
Drit niiiiie la \elinidad msítmhmeu i lu tuileraiiiiii im- 
t'iiiltiitea a lii'i ¡I u niindu-- [uira 1 adu uihr di f|

55. V = 4 sen í./i Ls Igual .iD. ^7, ‘ 7. ' 7, > 7 

5fi. I 6cos í, f, es igu.i! a 0 ' 7. '7, ' 7. y 7

57. V = -4 cosí, r, es Igual a0. 7, ^7, ^ 7. | 7, > 7

58. V = [ son/. í| csigiial .10. ^‘7. '7 ' 7. ' 7, 7 > 7

59. .Si iin cuerpo de peso ll libr.n es arr.islrado .1 lo largo ile un 
pisii liori/oninl a un.i velocidad coiislaiile pui una luer/ade 
inagmiu(iriibras> dirigida en un ángulo de f/nidumes ton 
respecto al pLuui del piso, enloiices / esta d.ida por 11 

cxuacii'm

k sen U + tos l)
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ilnihlc i es iinn ctrnsliintc llam.HÍj i orfít leine ile frn rírUi 
Si k U V ilctrnnmc In lu^J in>>unüni’ü iL* \an.u.ion üc 
f con rrkpn.toa ()iUjndu (al(^a> ^X(bl0ie i;r

bO. Se iliNpam un pru>«.lii tiende un laAon que tiene un 
ángulo de elesnudii de | a Ridunc> > una velixidad mi 
na) de t„ pies por secundo Si K pies es el akanic del 
pm>es.til, entontes

, 2
R a -íi— sen o 0 £ a s rr 

g

ik^nde ¡I pte/s* es la aceleratidn debida a la gravedad (o> 
Si V,) s 480 determine la tasa de vanauon de R con 
respecto a a cuando u b i ;r (esto es el ángulo de ele

vucidii tiene mu medid i ui nidunes de ('imsiilcK 
g - ^2 ll)> Deicmimc los valores de » pira los 
l)„R > 0

A). Si k es un numem entero posilivo. demuestre por mdts. 
clon matemática que

SI n = 4k 
SI n - Ak + \ 
s\ n = Ak + 2 
SI n = 4Jl + 3

A2. Obtenga una formula semejante a lu del ejercicio 61 [ur^ 
Doleos r)

/J,"(sen »)

sen t 
eos r 
-sen t 
-tosa

2.8 DERIVADA DE UNA FUNCION COMPUESTA Y REGLA 
DE LA CADENA

Para calcular la densada de una funciun compuesta, se aplica la rej'/u dt 
la iüdena. uno de los teoremas más importantes en Cálculo Antes de es 
tableccr este teorema, se presentarán tres ejemplos ilustrativos que 
muestran cómo pueden emplearse los teoremas anteriores para determinar 
las derivadas de algunas funciones compuestas particulares En cada ejem 
pío ilustrativo, se cscnbc la expresión final de la denvada en cierta forma quí 
podra parecerlc inusual pero que puede ser fácilmente asociada con la regla 
de la cadena

[> EJEMPLO ILUSTRATIVO 1 si

F(X) = (4t’ + 1)2

se puede obtener Tfr) al aplicar la regla del producto como sigue 

Flx) = (4a:'’ + í){4r'' + I)
F'lx) = (4x^ + l)D,(4x’ + I) + (4x^ + 1) /)^(4r3 + 1) 

= (4x^ + IH12x-) + (4x^ + l)(I2t*)

Así.

F'lx) = 2(4x^ + 1)112x2) (II

Observe que F es la función compuesta f ° g, donde f(x) — x’ ) 
j{(x) = 4x’ + 1. estoes,

Hx) = f(g(x))
= /(4x’ + 1)
= (4t2 + 1)2

Como/'íx) = Xxyg'lx) = 12 se tiene de (I)

F'lx) = f'ixlxiig'lx) (2»
4
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(/<») =: \cn 2\

pjM dctcTinmjr se puedL' emplear la regla del producto con las iden­
tidades irigonomctncas

sen Zt = 2 sen r eos » > eos It = eos- i - sen* i

Se tiene

G( X) = 2 sen \ eos x
6”(i) = t2seni) /),(cos t) + (2eosx» />,(sen v) 

= (2 sen r)(-sen x) -f t2 eos t)(e«»s x)
= 2(cos* t - sen'r)

Por tanto.

0'(x) = (eos lc)(2) (3)

Si se consideran Jixf = sen r y = 2x. entonces C es la función 
compuesta/ o e. esto es,

Cíx) = fiiii'f)}
= /(Zi)
= sen Zx

Debido a que/’(t) = cosa:y^''(t) = 2, se puede escribir (3) en la forma

G'íx) = /•í«íx))«U) (4)
<

EJEMPLO ILUSTRATIVO 3 Si

Hixi = (eos T) '

se puede calcular //'(x) usando priinero la identidad (eos x)"' = sec r.

//(r) ss sec X 
//'(X) = sec X tan x

s ^ X
eos X eos X

» (-1) —— f-**»:" í)
eos •' X

En consecuencia.

//'(x) = i Kcosx) ^|í-sen X) (5)

Cony(x) = X *yífíi) =■ cx)s X,//es la luneión compucsiii/ o^'teslocs,

¡Kxi = f(f({x)i 
• Jicos X)
= leosx) '
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I’uonK» que / U) = -I • í * y i>'lO = a. se puede expresar í5| en |j 
fiirma

//Ui = /U'HIl.eh) (ft,

i

Observe que los miembros derechos de (2|. (4) y (6) se expresar 
como / '(Vi 'IIVI 'I. quv e*s exacUiinenie el miembro derecho de la regla deU 
cadena, la aial se establece en el teorema siguienle

2»8.l Teorema Reglo de lo codenq
Si la tunción i; es diferenciable en x y la (unción/es diferenciable en 
.C( i). entonces la tunción compuesta/ o i» es dilerenciable en v. y

(/o AM'U) =(7)

La demostracnin de la regla de la cadena para todas las funciones di- 
fereneiables es sofisticada, por lo que se presenta en la sección suplemenlj 
na de esta sección. L'na demostración simplificada concerniente a funciones 
que satisfacen una hipiílesis adicional se bosqueja en el ejercicio 57.

A continuación se presentarán ejemplos y ejemplos ilustrativos que le 
axudarán a familian^arse con el enunciado de la regla de la cadena.

EJEMPLO ILUSTRATIVO 4 Sean

fit) = y .ctri = 2.r’ - 5a:* + 4

Entonces la función compuesta f “ está definida por

(/ ® ítlü'l = /(.!,'(ri)
= (2x^ - 5t- + 4)*'*

Para aplicar (7) se necesita calcular y Como /(v) =
JUÍ = lÜi^asi

/■(ííí.TM = 10[«(.i:)l‘'
/’(J!U)) = I0í2a-'' - 5x- + 4j'^ (8i

Además, como - 5.r’ + 4.

flU) = 6.r- - lOr (9l

Por tanto, de |7). <H) y (9) se tiene 

(/ « fO'(x) = fÍ!Hx))fi\x)
= I0(2.\’ - 5.r- + 4)'^6.r- - 10 r) *

l> EJEMPLO ILUSTRATIVO 5 Sean

f(x) = sena: y g(A) = x- +■ .3

Entonces la función compuesta / o está definida por

(/ o SHx) - /(ílx)t
= scnt.r- + 3)



\ lili ili- .ipliL.ir (7). se c.ikii!.! /■(1,'UU \ ,!,■■<»>. C'uimi /(v> “ sen 
/(U eos» In eonseiuoiKi.1.

í l.i.’(»ll = cnsK-U»)
I ( cnsii- + l| (10)

l’ucsioque eiii - i- + .1.

vVU 1k (H)

1‘or i.inlo. lie <7). 1 Mh \ 1111 ve otniene

(t 8 e)'(ii =s j (vui)e'(u
=i [ens( i- f .íi](2n 
= eosi i - + í)
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EJEMPLO ILUSTRATIVO 6 Suponga que

Pora determinar /mu. sean

< 1 
h\) - \ \ e(u = —=—

i - I

Entonees

/■(.ti = \ v’itj
ir - h-

Como //(v> = /(.líl u». de la regla de la cadena se tiene

/i’t.U = y’djír)) • g'io

-2
I r - I >‘

-160 
(X - il'‘

4

Cuando se calculan deri\adas por medio de la regla de la cadena, en 
realidad no se escriben las luneiones / y je como se iii/o en los ejemplos 
ilustrativos 4. 5 j 6. pero se deben tener en mente. Por ejemplo, en el ejem­
plo ilustrativo 6. como /iít> es la quima potencia de un cociente, cuando se 
aplica la regla de la cadena primero se utili/a la regla de la potencia y des­
pués la regla del cociente. Se puede e.scnbir el cálculo como sigue:

h(x) =

li'ix)

-2
i\ - ll-

-160
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^ EJEMPLO 1 Dtlirminc / (»l múllanle l.i rcjila de la cadtni

M O =
4 i ’ f 5 \ ' 7 i + .S

Solución Se e'.eribe M'l = 1^»' + 'í i - - 7í + H) ' y se aplita Ij 
reela de la eadena para itblener

fu) ~ l(4i' + - 7i + K» • 7\(4í’ + 5í‘ - 7t + 8j

= -l(4\’ 4 Sx- 7» 4- M -(I2x- + lOr - 7)

I2t- - lOi 4- 7 ^
l4x' 4-Si- - 1\ + H)-

► EJEMPLO 2 Calcule

'2x4-1
i/x [Mx I)

Solución De la regla de la cadena

d \i2x r nn í 2x -M r í 2t -1- 1\
d\ lIix i) J ' ^hx - 1 1 dx i - l)

,f 2t + 1 ])(2j - (2t -F 1)(3J
■*1 iT - 1 ) (3x - 1)-

4(2x 4- l)M-5)

(3x - 11“^

_ 1»^ 4

( 1 X - I

Si se uiili/a la nolauun de Leihm/ para la derivada, la regla de la cadenj 
puede enunciarse comí* sigue

Si V es una funciun de u definida por \ = /(») y ^ exisie, y sj ti C' 

una lununn de T. definida por» = g(t)y ^ existe, entonees v es una fun 

cKiii de r y ^ existe la cual está dada por

íh = di áii (12)
Jx ~ du d\

Observe de esta ecuación la forma conxenienle para recordar la regla de 1j 
cadena El enunciado formal sugiere la '‘división" simbólica de du en el nu 
merador y denominador del miembro dereclio Sm embargo, recuerde de la

sección 2 1 cuando se introdujo la nolauoii de I.eilmi/ se enfati/o tjUi.

d\ ni d\ se les ha d.ido significado independiente Por tanto, debe considerar 
se a (12) como una ecuación que implica una notación especial de dife 

rencijuon
Para escribir la regla de la cadena en otra forma, considere qiia 

II = gU) Entonces

(/ og)(x) =/(u) (/ og)(t) = DjUi) f'iifíx)) =/’(») gU) = 1^“
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í'im csi.i'í su^tIUuIUllc^ (7) SL- ir4iislnrm.i en

¡K\ /<»)| = 1 (!/)/),(/

Se iiiili/.ir.i esta tnmu ile la rehíla tie l.i cadena ¡i.ira esiahlecer (órmulas de 
dilerenei.iLion iinporianles Ln parlitular. se tiene de Ins luiremas 2 7 1-2 7 6 
las lornuilas sieuienles i|ue implican las derivadas de las luncioncs irigimo- 
nietricas Si u es una luiicitm dilerencial'le <ie \. entonces

/7,(sen 10 = /J,tcosí/) = -sen»/),»
/>,(tan») = see-»/),» /),(cot») = -ese’»/),»
/-),(secHl = sec»lan»/),» /),(csl»j = -csc » col »/),»

► EJEMPLOS Calcule/'(O SI

/■(O = ijiu3f' + 2o

Solución \l ulili/ar la reela de la cadena se ohliene

1 (n = sec-(3i- 2n + 2r»
= see-(3r- + 20 - (6r + 2)
= 2(‘'/ + 11 sec-(3/- + 2o ^

► EJEMPLO 4 Calcule ^ sitl\
\ = senicos \)

Solución Ai aplicar la regla de la cadena se tiene

^ = cos(cos o[/)i<tos \>J 
- costeos u[-sen\1
= -sen ilcostcos v)] ^

Por supuesto, los cálculos de las derivadas de los ejemplos anteriores 
pueden apo>arse gráficamente Para eonllrmar la respuesta del ejemplo 4. se 
(razan las gráficas de la lunciones definidas por /(i) = -sen r|cos(cos rj]
► NDERisentc-os v). x) en el rectángulo de inspección de [-2;r, 2;rl por 
1-4, 4| como se muestra en la figura ! Las gráficas son idénticas

l-:-:.2T|íxfl-4 4)

^"1 en i |to (ui" ti|
• MJLH(\sr(ui, (I 1)

► EJEMPLO 5 Calcule

IIGLIU 1
/J,(sec-‘2i’)

Solución Se empleara dos veces la regl.i de la cadena

/),(sec--^2v-) = 4sec’2i-l/7iivec2i-)l
= 4 sec ' 2\-[(sec2\ - tan 2i-) /J,(2r*)
= (4 sec ' 2 tan 2\-)(4i)
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^ EJEMPLO ó 1 n el cjempUt ^ de l.i scceuiti 1 se Uiui la siiuu
eiiin 'iiimcnte eii un hosque. un ilepredailor se almienia de mi presa. > Ij p,>. 
hl.ision de deprid.u!iues es lina liinenm de i, el lunnero de presas en el 
buNi|iie. el eual es a su \e/ una limLinn e de /, el luimern de semanas i|ue hjn 
irafi'suiiidii ilesde que lermimi la lempoiada de ea/a Islas luiKiunes s; 
espresaron enmn

mi ' i- - 2x + \ e(M 4/ * 52• N •

donde II • / ■ M Deteriiime l.i lasa a la aial Csla eretiendo la publacmn 
de depredadores 11 semanas después de que se eerro la lenqiorada de ea/j
I lilieo la teyla de la saJena sm expresar / o i- en lernunos de /

Solución I.a tasa a la cual esia ereeiendo la población de depredadll^c^
II semanas después de cerrada la temporada de ea/a esta dada por 
I í : t.’) (111 Se empleara la rejila de la cadena para caleulari / o ei’iri Como

MU = \ ‘ - > í (/I = 4

(t cH/i = I U’(/iK’'in

= 1 .\i4r + 521 - 2)4

Por tanto

1/ ^ cM’dl) = '(44 + 52) - Hf»
-= H

Conclusión; Once semanas después de cerrada la temporada de caza. L 
población de depredadores esta creciendo a la tasa de H aninialcs por 
semana i

Ahora se presentara un.i aplicación de las lunciones seno > coseno en 
el moiiinit'nio arnwnii o uiitple .Se dice que un objeto, el cual se mueve so­
bre una recta, tiene inovinilcnto armónico simple sj la medida de su ace­
leración es siempre proporcional a la medida de su despla/amienlo a partir 
de un punto fijo sobre la recta. \ su aceleración y desplazamiento Ue 
nen sentidos opuestos Los modelos matemáticos que describen el mo­
vimiento armónico simple vibraciones u osciíaciuies. están dados por ÍJ' 
rununnes

/!/» = a sen hit - t) (13)

fin = iienshil - () (14)

donde fin représenla el desplazamiento del objeto después de l unidadc' 
de tiempo, y o. h y < son constantes

EJEMPLO ILUSTRATIVO 7 .Se mostrará que la tuncinM
definida por la ecuación iM) describe un movimiento armónico simplr 
í:l desp|.izainienfo esta determinado por

fUi = II sen />!/-()



FK.Un 2

\ l.i liiiKUin ijiie pru|itiruoii.i Lt aidcraLUtn es / (O. Ii ui.il se t.ikulj 
.1 eoiilimiauoii

/(/) - (i/»uis Mí - 11 \ / (/) -,//>-sen M/ <)

l’iT linio, t U) -/i-/in Como -h- es uní tonstaiik la ateleraLum 
es proporvional i[ despla/ainienlo \ikinis. eomo -/'• es neyalis.i la aee- 
leraeion \ el ilespla/annerilo tienen seniuJo opiiesii» [ n umseeiieiiLia el 
mo\ I míenlo es armón leo simple M

In ejemplo de movimiento armonieo simple se présenla cuando se 
suspende un euerpo de un resorte el eiial \ihra venicalmenle Sea v eenlimc- 
iros la distancia dtrijüda del cuerpo desde su posieion central, o de reposo 
después de I sejiundos de tiempo Vea la ligura 2 donde un valor posiiivo de 
V indica que el cuerpo esta por .irnha de su posición central Si en un sisle- 
ma de coordenadas cartesianas rectangulares se marcan los valores de v para 

V < fi espetiÍKi's de i v si la trieuon no se loma en cuenta entonces la
^ . graticü resultante tendrá una epilación de la forma l M) o (14) Las constan­

tes a. h \ c están determinadas por el peso dd cuerpo y el resorte asi como 
la lorma en que se pone en movimiento al cuerpo Por ejemplo, cuanto mas 
se tire del cuerjvi hacia abajo antes de liberarlo, tanto mavor sera ii. la 
ai] plitiij del movimiento \demas cuanto mas rígido sea el resorte, tanto 
mas rápido vibrara el cuerpo de modo que el menor valor sera el [iinotlii

del movimiento Si P es el periodo, entoni.es /' = ~ 1 a luauiuia de

un movimiento armónico simple es el numero de vibraciones u oscila­
ciones. por unidad de tiempo Si n es la frecuencia dd movimiento, en­

tonces /í = 4t
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► EJEMPLO 7
ecuación

Ln cuerpo vibra veriicalmenie de acuerdo con la

s = 8 eos ' ÍTÍ

donde i centímetros es la distancia dirigida del cuerpo desde su posición 
central leí origen) a los l segundos y el sentido positivo es hacia arriba
(a) Determine la velocidad y la aceleración del movimiento para cual­
quier I (b) Muestre que el movimiento es armónico simple (c) determine 
la amplitud, el periodo y la frecuencia del movimiento (d) Simule el 
movimiento hacia arriba y hacia abajo del resorte en la graficadora (e) Tra­
te la gráfica de la ecuación del movimiento

Solución
(a) Si I centímetros por segundo es la velocidad y a centímetros por se­

gundo por segundo es la aceleración entonces

- ih.
l = -T- <1 — ^

<ll ‘O
= 8(-sen ';r/i(';n icos

= -'‘/rsui \ni = - "«--eos \tu
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(b) Ocl \.ilnr de \ en l.i cauicum iLal.i y d v.ilnr de ii del ineisii (.1), se nh. 
sers.i i|iie

Coiiu' <1 es proporcional .1 ^ v de senlido opuesto, enlonces el iiio\j. 
míenlo es armónico simple

(c) La ecuación dada es el caso espeual de (14) donde a = H, h -
< = 0. I a ampliiud del mo\ límenlo es o, la cual es X; por lanío, el

2/rdespla/.imienio máximo es K cm. Si I' es el periodo. I* = f~:, esio
\l>\

es. /’ = 0 Por tanto, se necesitan b s para una vibración completa iltl 
cuerpo Como la Irecuencia 11 eslá dada por l//’, n = I- Así. se tiene 

de \ ibraeion por sejtiiiido,
(d) Para sitnular el nun límenlo, siiponpa que el cuerpo se mueve sobre la 

recta \ = 2 Con la grallcudora en modo paranicMrico. sean

t|(/) = 2 V tjlí) = S eos ',;rr

í
L
i T = ü 

: \ 2 ■V -S

10. 4|fvrl-l(l H'l

lio 2. ' i/t h vil. '

M(;i

E l(;i u\ 4

El movimienio se eteclúa indefinidamente, sin embargo, se .simulará d 
mountienio para 0 < f < 12. En el reclángulo de inspección de |(). 4] 
por [-10. lOj. sean f„,|n = 0. /ñus = *- >' Ltcp = Ahora presione 
la leda i tracé) {nisircn) \ después la leda Jlcclui ti la izíjiiii’rda man­
teniéndola oprimida hasta que el cursor esté en / = 0 La figura ?< mues­
tra la panlalla de la graficadora como se ha mdie.ido Presione la leda 
Jhíliii ii lo iIlTi'íIki y manténgala oprimida para observar tpie d euerpi', 
representiido por el cursor, se muexe hacia arriba y hacia abajo a lo larga 
de la recia xertical t = 2

Note que inieialmenie. cuando i - 0, la velocidad v es igual a cero, 
la aceleracii'm <1 es negativa \ v = 8 de modo que el cuerpo 
está a 8 cm arriba del origen, la posición central En el primer I s. la 
velocidad es negativa pero la rapidez. ]v|. es creciente Durante este 

liempo. d cuerpo se mueve liacia abajo una distancia de K cm a su po­
sición central porque cuando r = 1 5, .y = 0 Observe que cuando 
f = 1 5, í; = 0. de modo que la aceleración del cuerpo es cero en su po­
sición eenlr.ll En d siguienle 1 5 s. el movimiento del cuerpo eontimij 
hacia ah.ijo, cuando su’ rapidez es decreciente hasta después de un loul 
de .1 s, el cuerpo está 8 em dcb.ijo de su posición central Enlonces d cuer­
po cambia su dirección y su rapidez, es creciente hasta que alcatiz-i 
su posicn'm central; posleriormenie. su rapidez decrece hasta que regrc'J 
a su posición inicial después de 6 s. Luego, el cuerpo cambia de ihree- 
ción y el movimiento hacia arriba y hacia abajo se repite indefinidamente

(c) La figura 4 muestra la grúllca de l.i ecuación de movimiento irazaiii 
en el reclángulo de inspección de [0. .íO) por [-10. 10) ^

En d ejemplo aiuerior no se consideró la rricción. la cual ocasiona que. 
evenlualmenle. d cuerpo alcance el estado de reposo. En la seceii'm 5 4 se 
discutirá d iiiiniiiiu'iiln iiniitiiiiai umoi¡i^iuulo en d i|ue se loma en eiienl-i 
la fricción, como una aplicación de la Jiiiit iiiii l•^|ul^u'lll■iltl luiliiral.

EJERCICIOS 2.8
lili fjin HUIS III 12. (ulailf lii ihriuiílii i/c Iti fiiiit itiii. 2. TlU = (i* -h - .‘i)’

1. = l2» -f ll' 4. elT) - l2r^ -I- Kr- + I)'

2. /U) = iH) - 5t)' 5. /(/) ^ l2r‘ - 7/'-+ 2i - Ir
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6. ll>- , ( ’ 1.-- • h ‘

7. lis' iv' *• 4i

S. tiO sen »

9. (Ul 1 IOS U 1 sen 4i

1». (ai 1 set i

II ' t, 1 [ set‘2r set 2t

11 /MI l.lslU * ll

¡ni- , ,yirin un 1 la U‘. eletermiiu

1.1 i.i
iset" i tan «' N.

15 ,/
di

itol^í tst’n

16.
J_
ilx

[i4i- . 7rt2»’ ^ l)‘|

f 1/.’i ryi-r. iiM ¡~ ii 24 niliuli hi íIitimuLi ilf la íuinion \ 
,• iií >j rc^pucUii irtfaiulti la\ yni/jc iik \u n \[nu \ía v ih' la 

J.M Jaitumtrua < n i uní miuiin rtilarí;¡ili‘ Jf in\¡uu lan

17 /ID = IM. rui 2r + I
.V+ 1

19. 1,-in = M;n- 11

2ü i;nl = t.in-«-

21. fítl = iljir X -

21 f<iii l2 'cn t ' u'

11. íul - 4 LUM'cn i)

24 /((I = •«.•n'li.Oi 2 u

Ln li‘\ i]tr,uto\ 2' i 2^1 ii'iíiní;a uita nuauí'it di la ruta 
tu-.^uUc a la ¡una Jada t/i ti punía indiiiida, v apasc mí 
n pii irtitiirdii la ¡tratiui di ¡a i im.j \ la ru ¡a lanittiiir ui 
it mam' ru lanitulii de iiapi 11 laii

25. _ (t- _ 11’ tn ul ruril-n2. Oi

26. 1 4ijn2t en el pumo t I4)

rjert u iii\27 a MK lauitui lán deu nhc el nuntmu lUadi 
li': laupn \u\pcndidn di un reu/iie i/uc uhra xi iliialniaiu 
2' • le u tnlinii !ni\ t í hi dnlaiu la di I i ui rpo di ule SH pau 
ii"n 11 niral ii I ani^inl a l»\ l u cundía \ il u mida poulna es 
liaua arriba luí Cahiile la ulvitdad v lu iitiliruiiiin dil 
''■••■iniunla pura lualípiiiri Ib) Muestre e¡tie il mas iiiuenla i» 
amor.iiii simple u i Dtieriiiine la iiinplilud, il ¡urunlo \ la 
i'i urnua lU! nuniniiuiia (d) Smiide <1 tnouiiin uta liana 
arrilij \ hami ubaju del resurte en la i;ríí77( adara li) frai e 
'a I niñ, u (/,. i¡j, ,-¡,m I „„„

-1 - (,scn 1-T/ 2K. \ = 3tos 'ni
» 0

' 4los,ti2í ’i

H sen ffiV I)

ln I,a fjif, I, jj ^ ^2^ 11,1,1 ¡lariiiida u uniese a la lan;a de 
‘a-a tu la de III ¡it ida i un la u ii¡¡, i,ni de inn\ inui nlii eluda ilvii- 
'T t nutru, , i„ ¡lisiaiuiu ehrnnda ele lu ¡lariieiila dt uh el 
"'I <11 a li>% I ufiuiieliis l)et<rmiiie lal ¡a selaiielad i (h) la 

dt la partí, ida a las I sei’Uiidas s U I nnu sire ipie 
'^"unimiuihi, V aniiuiiiiii simple

.11. \ /leii-vii; + < I. iloiiile/<. A > í siin Loiisi.mies

.12. ' l sen 2/rA/ + It ios 2nki. ilomlc \.H \ A son 
voiisi.inlcs

I n las e]< le I, un ii lf>. taiii pal lu lila \i mu, se el la liiri;ii de 
iiiiíi retía ele lUiiiiila lan hi itiiaiiiin ,le iiunaiiu iilo ihiila 
daihl, <1 lin I ses;iaid,'s s pus es 1,1 ilisiaiiiia iliiieiila de la 
/’iif/ii ii?ii líesele ti aiieiii, i pus par seitiiiulo <» la uli’iitlad 
V a pie s pal se s;iahl'i par scs;iiii,lo , s la a, < h nii iiai de la par 
tullía un Ihliiiniiu i s a en Itiminin ele t (hi Muestre iiiii
II niiH iniu Illa e s tiiniaiiu a siwpli u I Sinnde e I iiiasanu nía en 
lil teralle tidaia

.13. \ = 5 sen tu + 1 i_os tu

.14. ' seiiK'f 1.TI •* seriK'/ t ' tt)
• f»

.15. \ 5 lü sen' 2;

36. s = S tos" (lí - 4

.17. I l'ur.i el péndulo del ejen)plo 6 dt lu '■ettiiin 2 7. mués- 
ire tjue tilru etuution nue define Infíles

hUh - 20scn- 'u

Siis;erenua ulilite uiu ideiilidud irigujiumelrit.i A p.inir 
de esl.i etuetum tule ule lu lusa insiunune.i de varutión de 
litíh Liin respetut a 0 cuando (li) 0 = ;r, (c) ü - ^ ;r.
(d) 0 = \n

.18. Si K unidades tu.uiradas es el urea de un Inangiilo rec- 
laneulo. H) unid.ides es la liingiiud de la Inpmenusa. y a 
es la medida en radianes de un ángulo agudo. enUintes 
fs = 2^ sen 2a Üeleriiiine la lasa insianianea de van.i- 
tion con respetio a K. uiand.i (a) « = |;r.(h)a = ^ ;r.
le) « = ‘ ;r

.19. Li les de Diilong esialdete i|iie si /’ aimosler.is es la pre­
sión absoluta de un sapor saturado a una lemper.ilur.i de 
/ grados Ctlsius. entontes

/I {ál±Z¡ r>M
\ 141) /

Caltule l.i tasa insiaiitanea ilc sariation de /’ ton respctlo 
a7.LUando(a)/ = 100, (li)/' = 12

40. Si a los I segundos,,/ touloiiibs es l.i targa en un tapaulor 
e / amperes es la tómente en el t.ip.itilor, entontes i es la 
Usa de sari.itiuii de </ ton respetto a / Suponga ijue p.ira 
fterlo tap.itilor

1/ a • di tostfor * (¿t
' (I)

donde A. lo > <¿ son tonsianits l-.sprcse i tti lenmnos de /

41. Se totisim>e mi péndulo de loisioii al suspender iiori- 
/iiiilaliiieiile un disto nielalito üiiifoime iiieili.inte un 
al iiitliie desde sU ttlitro .Si se dtspla/a el péndulo y de. 
pues se impulsa de ni.mera peiiiciiditul.ii a ditlio ilespl.i 
/.imieiilo se oblemlr.i ti moMinieiilo atmomto angular 
simple Supoiig.i ijue a los / segundos el despl.i/.imien- 
lo aneulai de 0 i.iJiaiies tlesde t.i position imtial esi.i 
d.ido |ii>r l.i ttuatioii

II 02tos/r(f OS)
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IVtonnniL' loii .ipioviiti.uioii >lc tl.iiimix do i.iduti por 
>otMirKlo qtio lai) i.ipido L.iiiil'ta ol aiii'iilo a lo-< ^ I '

42. iKiU'U' la liiiKion «il'UMida «.orno tiuxk'lo malciiutko m 
ol iicuKio 2s ik‘ la '•ou.ton I 1 poi l IKlornntio uai 
a|'u<\ini.Ki>>n do dk<.iiiios la lasa iiislaiil moa do \aiia 
i loii do loii lospooio a I k u mdo lai i i) 
<>il\ I II \ U-) \ I I

4.V La Itioi/.i cK\tiomotn/ para un oiuuilo cLun.o oon un 
¡.'onoiador siniplilit-ado os /in volu a los r so^uinlos don 
do / iM - so son l20/:f l aluilo la la^a insianlatioa do 
s..nak.ioii tJo hn son fospcsio a f suando <<ii t ■ lio2 s 
\ ih»í o; s

44. l na onda prinhisida por un sonido siinplo tisno la Osua 
oion /’in = oüO'^son I Soop/ donde /’m dinas por 
sonlimotro siiadraJo os la ddsTonsia entre ia presión at 
mostoiisa s la prosMn dol aire en el tinipano dol oijo j |,is 
I segundos Ds'iennino la tasa mstanlanoa do vana..ion d. 
/’</> ton re'ps'sts» a r suando í es liiual a la» s ibi
U'l . s

45. la etuation de demanda pata un luouele p.irlisular s> 
p-i = ,So(M) donde » es el numero de jujiuotes qus se 
\ endon por mes. ..uanJo p dolares es el propio por m¡:uete 
Se espera que en r meses el ptetio del jiicuete sera p do­
lares. donde 2><p ~ f "U ^ loil v r 6lu. t>) .C'iia! 
es la tasa de \anaeuin esperada do ia JoinanJj después 
de 5 nifscs’ No exprese r en temimos de /. uulisc la re­
írla de ia taJena

4(). Para el derrame de petróleo \ la lunsion A del cjertieio S4 
do la scction I ^ hajra Ui Mcuiente la» Demuestro quo \ 
es ilitcrenouMe en 2 ihi nblenea tai Deiomiine la 
lasa a la que el orea Jo la gneta csia sambiando a los 
lc> U4 nim. id» 2 min > (e)' 2 imii

47. Sean fn> = t' \ sM»* - /ii'i Cakiile la) />»*».
I Ir 1 e I r ■

48. Sean /i«» •= ir - ‘'.i > ei n = u - I i/u - 1»
Detenmne !a domada do I e xm dos formas lal pri­
mero taleuic if wiiii > luego obtenga if ei'iu. 
I b I uiiliee la recia do la cadena

49. Obtenga la lomiuia para la domada de la liinuón coseno 
empleando la bumula de la dentada para la iuntion seno, 
la ugla do la cadena \ I.is identidades

cOs.i = 'cm 1.7 - ti j sena = cos( 1" - ti

5(1. ( tilito l.i topl.i do la caduia para doinosn.it que (¡i) 1.,,^ 
m.id.i do iin.i liiiaion p.ir es una Iíiihioii nnp.ir lh| |j 
doMs.idi de iiii.i liMMon impar es ima Inikion pit up, 
mondo i|uo l.is dem.nl is oxisien

51. I mplee d uMillado d.l o|i.ititio .‘'lUi/i [uia Juno iij 
i|ue M e es una lunuoii p.ir t el»» existe \ si lux,
>1 siM) V / es dilereiitiahle en iii.ilipiKr miiiarocii 

lontOs /i il»i II

52. Siipoiip.i quo I \ r 'oii UiiKionos i.iles que / lii i
1

\ 1/ siMi V Duiiiiostro quo'1 e “l exisie, eiilon.^
s'lU - vU»

.«3. Soa

jH, I » '011 — s| I O
i U ' SI I = I)

lal Domucslro que / C' conlmuj en O ib» C aLule ¡iv 
iii Demiiosirc que t es di'vonimua en i»

54. Sil t e’existen t si/i / e-c’xpiese/i lilerilénni 
nos de las dem.ul i' de I \ e

55. Distula el mosimienlo aniionioo simple ilet uicrpo d;l 
eiettitio 27. tomo se iii/o en el iiitiso (di de! ejemplo?

5í». Sica las in'lnatioiies del ejoititio 5^ p.iia el movinium> 
.imionito siiiipte del tuerpo dostrilo por la ecuation dd
ejL-rwitio 2?»

57. Suponga que f > e son dos fiiiiuones t.des que lil e’< t|l r 
I ieiX|i) existen s (iil p.na todo \ í i, de algún interta 
lo abicno que tonlencu u t|. eli) - elxi» * 'I Fnlonte»

i; en 1» - ■ / en »i I 
1 - M

I / o e»( 11 - I y - eii i,» e< x» - yiiii
el o - e< »i I X - i,

lu» Demueslre que toiiforiiie i —» i,, eUl —• el'i* > XP 
tonseeuentij que I y ° e»’l >|» = /'leHi»»e‘l i|l 'H” 
plillcándosc as» la demostration de l.i recia do la caJora 
bajo la hipi>tt's|s aJiuonal <ii» (b| Explique por quo U 
(L'iiiostraeion de la recia do l.i cadena dada en el int|s<> 
l:i» se aplica SI/(ii = x* t em = x . pero no se aplisJ 
SIfix) = X*) el»» = sgn T

2.9 DERIVADA DE LA FUNCIÓN POTENCIA PARA EXPONENTES 
RACIONALES Y DIFERENCIACIÓN IMPLÍCITA

En la secenm 2.4 se inostro que la denxail.i i!e la fundón poU-nda, tionniJa p"'

/(XI = .r" (li

está duda por la ii>nnu).i sicuienie. donde res un entero posiino o negainc 

fi\) = ri'- ‘ |2I
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Aluu.i ik’inusir.ira ijuo esta luniiula se cunipk Luatuio / es iin lumicro 
raeinnal st'ii sierlas esiipiilaeioncs cuaiulo i - ()

l’iimeto considere i|ue \ 0, j / = \¡i¡ donde i/ es un nuniem en­
tero poMiiM) I nionees la eeuatiun (11 se puede esenhir eiinm

MU i’'*/ (3,

De 1.1 tlelmition 1 1 ^

t (U litn
\t •!< Ax (4)

\ Im de esaluar el limite en (4) se debe raeionali/ar el numerador P.ira lo- 
eraresto se emplea l.i tormula sijniienle

,í" - /j" = (</ - hua" ' + íi" -/> + a" V + -I- ah" - + (5)

Puede eonsiderar esta lormula de sus eursiis anteriores al de Caleulo Si 
no. relierase a! suplemento de la seeción 1 5 donde se obtuso como la eeua- 
eion(12i

hl numerador de la Iraeeion en (4i se raeuinah/a al aplicar (S) donde 
lí = h = i^’'i \ n = t/ De modo que se rnullipliea el nume­
rador > el denominador por

|u + *' + |(\ -1-

bnti’nscs. de (4i Mr) es igual a

|i\ Au' I - tN[jir ^ ‘ / + n 4- -r -f

Alill - -s (\ -r Al)"'
(6)

\hora, SI se aplica i5) al numerador, se obtiene (i + lo cual
es Al Asi. de (bl

/ m = liin -------------
.\l-*(lAv[(t r

Al
Ai,'./-li'^ + ix + Ar/'/'-'^'/i'/*/ +

- ||,„ ----------------------------------
ii-íO ^

eomo ha> exaetamenie (/ términos en el denominador de la Iraeeión anterior.

/'(i)
i/i'

fix) - -í-i"'/ ' 
‘I

(7)

la cual es l.i lormula (2) eon r l/f/ Con esto se lia eomplelado una 
etapa eTUeial de la deinoslMeion A eonlimiaeluil se debe mostrar (pie la lun- 
eion definida por es dilereneiahle. ademas que su derivada esta dada 
por(7)
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AIh>m. i'n (1) con \ * 0. scM r - /»/(/. ilotulc /» es cii.ilijuicr Mutin;(, 
cnicn» (lilcrcnlc de cero y </ es cu.ili)iiier número enlero postiivo; esio es, rt, 
LiMlquier numero Mcion.il esccplo cero lüilonces. {I) se puede escribir cntr.,

/(O = c::- /(O =

De la re^la de la cadena y de la regl.i de la polenua para números enu-n 
posituos > negativos, se nene

/’UI =

Al aplicar la lomiula (7| para /.),(xnc oblicué

/•(O = '• '
</

f^^) = £.,/'</ 1/7*1/'/ I 
<1

y (\) =
<!

E-'ij lórmula es la misma que (2) con r = /j/</
Si r = 0 y X * 0. (1) se transforma en f[\) - r'*. esto es,/(r) = I 

De modo que]'{\) = 0. lo cual puede escribirse como fix) = 0 a:''"' Per 
lanto. se cumple 121 si r = 0 y x 0. En cunsecuencia. se lia mnstrudu que 
la lórmula (2» se cumple cuando res cualquier número racional y .r ts 0 

Ahora bien, 0 está en el dominio de la función putenciu/si y sólo si r 
es un numero positivo, porque cuando r < 0,/(0) no está definido. En con 
secuencia, se desea determinar para que valores positivos de r./'(O) estju 
dado por la fórimila (2). Se deben excluir los valores de r para los cualc' 
0 < r < I porque para estos valores de r. .x''"' no es un número real cuan­
do x = 0. Entonces, suponga que r > I. Por la derinieión de derivada.

y m limI
x^ - (K
.r - 0

= lim
I

Cuando r > I. iim.t'^'’ existe y es igual a cero, suponiendo que r c>
I -*11

número tai que x'~' está definido en algún intervalo abierto que contiene a 0 
Por ejemplo, si r = entonces .t'’"' = .r'/-. el cual no está definido en 
cualquier intervalo abierto que contenga a 0 (ya que no existe cuan 
do ,r < ()(, Sin embargo, .si r = ’. el cual está definido on
cualquier inlervaln abierto que contenga a 0. Por tanto, la fórmula (2) pru- 
porciona la derivada de la función potencia cuando x = 0. suponienilu 
que r es un número para el cual x'~' está definido para algún intervalo qui.’ 
contiene a 0 De este modo se bu demostrado el leoreina siguiente

2.9.1_Teorema Regla de diferenciación de la función 
 potencia (paro exponenfei racionales)________
Si f es la función potencia dcllnida por f{\) = donde r es cual* 
quier número rueional, ciiionees f es ilifereneiable y

y'(x> = f.x' '

Para nbiener J'Ü)) a p.irlir de esta fórmula, r ilebe ser un número ul 
que X' ' esté detlmdo en algún intervalo abierto que contenga a 0
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^ EJEMPLO ? Caiuiilt / (i) M

H\) = 4 ' \'

Solución Dl‘1 iL'tHciiu 2i 4v-^’ se nene

/ (VI 4 '-ix-l' I)
S, l/v

s
U V

4

ti proximi) (enrema se deiluee ininediaumenie .i p.iriir del leorema 
2 y 1 \ de la reela de la eadena

2.9.2 Teorema
SW > son dos tunuones tales que^(\i = [e(t)l'. donde res cuak|uicr 
numero ra>.ional. \ si if’í r) existe, entontes / es ditereneiabíe, y

t\x) = r|e(v)I' '.«'(i)

^ EJEMPLO 2 Determine J (O si

ju) = % 4 sen- f + y eos- ¡

Solución Se estribe Jin = (4 sen* i + 9 tos- /)'/- y se aplita'el teo­
rema 2 9 2

til] = l(4sen-/ + 9tos-0 /J,(4sen-f + 9tos-f)

K sen f /j,(sen/)-(- 18 tos t D,(u)sQ

2% 4 sen* f + 9 tos- i

H sen l tos / + 18 eos H- sen t) 

2'. 4 sen- / + 9 eos- i

^ SctI l tl>\ I

. l un / • ‘I LO> /

'•ULKI \ a \cn t - tus ’ / n

_ -10 sen t eos /

2% 4 sen- / + 9 tos- l

________ 5 sen I eos / ^

. 4 sen- r + 9 tos- /

Como es usual, los taltulos del ejemplo anierior pueden apo>arse 
itratltamente tn partitular. la grafita de la figura 1. la cual muestra que 
la gratlea de la respuesta y la gralita de la derivada luimerita de / pare­
cen la misma. apo>a ti táltulo del ejemplo 2

Ahora se tratara otra leenita de dilereiitiaeion llaniad.i dífereii- 
eineíún (o derivucíoiil iiiiplíeila. la tu.il esta basada en la regla de la cadena 

Si/ = {(\.u I V = 3\- + ^\ + 11. entontes la ecuation

H(.IR\ 1 \ = 11 - + 5 V + 1
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dclino .1 la tiiiKion c\plli.llámenle Sm cmhariio. no indas las funuunc, 
|uieden ser ilelinidas espUeilamenle mediante lina cLuaeinn Por ejemplo, no 
se puede lesolser la eeiiuLion

para \ en términos de i No obsianie. pueden existir una o mas luntionc 
tales tpie si \ = /( u. eiilonees la ecuauon (K> se saiistaee. es deur, lunuo- 
nes lates i|ue la eeuaeion

i" - :i = MíHll" iMvir - |/U)|-

se euniple para todos los \alores de i en el dominio de f En este caso, U 
luiKion / esta del mida implii iliinti nU por la eeuaLion dada

Con la suposition de tpie ÍM) deline a \ como al menos una funuos 
dilerenciable de i la derivada de i con respecto a x puede determinar- 
mediante la lUu n tu. uu. ¡oit intpln lUi

La ecuación (8) es un tipo especial en el que aparecen t > \ debiiloa 
que puede escribirse de modo que lodos los términos que contienen i 
esten en un miembro de la ecuación \ todos los términos en \ se ubiquen en 
el otro miembro Esta ecuación sirve como primer ejemplo para ilustrar el 
proceso de dilerenciacion implícita

Fl miembro i/quierdo de (8) es una tuncion de r. y el miembro den 
clu) es una luiicion de i Sea í la luncion ddlnida por el miembro i/quicrdi 
V G la luncion dellnida por el miembro derecho Así.

/(M = - Ix V G(V) = 3\'’ + \' - \-

donde v es una luiivion de i por decir i = f(\) De este modo. (8) puedi 
escribirse como

rm = G( ji\}\

Esta ecuación es satisfecha por lodos los valores de x dcl dominio de/para 
los cuales G( M\)l existe

Entonces para todos los valores de i para tos cuales J es diferenciabk 
se tiene

La derivada del miembro derecho de CJ) se puede determinar fácilmente, por 
lo que se obtiene

Por medio de la regla de la cadena se determina la derivada del mieniK>' 
dereclio de (*)i

- 2i = tv'' + \ - («)

- Iv) = D,l3v^' + v' - \-i <91

D.d'' - 2i) = fn^ - 2 (lüt

\1 susimiir los valores de (lO» > (11) cii V-)) se ohiiene

lll'



nii't.ru; qiif .il anpkMr t.i i.lilcrciKi.u.uin ini|ilkilj sl- Iu nhlLimii) una l\- 

I'iCMim pala —- i]Uf Lnnlu.-iu. a las \atiahks \ \ \ | n el eiempli) iliisirali\o 

sitriiienic se ulili/a ^.1 nieitKÍi> de dilcienuaunii implitila para dclerniin.ir 

— lie un tipo mas general de euiuuun
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EJEMPLO ILUSTRATIVO 1 Cnnsulere lau.iiauon

\ - 7u ' = 4 K\ (12)

\ suponga que existe al menos una lunuon dilerenuable / tal que si 
\ = /U). entom.es la etuaLion (12) se satiskiLi. Al dilerenetar ambos miem­
bros de Il2) (teniendo en mente que t es una luneion diferenciahle de r)
\ aplieando la regla del priiJutlo la regla de la potetiLia > la regla de la 
Laden.i se obtiene

12t\- - 7\’ - 7ulx-/J,\) ^ O - K />,\

- 211\- -t- Si - 7t ‘ - ll^^-

7i’ - 12t^- ^
[).\ = -----;---------------◄

ín-’\ - 21u- + 8

Recuerde que se supuso que tanto (S) Loiim M2) delnien al menos una 
luiicion diterentiahle de i Puede suceder ipje utia etuauon en » > \ no 
impliquen la existencia de cualquier timcion de \alores reales, como es el 
caso para la ecuación

i- + f 4 = O

la cual no se satislace por cualesquiera calores reales de \ > \ Adeni.is, es 
posible que una ecuación en x \ \ pueda ser saiistccha por muchas luncio- v 
nes dilerentes. de las cuales algunas son dilerenciables j otras rio Un.i 
discusión general esta mas alia del alcance de este texto, pero puede encon­
trarse en un libro de Calculo a\.in/ado Ln las discusiones siguientes 
cuando se indique que una ecuación en x > \ define a \ implícitamente como 
una luneion de x. se supondrá que al menos una de estas lunciones es 
diferenciable El ejemplo 5. el cual se tratara posteriormente, ilustra el 
hecho de que la diferenciación implícita proporciona la derivada de dos 
luneiones dilerenciables definidas por la ecuación dada

^ EJEMPLO 3 ía) Utilice la diferenciación implícita par.i deter­
minar la pendiente de la recl.i tangente a l.i curva -»■ v' = ‘7 en el punto 
(1.2) (b) Encuentre una ecuación de la recta l.ingcnie > apo>e la respuesta 
gráficamente Ira/ando la curva y l.i recta tangente en el mismo rectángulo de 
inspección

Solución
(al Al diíerenciar implkilamente con respecto a x se obtiene 

í/x
íA X-
t¡\ ~ \-

hn c! punto (1.2). ■" = “"IJ
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(b) l lu «.Ltiauxn ik-1,1 tk.Ll.1 cs

1 2 h
V + ') (I

1 .1 2 muestra l.is jirahtas Je

\ v' > 1 . I l‘J u

ira/.iJas en el reLtan^'iilo de irispetLinn Jl I b 6) pur [—l. 4| I a 
es lan^tnle a la air\a en el punlu i 1. 21. in tpie apnja la respuesta i

^ EJEMPLO 4 Dail.i X ens \ + \ cns x - 1 = (). takule —
(Jk

Solución M xiilereneiar inipliLitaiiienie ton respetlo a x se tiene

. </' íAI tos 1 s- XI-sen X) — + — (tos x) + \(-sen xi = () 
i/x ü\

-—(tos X - X sen XI = X sen x - tos x 
tlx

i/x _ X sen X - tos x ^
(/x tos X - r sen x

1 U.l R \ 2

^ EJEMPLO 5 Dada la etuacion x* + \- = determire

IJI ~ mediante la dilertiitiation iinplitila (b) dos funtitmes dtfimtJj' íJ\
por la tvuation. (c> l.i denxada de tada una de las tuntiones del intiso (bip r 
medio de la diltreiitiation explitita (d) Vtnlique que ti resultado obleniü 
en el mtiso (al es atorde ton el rtsullado del mtiso (t)

Solución
(a) \l dilerentiar implftilamenle se obtiene

2x . 2x4^ = 11
í/i

ííi -
í/x X

(b) Si la ttu.ition ilada se resuelve para x. entontes

X = N. •> - V - y X = - \ ‘J - X ^

Sean |^ V ¡2 las dos luiitiones p.ira las ijue

ypX) =• •.') X- \ /iiX) = -\y X-

(c) Coino/pu - P) - x’l'l- \ /,(X) - -(‘J - x-')'^-.dt l,i reitla de U
tadtila st obtiene

li m ',i> - X-) /^ix) - -'(‘j - x-)'^-(-2x)

. X _ X

- X- sb - X-
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(d) P.ir.i \ — /|( \ 1, di'iidt* í|( i( = ‘í - . s(. (IcdiíLC dcl iHLiso (t) i|Ul'

/| (O ------------- í------
i-

___^

Id LUal es .iLDriie ton l.i respucsia del ineisn (a)

P.ir.t \ = /;(\i ilDiiiIe/ilx) = - s. se dediiee del muso (O c]ue

y; U) \

\ _
_ ,2

\

lo cual es acorde eon la respuesta del muso (a) ◄

bl ejemplo sieuienie muestra como calcular la segunda domada para 
lunuonos definidas implícitamente

^ EJEMPLO 6 Dado que

4\' + = 36

delernime medíanle dilerenuauon inipliuta

Solución M dilcrenuar implicilanicnie con respecto a i se tiene

St + 0

— - — 
tj\ y \

(13)

Para calcular i___ se obtiene la derivada de un cociente teniéndose en
(h~

mente que \ es una tuncion de i Así,

d‘\
<lx‘

9\(-4) - (-4t)(y

Si se susiitu>e el valor de ~ de (13) en esta ecniauon se obtiene

-36\

-361

+ (36i) 

8I\-

' - 16i‘
Hh’

-4i
9v

-4(9y“ + 4.t-) 
81>^

</-v
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l’iic'lí' i|Ui' u.ik-'i|iiKT.i \.ili»rcs lie i \ ^ ijiie salislaccn cst.i eui.icirtii 
l.imlíHii s.ilisl.iiL'i lii iDti (iri^iruil, cnluticcs se puede sustiimr
i>\ -♦ ‘ii-por !('p.it.i i'l'lener

il-\ -■li.ll'i
,l\- Sh'

EJERCICIOS 2.9
/-/) !.i\ tji nt, h'\ 14/ 12. 1,1 J, in ¡iJ,i ih L, l.m, i,n¡.

1. fl \1 -1 I • ♦ 51

2. ft I • _ - (>i'

3. em - \ i - 4»‘ 

5. /(II i i5 - 'n
(7.

4. /U) = 'Í4-

(i. el' I = % 41 • - 1 

X. /( U = (*' - CI - I

10. ;ui - 4 '.e4. . i 

12. el») “ . 'sn \

y. kui = !>..>■ .1

IL i'i/’i - 1.1)1 s ,3f 

f'j /i>v t;i/■«.!(•>. /í if lo i.iiitili !,i Jirit.uhi \ aj’iiw Li ft's- 
thi:L:n.¡i' lí¡\ víijü <í\ ,!, Ui '/•' > h i/i nuiílii mi-

m rti ,1 ir: 11 iri'.rr.u rti.'n/'eWf' ih' ii.\¡’i i> it ’t

1.a reu.i l.ineenle .1 l.i uin.i Ihi^ + i"* = 32 en el pur. 
lo (I. 2i

.37. ,I n i|ue punió ile la uina i\ = || - » - \)’ |.| 
ljiii¡eiiie es p.irjLlj al eje x'

.3K. Iíon teetj' iiue pu'an por e‘l punto (-1, 3). son laneenies a 

la air\.i i • - 4i • - 4 i - X\ + 3 = 0 l:nuienlre ura 
ei.uai.ion de‘ eatla una de las recias

III h>\ I ¡, til, im .Oy II 42. /;i;eíí In \ii;iiii lili' (ii) Dit lu'iilre á \ 
lililí i"iu 1 ih thiuhix por lii 11 mil mu, Ih) dihiijr lüs víáCuiu Jr 
I i.ilri mui ilr hix liiiu iiuu s nhuiiulin m t! int ni’ hi). Ii) ilih.i;e 
¡i! evoyñ/i de hi iiiuii mu. h/l i i;/i iilv la di iluida di iiidti una 
</«' Un Uirnmiu'x ‘ihUiiiJin tii </ iiiinn luí \ diliiiniiii In

dciuiiiiin di Un ihnuidin. It‘¡ iihkin;ii — imdiiiiiU ihlirin
dx

d 1 1 uu mil luiplii lia di la 11 iim mn iluda, v xerifhpii ipu ilrnul
13.

Í 1 - ■ .T. /
i 14. lihlil </w iihleiiidii cv III urde ion hn n \idliuhn dil iiunohl'

f f / í fu inn/ft n/m de tiuhi mta hin\*aUí' t,n el wi/ir

15. /I 1 y - 0 1 1 10. 1 t.m , -
\ 1 ' 3y. X- 4) - K. i, - 3

I.ii ios e/i f¡ 11 ii'\ ¡~ a J2, dtU riniim — por uu dm di ihh 40. i - t* = 16 »| = -.3

mu w.-i(í»i inipiii ¡u 41. i- - » - - y. i, - -s

17. < . if< IH. 4t ' • ‘n ' 1 42. < • + V • - 2.3. i| - 4

I y. t ' •» s ' - X J V 20. t' * 711 43. D.iiloi|i,e i' + \* I 1. dciiiuesirei|ue ^
dx- X

21. 1.' 1 
\ V

22.
\

-i . 2v
44. Sea ) ■(■ V = 2. pruebe iiue‘ dx-

23. . t .* V X 4 24. 2i k a- .3 M .3

25. t * t 1‘ • \ 2f>. i2t • 3,‘ I,’ 45. ,1*1 d \ —2 lSi» ) 1 - 1. uiiicsirL iiiie —^ ^
dx- V

27. 2S.
46, Sea i* I- 2.3v' - 100. demuesi/c i|ue —r = ------r

2y. ec I a- ese' v - 4 30. col I 1 a tv 0
47. 1 na pirticida se ituieve .i lo larpo de mu recta de aciief-

31. 1 sen V ■* V co% X 1 32. U) ( l ‘ ) > SU) i do con 1,1 lUi.icioii de itiov miieiito i \Ui' i 3 , laS
Lulo IIIIIII un ' a lO, i n luiiln mui i, luu imi dr la ii i la 
taiii;<nii' o de la ruta iiorui.il , ‘iiii ••i uuliui » <i/'oM' la 
r.-s/j.’íí'Wii luraud” la re, la i l,i i una iii 11 luniiio n i liim;iili‘ 
d‘ iii-pi 11 mu

.3.3. 1 a recia lanecnte a la cursa . - •. i* > ') en d iHinio 
14.3,

34. I..1 recia nonti,lí .1 la uiiva » »vlO- f cneloripen

35. Li rcela nurnial a la cut'.i Oi ' I eit el |niiiio

I • (I Dcleiiiiine el ».ilor ile / p.ir.i el uial la nicdid.id- 

1.1 ieliiuil.nl es (iij 0. M>) I. (e) 2

4X. I ’iu partiuiia se imiesc a lo l.irpii de una tecla de acue/ 
do con la ecii.iLion de iiioumieiiio i . \'5 + r’ . ci'."'
/ - I) Delemuiie el valor de t p.ii.i el cual la inediJ.t d-' 
la vetouiiad es lii) il. Il>) 1

40. Supone,i ipie se pioduce un lii|iiulo medí,míe titi preve"’ 
i|uiniico ) i|ue l.i liiiiuini de coslo total (' esta d,id,i p''’ 
(tu 0 ♦ 4 \ », donde í (u dol.ires es el co .li» U')-)'
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ilptivliivii í lilfOML-l liilimli» l\ti-miiiK

iiiirpitMl i-s ik- SI» Jit ¡»iir luto 

qi 11 iiiink'io til' itol.ui-> ikl «.oMo |')i| juiKliMr i iim
iLhk-'ilo viiit-» .iiliiiilo k'ia (t.ulii (>oi ( I u .|(» . í» .

Ikt.MIHIk l.ll l'I ..oslo m.lli-'liul kll.ltulil sC pro 
ilu..n uiikI.kI- ' ^ <l>> 1^1 miiHini J.- (iiikl.iiks piovIiM 

,la.i.ujn.losl.O'loiii itpiii il os S4 “iO 

(|. I ru K'mpaiii.) miiiohiluinj rotit.i i.ar(.i clopjtt.iiiicrflo .i /• 
t!. loii' por MIOS «.H.imlo \ ikp.titjmcnio. son rcnijilo , s 
p ni V nNl Si A‘u« ilolaios son l.f. uiilulaik-s
i.salfs roviln.lds por i.i roniu üo U-s « ilcpjiumonMs on- 
U'ikOs A'iii /’* t<.u>HiU>s JopuiUmoiiltis iIlIvii iLMlar* 
>0an'cs JoiiÜL las uliliJaJos sloii ccio' NoM loiiio 1 

..I numoro J-' ikp.tdamLnios lonuJos. \ cs iin numoio 
onlcr.' no iiooali'o. Sin onibariro p.ir.i .ipluar ol ('akuio 
• ipi>n¿ai|uo 1 os un numoro roal no iiolmiixo

52. l-i pfivJu.ouui Jiari.i lio un.i lahrn.a os Mi) unut.i.los 
vUanJti ol capital iiuortid» os i nulos Jo ilnlaros \ 
;i\l = 1(10 \2i - I Si la i.api(..li/ai:iiiii a^liial Os Jo 
s7(>0 Olio ulilko la di.nvaJa para ostiiii.ir la vana..ion 
Jo la pnslu...iiin Jiaii.i s| d i.apiial inionulo cs auiitonla 
ik'on ^1 í*)0

1 n awini s uola on ioriiia parak la al suolo a una altura do
2 km V oin una rapiJo/ Jo 4 ' kin/min Si oí aMxn \uola 
Jiro.tamonti; sobro la h taliu Jo la I ilHinaJ. , a quo (asa 
Osla lanand-' la Jisianoia Jo la roula sisual oiitro l1 asi-ni > 
laosialud 2o s ilospiivs ’

2 km

r4. AlasSam uiibaroo quo nasona luLiaol iimio a 24 nudos 
'millas nauiuas pi-r horai. se onouontra on un pumo /' A 
laslojtn unsoítundubar^o quonasOjialiaaaolosioa ^2 
ruJ.is. O'ia tn ol punto /' , \ quo tasa osla L.iinhiamlo 
la Jistan.ia entro los dos b.rtos lu» a las *) j in . tl»> a las 
n ani '

24 m n

« 52 in n
»

4H IIIII

/••« *2mn

ibi11 \ M

55. I n ol itotvkio 41 do la sotoion 2 2 aplim la dolinioion do 
domad I para Jomosiiarquo

/i I 1111 SI í ? O

\hura uliliu. 11 ro^la do la o.nkna s los ikoroiiias do difo 
loikiakioii para la domosirauiiin 'un;i‘ii iii in oonsidoro

l'I s '■
Dctorniino ¡> (|ijl suando cvista ( onsidoro la su^o* 
tLllkl.l dol OJOtkkin S'í

¡ n l«' < ;< r> « 1(0 57 \ ^.S tiihiiU la liinuiihi i/i' Ai ftini lón 
C i’itiith n' Al uio« r* >i> in th I <jen >■ ii»

57. /lU = 11- - 4| 58. !,•(»» - r| r|

5‘7. Si M VI = 111 doloniiino/ (v» \ /" (v» mandooxisi.m

AO. Soa om IKniuisiro quo si /(»» ) «dj oms-
ton. Lni.nkos | y i u | - 1/(vi | »

Al. Se doj.i oaor una pelota do .Je una vontami <{uo se onouon- 
ira a A pio> 'obro ol piso ) robóla do modo quo r soitundos 
dospucs do qiio la polola oao. su alluia es vlll píos, dondo

vio
A jcosíl 

11 - / )-

Doltrniino la lasj j la quo la abura do la po'loia osi.í o.mi 
blando a los (a) I 4 s. (h) i A s. (el I 8 s ) Id) 2 2 s

A2. Doimi(.'lio quo la suma do las inioroopLionos i y v do la 
roela tati¿onio a la ourv.i v'^- -i- v =• k'^', d-mdo k os 
una oonstanio. os igual a k

A.T. I.nouonlro las oouaoiunos do las roelas l.ingontos a la 
turva v^' ■* v'^* - I on ol punto dondo v = - Apo­
yo la 10 pilosl.i ira/ando las rollas y l.i lurv.i on ol mismo 
rcitangiilodo inspciiion

W. SupoM.o.i quo 0(0 • \‘A “ r' y Aív) = /i«<v)), dundo 
/ os diliiuiu.iblo on • ÍJiinuosito quo A (0) = (1

íl-\ _ 
i/v- (/('

Soa I 11 liiikion polonua dctinid.i por /< O - v’. dondo r 
Os iual(|iiio( miinoio lauonil liajo la supiisiiioii tío quo 
/ os diloionoublo iitiliio l.i diloronoi.iuon implíiila para

A5. Domik troqiiosiu I onlimios

AA.

domosirar quo Mv) r\‘ ' 'un'í’mii ui soa r 

il.mdo i> y (/ son numoros onioros y i/ > D Dospu

£
</

os sus-lai'íA \1
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iiliiN.i M«> i'ni \ \ C'viib.i 1,1 ciiuiion u'uio v ' \''

I inpk'i.' la tlik'icikiaL'ii'ii implkiM v ili'k'nmnc —
i/i

(i7. I’ai.i mu ik'niosliak.ii>ii npiirusa ikl Icotcma 2 *> I la 
ii'L’la tk' tlik'ioiKhKiKii ik' la pKlL'iiiia ipafa pt)ll-tlLla^ ra- 
< iKiuk'si , i'iulx lialvrsL' <.'mpk\uli) el proi.eitinm'ni>i ilel

ilLiuui) en hipar ilel t|iie se prcscntn en la seuiii^i 
1 vplique MI res]Hn;sla

(>N. Caklik- W ' SI /íO + 7i ' y i;(»> - ,i
I \plupie pnr ijiie mi se pucile mnplear la rcpla ik- Ui*. 
ik'IM pala (.Iss(liar CMO lakllln

2.10 TASAS DE VARIACION RELACIONADAS

il(,l R\ I

L'n problema de /inin i/e Miruuiim n Im i(míithi\ es ai|ud cjuc linoluuj 
(asas de s.inaeion de sanables relaeionadas £:n aplicacinnes del imindii red 
que impliean lasas de sariaciixi relacionadas, las sanables tienen una relü- 
Clon espeeítlea para sabires de /. donde l es una medida de tiempo. Kn ge­
neral. esta relación se expresa medíanle una ecuación, la cual représenla un 
modelo malenuluo l-.sia seccn'iii se imcia con un ejemplo ilustrativo quj 
muestra el camino paso a paso de cómo se resuelsen la mayoría de Ir,, 
problemas de lasas de \ anaeion relacionadas.

EJEMPLO ILUSTRATIVO 1 Una escalera de 25 pie de lon-
eiiud está apoyada contra una pared sertieal como se muestra en la figuni I L 
base de la escalera se ¡ala lion/onialmenle alejándola de la pared a 3 pie/- 
Suponea c|ue se desea delermiiur qué tan rápido se desli/ca bacía ahajo la pjr- 
le superior de la escalera sobre la pared cuando su base se encuentra a 15 p.ii 
de la pared

¡’iiui I Primero defina las sanables comen/ando con i
I el numero de segundos dcl tiempo que ha transcurrido desde quj 

la escalera eomen/ó a dcsh/arse hacia abajo sobre la pared 
r el número Je pies de la distancia desde la base de la escalera j Ij 

pared a losisegundos
\ el número de pies de la distancia desde el piso a la parte supern: 

de la escalera a los t segundos
¡\i\o2 Inscriba cualquier hecho numérico acerca de x. y y sus demaiij' 

con respecto a i.
Como la b.ise de la esc.ilera es jalada hori/onlalmenie alejándola ü.'

la pateil a 3 pie/s. 1

hi\o i í-senba lo que desea delenmnar

.Se desea delernnnar — cuando t = 1.5 
ilt

Paui 4 Kscnba una ecuacn'in que rekicione a v y v 
[Jel leorem.i de Pilágoras.

= 62.5 - i- Ib

/ o\n f> Dense los dos miemhros de (1) con respeelo a t

1 di
\ ili

<I\

Ji
(21
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¡\i\o (i SiisliUi\.i ln\ v.ildfcs LDiUKiclits iL' \. \ \ ' ~ tn Li cui.u.iiiii .micnnr 

> rcstiLK.il.i p.ir.i
t//

Cii.iiulitv = IS í = 2(1 ('orno- 1. se iihiiL-nc de (2)

.h
It 20

1

4

n signo menos iikIilj c]ue \ dctru.e LonlomiL / .lumenla 
¡\i\i> 7 Lstriba una contlusion

("orKliisión; I a p irte superior de la escalera se desii/j hacia aba 
JO sobre la pared a l.i lasa de 2 2^ pic/s cuando la base esta a IS pie 
de la pared

\ltora se hara un resumen de los pasos dei ejemplo iluslralivo anterior 
ülos le daran un procedimiento a seguir Conforme lea los ejemplos siguien­
tes rellerasc a estos pasos para ser como se aplican

Sugerencias para resolver un problema de tasas de 
variación relacionadas
l ea el problema cuidadosamente de modo i|ue lo entienda Para poder 
entenderlo, con trecuencia es útil iinenlar un ejemplo especillco 
que contemple una situación semei.inie en 11 que todas las cantidades 
sean conocidas Otra ayuda es dibu|ar una figura, si es lactible como 
en el ejemplo iliisiralno 1 y los ejemplo I 2 y 4 Después aplique los 
siguientes pasos

1. Üellna las sanables de la ecuación que obtendrá Debido a que 
estas representan números las delmiciones de las sanables deben 
indicar este hecho Por ejemplo, si el tiempo se mide en segundos, 
entonces la sanable l debe delinirse como el numero de segun­
dos de tiempo o equis alentemente. i segundos es el tiempo Ase­
gúrese de definir primero /. y las otras sanables deben mdic.ir su 
dependencia de t

2. hscriba los hechos iiunicncos conocidos acerca de las sanables y 
de sus derivadas con respecto a I

3. Kscriha lo que se desea determinar
4. hscriba una ecuación t¡ue relacione las sanables que dependen de / 

hsa ecuación sera un modelo matemático de la situación
5. Dense con respecto a l loe dos miembros de la ecuación oblciiida 

en el paso 4 para relacionar las i.is.is de sanacioii de las sanables
6. Sustituya los valores de las c.unidades conocidas en la ecuación del 

paso T. s despeje la cantidad deseada
7. Dscriba un i conclusión que consista de una o mas oraciones com­

pletas s que lesponda las preguntas del problema No olvide que la 
conclusión debe contener las unidades coiiect.is de medición



184 CAPÍTULO 2 DERtVADA Y DIFERENCtACION

l>>ni

ik;ir\2

^ EJEMPLO 1 ('iltI.i LaiUid.id de tliise a una tasj 
2 ni'/min haua el mlenor de iin depo>ilu eii)a turma e^ la de ini ennoin 
vellido ile Ui ni ile .duna \ > m ile r.ulio , Que tan rápido sube el mvc| (]r| 
aeiia ui.iiulo i ^la lu akan/ado 5 m tie pmluiulidad ’

Solución kelierase a la lisura 2

/‘</w< y Se detineii las variables, primero i \ después las otras vari.iblcsen 
temimos de /

f el numero de iniiuilos Je! tiempo vpie lia traiiseurrido dcsiJ: 
i|iie el a¿!iia eomen/o a Huir dentro del t.ini|ue

li el numero de metros de la altura del imel del agua a los i minuto 

r el numero de metros de) radio de la superlieie del agua a lu< i 
mininos

\ el numero de metros tubieos del volumen de agua en el tanqui 
a los / miiuilos Observe que 1'. r j /i, son funciones de /

Ano 2 Puesto que el agua lluve dentro del tanque a una tasa de 2 m'/min

entonces = 2 
til

Alvo.? Se desea determinar í—cuando/i = S 
ill

-i hn cualquier tiempo, el volumen del agua en el tanque puede expre­
sarse como e! volumen de un cono, como indica la figura 2

V = '^/Ti-/i (3i

Como se estableció en los pasos 2 y se conoce y se desvi

determin.tr ^ Por tanto, se necesita una ecuación que iiivoluvre

a r \ /i Asi. primero se expresa r en términos de li observanJi' 
que. de los triángulos semejantes de la llgura 2. se tiene

r _ 4
h ~ Ib I i"

.Si se susiitujc este valor de ren (I), se oblienc

Pino 5 Al dilercneiar ios dos miembros de esta ecuación con respecto a i. 
resulta

Pino (> Altora se sustituye 2 por ^ y se resuelve la ecuaeión para 

nhtiendnse

illi ^ J2_
til .Tir

\sl.

dli] 32
,fl J,, 2.*»^

0.4074
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* kio

H(.l R\3

Al i.nn\LMiu iiKlriK .1 toiiiiriitirDs se liuic 0 1074 iii/min = 
40 7 1 (. m/imn

7 \ c«>ntinu u ion se cserihira l.i uiulIiisiom

CoiuIloiÍoii; | i m\el iLI siihc .1 im.i i.is.i 4c 10 7 I un/miii 
ctunJo el .i(Mu tu jle.in/jJo uiu prolundulad Je ^ m ^

^ EJEMPLO 2 l7os .iiitomov lies iinn\.i luiLia el esle a una lasa 
Je 00 kin/h. \ el oin* haua el sur a 60 kiii/li, se Jtrti>eii liaua la iniersee- 
uon Je Jos tarrelcras , A qut Usa se csian aproximanJo uno al otro en e! 
iiisianie en que el pnnier aulonioul esia a 0 2 km Je la inlerseetion > el se- 
eiindo 'c envuemra a 0 km Je Jieha inierseesion '

Solución Con sil lie la lieura k. donde el punto /’ es la interseeuon Je las
Jos earreleras

í\t\(i ¡

[ el numero Je hor.is Jel tiempo que lia transeurnJo desde que 
los aulomos Jes eiiipe/artin a aproximarse a

i el numero Je kilomeinis Je la Jisiaiieia a parlir Jel primer 
aulomox il a r a las / horas

\ el numero Je kilómetros Je la disianeia a partir del seyuiulo 
automóvil .1 /’ a las / horas

: el numero Je kJomelrns Je la Jisianua entre los Jos aulo-
mov lies a las / horas

l\¡sii 2 Como el primer carro se acerca a /■’ a una lasa Je 90 km/li. > x está

Jc’crecieiiJo confonite r crece entonces ^ = -90 De la misma 

/if\manera -7- = -60 
ilt

Píiso -í Se desea determinar ~ suando » = 02> v = 0 1‘v 
til

Pliso 4 Del teorem.i de Pila^tiras x

= i- f V- (4)

Pliso 5

Puso 6

A! Jilereiieiar los dos miembros Je (4) con respecto a i. se obtiene

->-íL = T, í/i + '•v ííl
■ .// " ilf

li -

Cuando \ = 02 > \ =0 I5.de (4» se tiene que c = 0 25 nn(5)se

susiitu>en por -90. por -60. r por 0 2. \ por 0 15 y 
in 10

* por 0 25 p.ir.i obtener

_ tl)2l(-90) + ÍO |5)(-60)
4l J ~ 0 25

= -IOS

Puso 7

Coneliisitm; hn el instante en cuestión, los carros se aproxim.in 
uno al otro a una tas.i Je lOSkm/li ^
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^ EJBMPL0 3 Siipoii^M i|iic L'ii ucrlo mcrc.idn í niiks iL-

n.iNlill.is Jl- n.iMii|.is SL- MiriL-n ilijiiamciilf uuiulu ¡i diil.irL‘>. es el |irci.u) pif 
t.iii.isidl.1 1 a ci.ii,Kioii de nloil.i es

p\ ■ :il/t \\ . |0> 0

Si el MJininisirii duiio dei.rtLe a mu lasa ile 2‘'0 i.anastillas pur día. , a que 
lasa cs(a \ aiuiidu el preun uiaiuln l.i ni ella duna es de '> 000 e.masiillas'

Solución Sl.i t dus el tiempo (|ue lia iransuirrido desde i|ue el suriu 
lustro iJufio enipe/o a detiei.er

1 .iN \aruHes /» > \ eslan detimdas como liiiieiones de í en el enuneijijii 
del pri'blenu

Debido .1 i|iie el sminnislro diario esu deereuendo a uiu lasa de 250

eaiiasiillas por iba entoiues 4^ - - py'l;. esto es. ~ = --7 Se de^cJ 
iít 1 (HKI il¡ 4

determinar ^ eu.indo i - 5 De l.i eeuaeion de olería dada, al diferen 

eur implieitameiile eon respeelo a l se obtiene

. ,'Jll ^ = I)
(/; c/f t¡¡ ili

<¡p ^ J\
ili \ - 20 ,h

Cuando i 5. se dediKc de la ceuaeion de oferl.i que /> = 0 Dehidiu
t|Ue ^ = --j. se Irene de la eeuation anterior

<//'] ’ - f 1 1
ili „ í 20 ' 4 )

1
20

Cnndiisitm: l-.l nreeio de una eaiiastill.i dir lur.nif.is esta ilci reí ll•nílll a Ij
lasa de SO Ot por di.i euando la olería duna es de 5 000 Lanastillas ^

;■ , ,
^ EJEMPLO 4 L’n j\iún \uela luua el oeste eon una \elocidaJ

de ‘iOI) pie/s a una .illura de 4 000 pie j un ra\o de lu/ de un t.iro de rastro' 
ubieado en tierr.i. meide en la parle inferior del a\ion Si l.i lii/ se m.mtiení 
sobre el aiion. ,que tan rápido gira el r.i\o de lu/ cuando el aui'in se en 
cuemra a una disi.mcu liori/milal de 2 000 pie .il este del laro

4()í)()pic Solución Consulte la figura 4. en la que el taro esta en el punto / ) t'ii 
un insl.mie particular el a\ ion se encuentra en el punto ¡'

Se.i l segundos el tiempo t|ue transcurre desde que l.i lu/ del l.tro in 
cidn*) en el a\ ion

X PU'N

\ el nuineio de pies hacia el este de la disuincu liori/onial del avión dc' 
de el taro a los / segundos

0 el número de radianes del ángulo de elevación del .ivion tlesde d tarui 
los/segundos

i K.L m 4
Puesto que ~ ~ -500, \ eoino se desea tleierminai ciunJ"

i =• 2 000. se considera

taño - lííül'
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Al iliIcTcnciiir !o^ ilo\ mlclll^^)^ ilc ccu.Kt«')ii um respecto a t se olMicne

"7/r ' jí

í>i se susiiiiive por -5(MI en la eetiauon aiiiennr s al dividir entre 
scc- 0 se tiene

¡W _ :t)00(H)0 
•it 1“ sec- 0 (6)

Cuando i = 2 IHH). tan 0=2 Cnimi sec- íí = I + tan- 0. sec- 0 = 5 Al 
sustituir estos valores en (ft) se tiene, cuando i = 2 OIK).

Jti _ 2 00(HHK)
</f 4l)IKMHH)('si

rondiisóoit I-n el instante d.ido. la medida del ángulo está creciendo a la 
tasa de \ rad/s. \ esta es la rapidez con la que está girando el faro ^

EJERCICIOS 2.10
En loi ejenuiin ¡ ii S i v i mn/aní m/it'v t/c/a/iri< rij uj-
nahif I

1. Si2v t íj = 8 V ^ = 2.ohlenea ^
■ <li - Jí

2. Si — = til V ^ = -5. eakulc ~
\ • til dt

3. St n = 20 V ^ = in encuentre ^ cuando r = 2
• di dt

4. Si 2 sen t - 4 eos v = 3 \ ^ = 3 uhtenea 4^ en
■ ■" ■"

5. Si s<n* i - eos-\ = • v 4^ = -1. calcule 4^ en
, • « * di di

6. St t- * V- = 2.5 >
V = 4

ds = 5. calcule íL cuando
dt di

Si /t + = i j
X = 1

íL
di

= 5. obtenga í!l
di

cuando

10. Se mili nn globo c"-lcneo de mmlo que su volumen se 
incrementa a una lasa de 5 m '/nnn , A que tasa aumenia 
el diaineiro cuando este es de 12 in ’

11. Se esta tonnando una bola de nieve de inixli) que su volu­
men se mcremenia a una tasa de K pie’/mm Deiennine 
la lasa a la que el radio aunieiila cuando el diameiro de la 
bola es de 4 pie

S. Si vitan a ^ || = 4 \ ^ — -4. deiermine ~ cuan- 
doa = ff '

^ tos prohiemas de la\a\ de Uimitíón reluuniuuhn dt los 
ffercHios defina pret tsimente lodin las \iiniihles
romorunfidoí/fj Inúmerm v unidades de ineduiinil tJidue la 
sanable l pan representar el tunipn \ defiiui la% oirax lo 
nahirs de mi>do que dependan de I Awqurese de esinhir una 
C«Ic/lU«)f|

niñu vuela una cometa a una altura de 40 pie. > lo luce 
moviéndose hon/ontalmente a una tasa de 3 pie/s. Si la 
cuerda está tensa, ¿u qué lava se afloja cuando la lungiiuJ 
^ la cuerda vuelta es de 51) pie»

12. .Suponga que cuando el diameiru de bola de nieve, del 
ejercicio 11. es de f» pie se detiene su ereumienlo ) co- 
inien/.i a derreiirse a una lasa de ^pie’/min Calcule la 
lasa a I.i que el radio varf.i cuando este es de 2 pie

13. Se deja caer arena en un monlíeulo de loniia comea a una 
tasa de 1(1 in'/mm Si la altura dcl montículo siempre es 
el doble del ratlio de l.i b.oe., a que lasa se mercmcnla la 
altura cuando ésta es de H m ’

14. l'na lanipira se encuenir.i suspendida a 15 pie sobre una 
calle liori/onlal > reda Si nn hombre de (i pie de esl.i- 
uira camina alejándose de la l.impara a una lasa de 
5 pie/s. 1 qne tan nipido se alarga su sombra ’
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15. I n l1 ojcIlKIh N. , a iiui- la'.i se ik>pla/a la [nitil.i Je la 
si'íiil'ta i!et lu'inl’re'

l(i. l n h.mihre >¡i‘ h pie ile eslatura tatmru lusia un eilituin a 
una lava de 5 pie/s, ‘•i en el piM> se eneucnira una l.uiipa 
ra a pie del cdilkin , i|ue tan rápido se asotl.i la '.un- 
hra del luinihre pni>eslada en el edilisio «.uando el esta a 
’() pie de este ’

^1) pie

17. Sup<mea que un tumor en el euerpu de una persona es de 
lornia eslenea St euandu el radio del tumor es de 0 ^ em. 
este ereee a una lasa de lMH)i em por día., eiial es la tasa 
de erei.iiiiient'1 del u'luiueii d.l tumor en ese iieinpo '

IH. L na hattena telul.ir ‘s de lomia esleni.a. Si el radio de la 
h.ietenasrecea una tasa de 0 0| priM miera l p<irüiaeiiando 
el radio de esta es de I .‘i fim., eual es la lasa de ereeiinien- 
tode! si'lumen de la haelena en ese iiempo.'

l‘>. Para el tumor del ejerkieio 17., cuales la lasa de ereuniien- 
lii del arca de la superfisie cuando el r.idiii es de ü 5 ciii'

20. Para la bacteria del ejereieio 18., cuál es la lasa del arca de 
la superficie de l.i haciena cuando su radio es de I .5 pm'

21. l n tanque para alnucen.ir auua nene la lonna de un cono 
invenido > se esla saciando a una tasa de 6 m'/mm. La 
altura del cono es de 24 in y su radio mide 12 m Dcler- 
mine que lan rápido disinmuye el nivel del a^iua cuando 
c'sla tiene una protundidad de 10 m.

22. I..I loneitud de un abrevadero es de 12 ¡ne j sus evlie- 
nios tienen la lonna de un tnaneulo isósceles invertido 
que tiene una altura de ^ pie y su base mide ^ pie. .Se mlro- 
duce a^ca al úlirevadem a una i.oj de 2 pie'/ifn ,Que 
l.iil rápido sube el nivel del a^nj cuando esta lene una 
proriind'Jaüde I pie'

2.1. I a lev de Hoy le pai.i la expansión de una pas es l‘V ( 
donde /' es la pioMon evprcs.ida como el iinmuo iK- 
por oiiiil.id ciudi.ul.i de .iie.i, 1 es el iiiinieio de uiiiil^j 
iiibic.is del volumen tlel p.is y < es un i consi.uile I lui,, 
lomomeiilo. la presión es de 118 K) |l)/pic'.el voliimenc.ij. 
^ pie ' y el voluineii crece a una las.i de ^ pie '/niin [i 
leiiimie la l.is.i de vaiuuoii de la presión en ese miiiiier,i,

24. I .1 ley .iduh.ilica Isin peitlid.i m fanaiicia de calor) |uij|j
evp.iiision del aire es ' ( , donde /’ es la p,,-
sioii evprc sad.j como el mímelo de liliras por uiml.iil 
til..da tie are.i. l es el mmicio de unidades cubicas d.| 
volumen y Tes una constante i n nn insianie especiHf
l.i ptc'sion es de 40 Ib/pulc’ y esta creciendo a una lavaj. 
8 Ib/piilL’’ c.ida sL'jHiinlo Si (' = 5l\(>. ,cua! es la |.j.¡ 
tle v.iii.ieioii del volumen en ese mslaiite'

25. Se .irroj.i una piedra cii un esl.inque Iranquilo, fiinib- 
dii'C oiul.is circulares coiicenincas que se dispersan Sid 
radio lie la rec'ion .iled.id.i crece a una lasa de Ib em|> 
, a i|ue lasa crece el arca de la ret'ion aleclada cuamlu - 
radio C-. lie 4 cin ’

. nai

2íi. Cierta cantidad de aceite Iluye luci.i el interior de uii¿ 
po'ilo que nene lornia de cono invenido a una taij¿' 
.l.Tin'/mm Si el deposito nene un radio de 2 ^ mensupeit; 
siiperiory uiualiurade lOm , que laiir.ipido variadniv.i 
del aceite cuamlo lisle lu alcaii/.ido 8 rn de pmfunilid.nl'

27. l’ii aiitoiiiovil se despla/a a una lasa de ^0 pie/s y e 
.iprovim.i a un cnicero Cuando el auioiiuíul esla a cor­
del crucero, un camión que viaja a una lasa de 411 p:.'' 
p.is.i por el crucero 1:1 aiilomovil y el camión se encticnir.v 
sobre carreleras que son perpendiculares /.Qué lan rap- 
se separan el .luioniovil y el eainuui 2 s después de quefí 
camino deja el crucero'

« N)|iie

811 pie
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¡ |,j tlKlll.' •' '"'''I* I-I MiP'.llH-IC 'Ik'l
Jl'llJ > 'll'J ‘^'1 '‘"l'•‘ll^’ "f-l ■' '">•> l■"•l llt^'
M) pu/itim 'ii' l"•l'"’' '.■•’Mi' •! Ki pii-' '-i'l'tc d ni\cl ilJ
I -111 ij'i'- l-'i* •ipioxiin.i el hule al niuelle uuiiilo
II v.ihiuI.hI lie eiicul.i Mielu e' Ji 2(l pie ’

^ 21) pie

29. h'-ta ^ema^l. en un.i lahnL.i i-e pri'Jiijen'n 51) umJaJe-. 
de un artji-ulii delermiruJu. > l.i c.iniiJjJ pri'JuuJ.i _u- 
nn.ru a una la-a de 2 unid.iJe-. piT semana Si (111 dola­
res es el eo'ln total por pmdueir t unidades \ (ui 
IKIm' - 1' -s Uli - 4S. delermine la lasa aelual a la 
que el eosiii de pri'JuLeion ercec

30. Li demanda de eiedo eereal par.i el des.i\uiio esia dada
por la Csuaeiim de demanda /u t (KM), don­
de ! miles de cajas Je cereal »on deiiiatidaJas cuando el 
precio por caja es Je /' ecniaeos Si el precio actual de la 
i.i|j de cereal es Je Ni h este se iiicfemcnia a una lasa 
de II4centavos cada semana, calcule I.i lasa Je \afiacion de 
la demanda

31. !j CcUauon de olcrta para cierta mercancía es i = 
Mi'1) -.3f • 2up. donde cada mes se summi-lr.iii i 
unidades cuando /> dolares es el precio por miniad De­
termine la Usj de \anadon de la olerij si el precio actual 
es de 5-20 por unidad > e) precio crece a una tasa de SO 50 
por mes

32. .Supinea que \ irubajadures se necesiiaii para producir r 
unidades de cierla mercancía, v i = 4\' .Si l.i pro- 
du.cion de la mercancía este a'io es de 2,‘'0 IHH) unidades 
V la producción crccc a una lasa de IX OOO unidades por 
año. ,cuil es la (asa jclual a la ijue la luer/.i lahoral dehe
incrcirentar.e'

•Í3. I_i ecu.icmn de demanda para cierto upo de camisa es 
2px -r - 4 V5(| = ()_ Jniide \ cientos de camisas 
■■"11 demandadas por semana cuando ¡i dólares es e! precio 
P'ir camisa Si una cami'a se \ende por 5.30 esta semana. 
> el precio crece a una lasa de 50 20 por semana, calcule 
la U«aile \anauon de la dem inda

II adida de uno de ios ángulos agudos de un Inangiih' 
K'clangulo decrece a una lasa de K rad/s Si la longi- 
'ud de la liipoiuiusa es umsiaiile \ de 40 eiii. delemiinc 
4ué Un rápido cana el arca del irungulo cuando la me 
dida del anguín agudo es de ' ;rrad

Do, larnioiies. uno de los cuales u.ij.i lucia el oa'le > e! 
'''fo lucia el sur. se aproximan a un cnicero Si los dus

c.imioiies se dcspla/aii a lina tasa de k km/h, imiesUc que 
dios se .iproxiTiiaii a uii.i l.is.i lie L . j kiii/li ui.mdii c.ida 
iiiiu de ello, se eiiuieiiira .i m kiloiiKiros ilcl cniceio

l.i '

III km

^ m km ►

.^í». I n deposito liori/oplal para agua mide 10 m de longitud ) 
sus extremos son inipcutis isósceles con una altura de 4 iii. 
h.ise memir de 4 m y base nuxor de h m .Se \ icnc agua en 
el deposito a una Usa de 10 rn’/mm ,Que Un rápido 
'ul>e el iiicel del agua cuando esta lu alcaii/ado una pro- 
lundidad de 2 m '

C <1 III ^

■l m
r

* _ Ki m

"* 4 m

37. Lu el ejercicio .3h. si d nnd del agua decrece a una lasa 
de 25 ciii/mm cuando ei agua nene una proluiididad de 
3 iii,, a que lasa sale el agua del depósito ’

38. l na escaleni de 7 m de longitud esta apocada sobre una 
pared .Si la base de la escalera se empuja lion/onlalmenie 
hacia la pared a una tasa de I 5 m/s. ,qué l.iii rápido se 
dcsii/ii hacia arriba la pane supemir de la escalera sobre l.i 
pared cuando su base se encuentra a 2 iiieims Je la pared ’

í
*

^ 7 m

- 2 m ►
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.W. l 'iu O'C.ilcr.i »k' 20 pii- lie Ixiii'iliul e^ta te^.ii^'.ul.i sxlnc mi 
lcii.i|'U'ii hkIiii.uIii .1 (>0 imi ic'-piM» .1 l.i lmri/inil.il Si l.i 
Imm’ lie 1.1 C'ejliT.i NC iimeic Iii'ii/i'iU.ilmeiilc h.iu.i el le 
(T.i|'Ii'ii .1 mu l.is.i lie I pie/'t. i|iie 1.111 i.i|'iilii se desliz.1 l.i 
p.irie sii|viit<r de i.i Cscilet.i 111.nulo l.i luse esi.i .1 4 pies 
del leii.iplen

40. l n.u's^.ilei.tde 'lOpiede loiieilud est.i.ipov.ida eoiilu mu 
p.iied. de nuuto i|iie su eviterno superior se desli/.i Iulu 
.ih.iio.i mi.i i.is.ide [ pie/s., uul es I.1 t.is.nle \an.Mon de
l.i medida del .ineiilo aeudo lomudo poi la esialera soii el 
piso viundo el eMieiuo su|vnor esta a IS pie snhre el piso'

42. l II lióle esia iihuaJo a 4 millas de l.i eosia y
r.id.ir Uaiismisor ipic pira '2 vetes por iiiimito 
r.ipiilo se desplaza l.i otiil.i emilida (uir el radar a lii 
de la Losta eiumlo dalia mida forni.i un anpulo Je 4^ 
eon l.i Losia

41. l'n avión ijue vuela con rapidez cim'Unle a una altura de 
U> (MKI pie sobre una ir.iyetiona reeta ipie lo llevai.i di- 
reslameiiie »obre un obsenador en tierra Imi un insl.mie 
J.1J0. el observador nota ijue el aneulo de elevaeioi' del 
avión es Je ,.T raJ v aumenta a una lasa de rad/s 
Delemtine la rapidez del avión

ilHOlllpif

i

4.4. Después de la evpíoMon de despegue, un iransburJa'l ¡ 
cspatial se eleva verticalmenle y un radar, ubieadn ^ 
I 00(1 yd de la rampa de lanzaiiuenio. sigue al transborda 
dor , (Jue un rápido gira el radar 10 segundos despuésd;
1.1 CKplosion de despegue si en ese inslaiile la ve|cK.ulJ 
de! Ir.insbordaJor es de 100 \d/s enconlr.indose éste i 

vd del suelo'

44. Se vierte agua en un depi'isitii que tiene lonna de enf’ 
invenido a una tasa de K pie'/trun. (íl cono tiene una alten 
de 20 pie v un diámetro de 10 pie en la p.irtc supenor Si 
tuv una fuga en la parte interior del depósito y el nivel 
agua sube a una tasa de I pulg/inin cuando el agua In:." 
una protundidad de 10 pies, ,,que tan rápido escapa el aCJ 
del depósito''

45. Muestre que si el volumen de un globo decrece a uiiaU-^ 
proporcional al área de su superficie, el radio del glts*»' 
se contrae a una tasa constante

► SUGERENCIAS PARA LA REVISIÓN DEL CAPÍTULO 2

1. Defina la rn ui im.’i rt,- a la gráfica de una lunción en el 
punto /'U|. f( I II

2. Defina la n i ui lunimil a im.i gráfica en un pimío d.ido

.4. Defina la ttiinadii Je una función J en un numero i del 
dominio de t

4. Establezca il.i loniiulas que proporcionen /'iV|>. la de­
rivada de 11 tumiún fen el numero tj

5. (Cuál es la mtcrprel.ición geométrica de l.i derivada 
lunuunyen el nuiiieio V|’’

(>. ,('iul es la iitnaiiiiii i/e /í/grum,’» para la derivada d*-'
Iunción I en el número tj'*, Cual es la nulm lón i/i /«d' 
p.ira la derivada'

7. , |-.s po'ihie que una limeióii sea diferenciable en un r--* 
mero y no sea coniiima en ese numero'' Si la respuesta 
SI. de mi ejemplo Si la respuesl.i es no, establezca lara/'’’
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I. p><vil*K' tlDk' liiiiv-idii sL'j 1.0111111114 en un miiiieio \ 
II.» «lileii'iuuiMe en c>o mmiefo ‘ Si l.i rc'inie'U es m. 
.).• »m cionipl*' 'I I.' iC'|Hifsij C-. iu>. C'l.iHe/»..i l.i r.i/i»n

9 Inuniic el »iue propoiui'ii.! i.i u'1.kioii cimf »li
loieiKi-il'il'‘l^ ».ontiiuiul.ul Je una tuniMn en un 
nuineio

1(1 l.uHe/ia lu-N ra/l'ne^ por las i|ue una lutunm no sea 
.t.leren»iat’le en un lumiero > \ Jil»u|c la piafisa Je l.il 
lun^ioncn saJa ijsi*

|] (\'tina la ¡hnxtuhi /’or hi ilíUtliii > la ihii\ié,Li /><>r ht 
i:.,aí. r./a lie una (utuionícn el numeto »,

li Ingente un ejemplo Je una luiision (|ue no sea dilerenvia- 
hleinun miiiiei»' »| dehiJo.i que las densa Jas por la dere 
iha \ piT la i/i|Uierda Je »¡ no son iguales .niiujue las Jos 
denvaJas Lterales e\Man

I.L Invente un eieinplo de una lunuonque no sea Jilereniiable 
en un numero t,. para la cual la ^Tallca de la luneion en el 
puniuJonJei = i| tiene una recia laneente venical

14. inveme un ejemplo Je una iuncion que no sea sonimua ni 
difercneiahle en un numero pannular Je su dominio

15. Que Cs el un u nie t/e ilift r< m «n omt tru ii» Je la I uní ion 
'cnel numero u'

16. , Cuales la mejor aproviniacion a n.i) para una loleraiuia 
e-poiifiij el eoiiente Je Jilerencias simétricas o el eo- 
ctenle Je diferencias esianJar ’

17. Delina la t/<miii/.i mmitm.; Je una Iuncion t en un 
numem u.

18. ,P»>r que es nías imponante ahora la denvaJa nuniinu 
que ames del advenimiento Je la» lompulaJoras elei- 
irun las *

IV. , LadenvaJa numenia de una luiiiion en un numero siem- 
pmproporiurna una aprosimaeiun de la derivada real de la 
tunvion en el numero ’ ,Si la respuesta es sí. explique por 
que Si la re'pue'ta es no. dé un ejemplo de una Iuncion 
que juslitlque su respuesta

.Como ‘c puede apiivar en la eraflLadora la Jenvada de 
una funuon ealculavla analiiieainenle ’

II- Enuncie los tres teoremas que permiten diterenuar cual­
quier tuneion polini'midl

Si h funiiun li es el proJuuo de las luneiones f \ e. es- 
tahlc/ia la recia de ditereneiacion para el proJuilo que 
expresa la derivada de/; en temimos de/, i,'> sus derivadas 

Si la funuon li es el loucnte i//e> de las funuones f j
s. e'UWe/cj la regla de dilereneiaeion para el touenle 
que expresa la derixada de li en temimos de /. ij > sus 
denvadas

Si fes una tuncion., que se entiende por la vet,’((/if/<í ih'ri- 
•jJadcj ' ,Que se entiende por la ítmni lUnuulu <le] '

I Cuántas denxada-s Jifervntes tiene una Iuikíóii polinoinial’ 

iCuá] cs la noiaciim de Leihm/ para la segunda derivada'
27. Suponga qu|. una padaulase mueve a lo largo de una resta 

d~“acucrdoj la ecuación A = /(M Dctlna la u/o<iiArt/v la 
urr/fruim/i de la panícula en/ = /[

2N. ,( ual es la dileieiiita entre la vclimd.itl v l.i rapidez en el 
movmm-mo uciilmeo'

2V. Si » /in es la eui.iuoii de movimiento de una parliiul.i 
Mihre una rect.i hoii/oni.il, ,coiiio se puede simiil.ir el iiio 
V imieiilo i II l.i gr.itieador.i'

.^0. l'leiltic la sugueiiii.i 1') si un ohjeio (por ejemplo un.i 
pelóla o una piedra) se mueve sohic una reda vertical

.41. Si \ JIM Cs una CiuauiX) de movimiento de un obje­
to que se mueve sobre una recta vertical, describa ci>mo 
deierminaria analíticamente lo siguiente que lan alto 
llegara el objeto v cuanto tiempo le lom.ira alcanzar el 
punto nías alto, la v eloii Jad iiisi.mi.inea del objeto en un 
tiempo particular, la rapidez del objeto en un tiempo 
particular, l.i veloiulad iinianianea del objeto cuando 
este vuelve al punto inicial

32. Interprete la deriv.iJj de una Iuncion J como una lasa de 
variJiioii

33. Suponga que 111 > proporeiona el volumen de un solido en
lemiinos de la medida v Interprete como una lasa
de variación

.34. Fn economía, vupimga que 011 proporeiona el costo total 
de I unidades de cierla mercancía > (juc ¡ií \} es I.i iililid.id 
total a’cibiJa cuando v unidades son vendidas Interprete 
el costo marginal. Clv). v la utilidad marginal. H(\). 
como las.iv de vanaeion

.45. .Cómo aplican los economistas la derivada p.ira aproxi­
mar el co'to de ptoduciion de una umd.id adieiunal des­
pués de que se lian producido A unidades) cómo apruxtm.in 
la utilidad por la venta de una unidad adicion.il después 
de v|ue se han vendido k unidades ’

36. I’roporcione ejemplos en los que se aplique l.i derivada 
como t.is.i de variación en dos diseiplitus diferentes de la 
geometría > de la economía

37. Enuncie los teoremas que proporcionan las derivadas de 
sen r. eos t. un v. cot ». sce r) ese r. donde v es un nu­
mero real.

38. Indique dos de los limites importantes del capitulo I que se 
utilizan para demostrar los (coreiius que proporeionan la 
derivada Je sen i > eos v

.49. Para .iplic.ir los teoremas de la sugerencia .47 a nn de ob­
tener las derivadas de las funciones irigoiionicincas de 0. 
donde O es la medida de un ángulo, , por v|iie U debe me­
dirse en radianes ’

JO. .C’oniii se aplican las denvadas de las seis luiiuones tn- 
gononieincas para dibuj.ir sus gralicas'

41, . Por que es necesario el Calculo para dibujar de iiunera 
loniial l.is graticas de las seis Iiiiiliiiiics Irigon.miéiricas 
l.is cuales pueden obtenerse en cursos previos al dcCViluilo 
solo .iplic.imlo cvuisideraeioiies iniiiitivas'’

42. .Si l.i timeion h es la compiisicnm de las turiciones f) 
f¡. esto es. h - f o !•, , cii que números deben ser di- 
lereniiables las liiiiciones/) g si /i es dilereneuhle en el 
niimem t|'
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-1.1. I mitkiL’ 11 h i/< l¡i I iiili iiti (|iio piciputLiutu la lurimi 
li i’ira li iIl la Lnm|Hi\iLit<n de l.is limuimos
t s V

44. Ih\etilo lili e|eiii|ili> ijiie iiitn. slie luiiui so ijIiIi/.i I.i lo^'la do 
la L.idoii.i i'.iia ial>.iilar h ilomad.i de iiiia liinui'ii /i l.i 
uial es la ooni|>iisiou>ii <lo dos luiuumcs sioiulu un.i do 
oll.is una liiiii.inii liipmuinioliiL.i

45. Imonlo un o|s ni|di> i|iio nuiosiro uuni) so aplua l.i lopl i do 
la oaJon.i p.ir.i o.ikiilar l.i dotis.ida do la tunL-imi h. la uial 
os la si'mj'nsu.inn do dos limi.iiiius alpohrau.as. sioiuln 
si>|«' una do ollas un pnliiumiii'

4f>. ,Quo condi».ionLs sim notos.irías para i|uo ol iimvimion- 
li) do un.i p irlioula snlno uiu roela tiori/onial sea m-
nti ■i.ii i> \inipU '

47. l nimeio la Inrniula para la doru.ida do la tunoinn poton 
ola pala oxpniiciilos raoinnalos

4S. Insonto' un oiomplo ijuo muestro ol ouIluím do la densa 
da do la lunoum tnmpuosia I o- dundo / os la íunoum 
polonoia para un exponento raoicuial no onlorn \ i; es una 
luRoii-n (ngononiLirio.T

4'k I Como so oaloula la domada do la funoiiiii \alur ah-olulo 
oniploandi» looremas do dileronoiauiut on iucar do la dofi- 
ilioii'n do domada’ Muéstrelo al oaloular la dorisada do 
i 1 - 5 I

50. Dislinpa oiilro la dollniuón do liuuitm j liin-
I ion ¡inplu itíi

51. , IJiio siomriL.i ihli ri m un ion iiiiiilu iin ’

52. , (iiiiiii so aplioa la repla do l.t o.idoii.i oiiaiidn se uiili/j^^

loioiiLi.iLinn iiiipliLil.i para deloriiiiiiar — a p.mir (j. 
mu loiiaiiiiii olí I > \ ’

5.1. i ii.iiiilii so L.iloiila ~ inodiaiito difcronoiatiiiii imj' 

olla a partir do una eoiiaumi oii r y ,par.i tiuo funu, 
nos 4^ os la ilorn.id.i'

í/i
54. , Que os un prnWem.i ile /<M<n ih xiinm ion rclm uiiuiilc< 

Imonlo un ejoinpln

55. Cuando so definen las s.maíllos en la soluoión de un fr - 
lilonia do lasas do s.inaLUiii relaoiiinadas. ,oual os |j 
n.ible i|Uo dehe delimrse pruiiorii > pur i|ue ’

56. Después do dolinir la primera \aruihlo en I.i soluuon 4 
un pmhloma de lasas do vanaeiim rolauonadas, ,cur, 
se deben dellnir las oirás sanables ’

57. Fn la soluemn do un probloina do lasas do variación r: 
iacmn.idas. cu.mdo so ohlionc iin:i oiuaoión c|uo rol-: 
na las san.iblcs, ,con rospoclo a qué sanable se dehe 
liilorenoiar'

5H. , Como se ulili/a la diforonu.iuim implioila on la snluoi; 
do un problonu do lasas de saruuon rolauonadas'

► EJERCICIOS DE REPASO PARA EL CAPÍTULO 2

Ln loi tjfii uu>\ I ii I-l íiih iilf lii (Ii riMiihi de laJuiuion

1. /IT) = 5t' - 7i- - 2i - 1

2. od) = 5U-' + It'i

.1. oí TI -
4

J_
s-

4. yi») = _4_ _ 1
' v'

5. llM - 2v' . - f i- 6. Gin = V- - A \ + A
X - 1

7. (Jill - i3/- - 4ii4/' + f - ii

K. ;di = d^ ■- 2t)(4i- + 2 r -r .5)

£,'d) -
í * ^ 1 10. h(\) =

V

r' - 1 \' + 8
11. fdl = (2v' - 1v -V 7)'

12. FUi ^ (4a' - 4x- + I)

1.1. /It» = (r- - I)' -ir - 4j''-

14. vil) = d' - u '15 - r) '

Fn los t'jí'n u ¡os 15 a 2U. dih muñe la di ruada

15. ¡) \lx -e 1 )soil t - t eos i]

16.

17. -7-(>uis-í-
dl d\' \'

19. /J, |son (ciis .1n) - son u eos 1ii |

20. />Jlan 2i seo i + lan(2soo'Ti|

Fn los tjcriuios 21 a 24 lahiile la denuida di la fina ■ 
\ apiñe la respiu sla Irauindo las s;raftiiis de la rispiiisu . 
la di risada (7i \ c/i el misino ricliiih;iilo ik ira
pi I í lo'ii

21. Au ^

22. sfu

2.1. í;(\)

\4 - r-

tan X
1 + \

24. rix) ^

¿n los t/en II IOS 2.5 a 2H ohieima — 
í/i

25. 4i- * 4s- - = (I

26. r\- + 2\' - i - 2\

I 4- S- 
son \

27. lan i + l.in i = r\

2H. soiKt -i- vi + soiid - V) = I

l.in ejeniíios 29 v W trahm (uena de la faiuiiin amliini-' 
lino doimiiiii es il lonjiinlo lU lodos los iiiniitros reales i 
f;n¡Jiia so pri sulla t/i la Jhiiira adjanla Siipniiiia i¡iic 
parli de la i;riijha ijiie paríi o ser un voi;»it7i/o de rula ts/-' 
uiiiiieiiio de rula /.n nula ejenuio luii’it lo ui;iu(rU 
Uil Di fina f a trozos Cali ule lli) /' (-2k (t) f J-2l. id)/' 
le/('í f) J (2l V (!■) / .(2) lli), Fu ipa iiiinieras f r.e“ 
diferí III lahle'
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3<l

tu !('\ ijtn iiios U v J2. tlihuji la í’jufn n de wm fii’ii in» i nii 
hnjii f I ii\ii dimuiiiit U(j f / tiinjuiitii de todus Im niiiiii roj rea- 
id !ii ittül las ¡>rui>udíidi'^ iitdHudiii

31. 1-4 tuai.intiy es difcr>:nu4blc en euakjuier nunieru exeepio 
i.n-2> 2.JÍX) > Om I < -2.JI-2) = 0.0 <f(\] < 3 
'3 -2 < V < 2. /i(J) = 3. fi2) - 0./(i) < I) SI \ > 2. 
I 1-23 = l./(0i = (),/ (2| - -l./.(2) =-2.

•'3. (.4 lunL3iin/es diíeri.ni.i.ible en eujli|uier nunieris eseep- 
>11 CBi -I, ti. j ). ol umlr.idi'ininin de / es {-00. +co). 
/i-i3 I) M(J3 =1 /Ih = 3 /'< Ii ^ I. =

- I l\i = Ü./.d) = I. !im 0. W r. tco
I .r> l

33. Di'lcrnnnc un.i eeuauun de la retU (jn^etile j l.i euna 

‘ I en el puiitn (2. 1» j jpiijc sil respuesla
•ra/anilii la roela > la eursa en el misiiui retlJiiiiuli) de 
inspeVeliill

31- Oblenla mía eeiiacitm de la reela normal a la eiirsa 

. - Kf
“ 7r"7^ punid (3. 2) > apdyc su respiiesla ira.

''ando la reela \ la eur\a en el imsmo re’eláiieiilo de iiis. 
peeeiDM

.3.^. 1 iieiienire eeiiaeiuiies de las reelas láncenles a la eurva
V 2i ‘ I»' - i i|ue lenpan jKiidienic J. y jpo>c sii 
respuesta Ira/andn las reelas y [■ eurva en el iiiisnio rce- 
laiie'iilo lie iiispi.eeion

.36. neleriiiiiie una euiaeiiui de la reela normal a la eurva
V V - ^ + V en el pinito (3 11

.37. Obieiiga eeiiaemnes de las reelas láncenle y numial a la 
eurva 21' + 2v ‘ - y«\ - (I en el punto (2. 1)

.3H. |-iieiieiitre eeuaeioiies de las reelas (anjieiitc > normal a la 
eurva V = K sen'2» en el punto (;r. i) y apoye su res­
puesta ira/ando las reelas y la eurva en el mismo reetán- 
jüilo de iiispeeeion

3'k Deiiiueslre ipie la reela langente a la eurva v = -jr' + 
2\- f « en el punto 11, 2) también es tangente a la curva 
en otro punto, y deleriiiine ese punto

4(1. Oemuesire i)ue l.is reelas tangentes a las curvas 

4v' - VM - « 1- 5v = 0

y

i * - 4 \' + .^ X + V - 0

son perpendieiilares en el origen 

í/ H41. I iieuenlre si \ = \3 - 2r
i/i' ^

d\42. Sea ~ i*. donde A es una eonsianle y v es una liin-
dx

de 1 I vprese en lemiinos de v y k 
dx'

4.3. .Sea /IV) - |'s «' + i ‘+ <S» *- 2 Para qué

valores de 1 se tiene que/ (t) > 0'

44. Deienniiie la lasa de v.iriaeión de v um respecto a t en el 
pumo (3. 2)si7v - vv' = 4

l.ii lux ejtT( u IOS ./í 1 46 una ¡uirlú idu ve iiuir\ c a lo /«rgo de 
una re < la hariToniid de tu tu rdo a la 11 u<« uní dada, donde x 
im ln>\ IV la di xhiiu iti ilirif’ida dt la ¡Hiriu tila d> uU un punto O 
a lox I xeí^unilox U k niiilo ¡uixiin o xe < imxideni luu ui la d> 
itilui Deli niiiiie lox inh rudox de iiinipo tii lox </iic ti mo- 
Miimnio ex liana la dirului v en lox iiiie ix a la iziiuurda 
liunhun lUuniimi aiaiulo la pariitiila taiiihia xii xiniiJo 
\luexirL el t oiuporiainunlo dtl imniinuiilo nudumie una fi 
¡;ura xiiiidiir a la Jh;uni 2 de la xeu ion 2 5, ilii¡iitid¡t lox i.j 
liiiex de I a! azar ¡uro dt iiiiidti t¡ui iiuluxa lox udorex dt I 
dondi la ptirliiida lanihui de xinlido Aptne lox rixulladox 
xuniilanilo 11 wouinuiiio dt la piirlii ida 111 la {¡rafu adora 

45. V = 2í' + 3/- 12/ - 5

l.ii lox tjiriiíiox -17 V 4iV, una ¡uirlit lila xe iiiiieie a lo lar- 
)’o lie una rula horizoniid di aiiiiido a la niuhion dada, 
iloiidi a lox I XI iziuiilox X lili trox i x la r/(v/<;m,w dim'ida de la 
parlii Illa di xdi el nr/g< 11 i inelrox por xeiiiindo ix la x elo- 
t idad. V a un iiox poi m aumlo por u i;iiiido ev la tu elerm ion 
di la parlii Illa C ah uli \ v o i «/< í//u/I"v de r ¡.lahore iiiia 
laida XI iih iiiiih a la laida ( di la xei t ion 2 5 ¡¡111 propon m- 
m una di xi iijn ion dt la i’oxu ion \ ininiiuunh> de la par-
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iíl-uIj Itulu>j CII la labia los intervalos de ticnipo en tos 
que la parlítula se mueve a la i/quierda y en los que se 
mueve a la dereelu. los ínter, alos en los que la velocidad 
es creciente y en los que es decreciente, los intervalos en 
tos que la rapidez es creciente y en los que es decreciente; 
y la posicuin de la panícula con respecto al origen duran­
te estos intervalos de tiempo Muestre el comporlü- 
nuento del movimiento mediante una figura .similar a la 
figura 10 de la sección 2 5 Apo)c los resultados simu­
lando el movimiento de la panfculaen la graficadora.

47. j = 4 - q/ + 6i* - i’ r & O

48. í * l’ - .11- - 9/ + 13 r 2 II

En los fjfrciiios 49 \ .10, iiru fhinkiilit se mueve a lo larf;i¡ de 
uno recto honzomal de ocuerdo a la ci iiocufn doíLi. dtiiule s pies 
es la disloncio dinguLi de la panícula desde el onj^en ri los l 
segundoi Determine el tiempo cuamlo la aceleración inMan- 
tonca es cero, después calcule la rfijranrni dinglda de la par­
tícula desde el origen y la \clocidad iiutantiijiea en ese tiempo

49. I = 9f- + 2V2r + l / 2 0

50. s = ll^'‘ + Zt''^ t 2 0

51. Un excursionista perdido en un bosque es descubierto des­
de un helicóptero Los rcscalistas lanzaron una valija 
con alimentos al excursionista desde una altura de 200 pie 
la) Utilice la ecuación (10) de la sección 2.5 para escribir 
una ecuación del movimiento de la valija, y simular el 
movimiento en la graficadora <b) Determine la velocidad 
msianiáncj de la valija en I s y en 3 s. (c) Calcule el tiem­
po que le lomará a la valija llegar al suelo (d) (.Cual es la 
rapidez de la valija al momento de tocar el suelo?

:u0pie

t »' .i .1

52. Realice el ejercicio 51 considerando ahora que la valija 
con alimentos se lanza hacía •■bajo desde el hciicópicro con 
uiu velocidad inicial de 20 pic/s

5.3. Se lanza una pelota verlicairncnic hacia arriba desde la par­
te superior de un cdiíiciu de 112 pie de altura con una 
velocidad inicial de 9fi pic/s. (u) Rmplcc 11 ecuación (10) 
de la sección 2 5 para escribir una ecuación del movimien­
to de la pelota, y simular el movimiento en la graficadora

(b) nstime qué tan alto llegará la pelota y cuánto tiempo 1¡ 
lomará ulcanzar el punto más alto, (c) Confirme las ey, 
maciunes del inciso (b) analfticamenlc. (d) Estime cuiv; 
tiempo le tomará a la pelota llegar al suelo, (c) Confirpí 
la eslimadúii del inciso (d) iinalílicamcnte. (f) Cjlcul'h 
velocidad msiontánca de la pelota a los 2 s y a los 4« 
(g) Dctcnninc la rapidez de la pelota a los 2 s y ales 
4 s (h) Obtenga la velocidad instantánea de la pdcij 
cuando é.sta alcanza el suelo.

En los ejercicios 54 a 56. una partícula se miiese a lo laigoéi 
una recta horizontal de acuerdo a la ecuación de movimier:, 
duda, donde a los l segundos, s metros es la distancia t/injii 
de la partícula desde el origen, i’ metros por segundo ti 1; 
\elocidad. y a metros par segundo por segundo es la auU 
ración de la partícula, {a) Calcule v y a en términos dtt 
Ib) A/ii«rzi’ que el mosiniiV/itó es armónico simple (el Sik¿i 
el movimiento en la graficadora.
54. j = 5 - 2 eos*/
55. s = eos 2s + 2 sen 2l
56. I = scn(4r + in) + scn(4r + fff)

57. Un rabrícanic puede obtener una ganancia de S200 pa 
cada artículo que no exceda a los 8(H) artículos pmd.- 
cidos cada semana La ganancia disminuye S0 20 pr 
artículo que exceda los ROO. (n) Obtenga un modelo tu- 
temático que exprese la ganancia semanal del íabnusa 
como una función del número de artículos produciio 
cada semana Aunque la vunablc independiente, por de 
finición, represente un número entero no negativo, cocsr 
dere que ésta denota un número real no negativo a find: 
que se cumplan los requisitos ncccsanos para la cor.L- 
nuidad (l>) Demuestre que la función del inciso (a) a 
continua en su dominio (c) Determine si la función dd 
inciso (a) es difcrenciabk en 800.

58. La ley de Sicfan establece que un cuerpo emite cnc^ 
radiante de acuerdo u la fórmula /? = donde /?etli 
medida de la lasa de emisión de la energía radiante pone;.- 
dad cuadrada de área, T es la medida de la Icmpcrarn 
Kelvin de la superficie, y A es una constante Calcule (a) h 
tasa promedio de vanación de R con respecto a TcuaniloT 
crece de 200 a 300. (h) la lasa insianiáncu de vanación & 
R con respecto a T cuando T = 200.

59. Si A unidades cuadradas es el área de un inángulo rcctl'- 
guio isósceles para el cual cada cuido mide .r unidad» 
longitud, calcule (a) la tasa promedio de vanación dcAcrt 
respecto a .r cuando .x varia de 8 00 a 801; (b) la ti» 
instantánea de vanación de A con respecto a r cua/¿' 
•X = 8 (X).

60. Si >• - calcule la lasa relativa de variación de y 
respecto a.» cuando (a) r = 8. y (b) x = c. donde ce 
una constante.

61. La ecuación de oferta para una calculadora t' 
y = «I* + '{ñi, donde lOOy calculadoras se sumii'J*' 
tran cuando el precio de cada calculadora es m dólai** 
Obtenga (a) la lasa promedio de vanación de la ofew 
ton rcspcciij al precio cuando éste se incrementa de Slf 
a SI?, (b) la lasa de vanación instantánea (o marginal)'^ 
la oferta con respecto al precio cuando este es de SI6
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1 11 Knui.iii>> lie clcmnil.il e^l.ihlcce i|iil*
"" 1"'^*""""" ) r Miiu.u.iIcsi|uiL'r.t dos minie 

i,.> iijlv'. tiii"ni.es e\isic un pulmoniio (í(\) i.il {{iie 
/’iil-t’t”'' ‘ /’írl ,C'uiltM.I\alunlc Imii

t iiliie !•> dsliniLion de dcns.ul.i p.ira Liikiilar / ( S) si

í'" ;f:

^ Uiliss' la ilelinikion de derivada pir.i lakular Mi)
• I (lU li* - *'i + I

t,i t nlise la dehniuon de demada para Laluilar /(t) si 
mi - ^

^ I lilue la deitnii.ion de demada para takular J'(^} 
omi ' + I

67. IXitnnine/ (ffi si /n) = -^2 + tos » 

tJI ( j’lu!: / (U si m u = '' sen* t - 4 eos-1 

69. [fiLueniík /(II SI /lu = i 11 + I | - | r| )’

Tú ONcnea^ i-^) si/( i) = ( 11 [ - ti 1,91 

[.11 \tirri ii lili 711 72. /ii ii udí iiin </i strihi 11 nii>\ iinu niii tU 
ijirfi' lulitlo ili un n wrli que ii/irii ii rlit (límente, 

¿ -Ji \ 11 nnmi rrov 11 In i/iiMm m Jiniiiihi i/< 11 lu rjm i/cii/i 
jp Miionitnliiil(tii>ni;in)a l»' i wi;umlii\ \ el stniulnpn 

131(1 ri l:ii iii (irnha liil Ohuni;a tu ulmutiiil v la (lulirti 
iJiliuirpiii'iiniiiiuhiiinrl (hl MiuMeei/ni el iiiiniinn nio 

(Iuw.iníi(I u/íi/>/« ti I Ihumuiu la timplilutl <Ipinoilii \ la 
Irnutriiíi iltl í/imimii/lío /</» Si/»n//i ti iiiiiuniiiniti /i<;c/</ 
’fij \ I dita ahajii ili I ri Mirh in la ftrdjuiiitnra fiirron la 
.’Juiih Iduiiíii mn ih //imi//m/i{</

71 ' Ssm'ffí 72. I = 6c(isrt(4í -

h /rn (ji n iciii\ 7J \ 7V. una pariii ala te nnii i e a la larK» ile 
-■~i f« (ra í/í iK m rjn a la < < iiai mn Je nun imit nto JiiJa. Jim Je 
allí \ti¡tinJii\ I //»«I i‘i la Julainia (/»ni;((/íj Je la partú lila 
ilt'Je ti cne«/» i pu \ por \i í;iinJii a la xdixiJaJ \ a pii \ 
r f¡e,,iinili> 11 la ai i h raí mn la) Cali ule i v <; oí íi riniiun Ji 
' ’l’i 'hit an ipil I / nmi iinu nto i \ animim o Miiiple (i I Siinuli 

iim III la i.ratii a Jara

• - 2 eiisi V + ' ;n + 4 scn( - ' ti]1 It
74 \ s - í. sen-4f

Si una p iniuil.i se imievc a lo lart’o de una retía de atiier- 
4 > a la etuaeiiin de moMiiuenlo t = cus 2í -r tos (, de* 
iimevire qut ti mu\ límenlo no es amuuitco simple
'■f'apjfiitulasc mueve a lo largo de una reda de acuerdo a 
la tsiiaumi de movimiento v = % <( + f»'. donde a y l> 
'”11 toiManies posuivas DemuLsire ijue l.i medida de la 

vkrauoii dt la partkula es iinersamenle proporuonal a 
' Tari uutijuier í
"'i ^'U dol.ires es el costo loial por lahritar v sillas, y 

~ I* + iDt ♦ Hoo, delermme (ii) la Imition de 
^”4i) iiiargiiul. (I)) el COSIO inargin.d cii.indo su projiictn 
*d illas (c) 11 Loslo real por producir la silla 21

•-! uididad loi.d rccilml.1 por la venia de i lamp.iras es 
^'ii iliilaies y /<(,) s- llHIt ' »- C'aknle lu) l.i lun 
ii”n dt uiilulad m.irgmal. (b) la ulilid.ul nurginal cuando 
' U) la tililidad ic.d por la venta de l.i l.mipar.i 16

79. I n un lago, un pt/ depredador se alimenta de un pe/ pe- 
i|uciio. y l.i población de depredadores en cu.ilquicr tiem­
po es una rimción del numero de peces pequeños en el 
lago en ese liempo Suponga que uundo hay x peces pe 
<|uenos en el lago, la pohl.ieión de depredadores es 
' roóm ** " ló) * kmp'iríidd de pesca

termino hace / seiiwnas x = 1(X)/ + Mi ,A que lasa 
crece la polilacmn de depredadores II) semanas después 
de (jue se cerro la temporada de pesca No exprese v en 
términos de r. utilice la regla de la cadena 

no. Li ecuación de demanda para cicrla barra de dulce es 

/»t + t + 2ll/> = 3 000

donde I IKKIr barras de dulce son requeridas por semana 
cuando//ccniavos es el precio por barra .Si el precio aelual 
es de 49 centavos por barra y el precio por barra crece a una 
t.isa de 0 2 centavos cada semana determine la lasa de 
vanauon de la demanda

81. Un barco /arpo a mediodía y viaja hacia el oeste a 
20 nudos A las 6 p in un segundo barco /arpo del mismo 
puerto y navega hacia el noroeste a 1^ nudos ,Quc tan 
rápido se alejan los dos barcos cuando el segundo lu re­
corrido 90 millas nauttc.is'

‘>0 m fi

240 m n fc {bicrtn

82. Un recipienle mide KOinde longitud y su sección (ntnversal 
es un irapecio isósceles con lados iguales de 10 ni. base 
mayor de 17 m y base menor de 5 m Cn el inst.inte tn que 
el agua lu alcanzado una prolundidad de 5 m determine 
la lasa a la cual el agua escapa si su nivel disminuye a una 
lasa de 0 1 m/h

83. Un embudo de loniia comea llene un diameiro de 10 pulu 
en su parte superior y 8 pulg de prolundidad El agua enira 
al embudo a una lasa de I2pulg’/sy sale de el a uní tasa 
de 4 pulg'/s «Que lan rápido se eleva la superllcie del 
agua cuando esta tiene una prolundidad de pulg ’

i inpiik "
I

H pule -X; ^ I

^ pul^

f f



196 CAPÍTULO 2 DERIVADA Y DIFERENCIACIÓN

K4. Coiilonnc el ultimu cami tic un Ucn debajo de un 
puente, un julninoviUnua. purencmiadcl puente, las vías 
del fcrr(H.aml en lorma perpendicular a H) pie encima de 
ellas IJ la-n se despla/a a una tasa de 80 pie/s y el auif> 
mnvd a una Casa de 40 pie/s ,Oué tan rápido se separan 
el iren y el aiiiomovil después de 2 s^

■J---------- L.

W)p« '“tí
y

K5. l'n tioinbrc de 6 pie de estaium camina haeia un edificio a 
una lasa de 4 pie/s Si hay una lampara en el piso a 40 pie 
del edificio. ,quc tan rápido disminuye la sombra del 
hombre proyectada en el edificio cuando ól csti a 30 pie 
del edificio ’

86. l'na persona tiene una ijucmadura en su piel de forma 
cirt alar. Si el radiu de la quemadura decrece a una lasa de 
0()S Lm por día. cuando ¿ste es de 1 Ocm, «.cuál es la lasa 
de dcca-cmiicnto del arca de la quemadura en ese ínstame ’

87. Sea

/(í> I- + 2 SI ar s 3
21) - a* SI 3 < X

(al Dibuje la gradea de / Ib) Determine si / es conti­
nua en ' Ce) Decennine si/es diferenciablc en 3 

88. Sea

yit)
I r* - 16 SI t < 4 
l8t-32 si4Sr

Cu) Dibuje la gráfica de/. Cb) DcCcrmine si/es conCinua 
en 4 fe) Decerminc si / es diferenciable en 4

8‘). Sea /i I) = [ 11 ’ fu) Dibuje la gráfica de / (b) Calcule 
liin fi r) M existe (c) Obtenga/'(O) si existe

00. .Scj^(t) = t* sgn X (u) jCn que números es / difcren- 
ciahlc Mb) ,Hs/'continua en su dominio'*

•ft. Sea

«T‘ * h SI t á I

I

iliienmne los dures de o > /> tales que /1 Ij exista 

*>2. Suponga que

;u)
‘ ' SI I < I

ii\' t l>\ t c SI I • I

Deierminc los v.llores de u. A y i t.iles qiie^'i 11 exista.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

DemuesUe que lu rectu tangente en cualquier puniii(«,,j 
de la circunferencia

X- ^ V* = r'

es perpendicular a la recta que pas.i por el punto l r,. i,)j e i 
ceniri) de la circunfurencia ^

Si/íuj = -y ygfx) = .calculcUdc.
“ V2x’ - 6r + I

dencoda de / o j? en dos formas ía) primciu üb<t-p 
</ ® ;?)<*)> después calcule í/ ° qt'ixy, ib) utilice 
de la cadena
Suponga que/(x) = 3r + Ix) > gíx) = }•* - i |i 
Demuestre que f'(0) ni g'ÍOj existen pero 
(/ o gj (Oj existe

Dé un ejemplo de dos funciones/y g de modo que/« 
diferenciablc en gíO), que g no sea dircrenciablc en 0. y (¡^ 
/ o g sea diferenciablc en 0

Dé un ejemplo de dos funciones / y g de modo (¡li­
no sea diferenciablc en gfOj. que g sea difercnciablí e' 
0. y / o g sea diferenciable en 0 

Sea

f(x)
jo SI X < 0 
j x” SI 0 S X

donde n es un número entero posiuvo (o), Pata qué i> - 
lores de ri es / continua pura lodos los salares éei
(b), Para qué valores de n es/diferenciable para lod«b 
valores de r"* (c), l*arj qué v.dores de n es/'cuntiDiüc. 
todos los valores de x ’

Si/IX) existe, demuestre que 

-./I.,!-
»i| X • ij

Sean / y g dos funciones cuyos dominios son el c». 
jumo de lodos los números reales Ademis. sups? 
que (i) gfjj = t/ít) + 1. fll) g(a b) = gltil f 
para toda u > b, (ill) lim/lx) = I Demuestre 
gft) = glxj

Si las dos funciones / y g son difcrenciablcs en el» 
mero r,. ,,cs la función compuesta f o g nccesanifl»- 
le dilerunuable en el mimen) x,' Si la respuesta o t 
demuéstrelo Si la respuesta es no, dé un contracjcirpL'

Suponga que gÍT) s |/fx)| Si/''”l t) existe >/fU* 
demucsirc que

í
Demuestre que D^''lscn x) = senix + J n.TI Sjí^ 
rfiulu iililae inducción mulemalica y ías fonov- 
sc'iifx + i ff) - eos T o cosí» + I W = -sen 
pues de cada diferanciacióii

' 'j~- sV' ‘^'••imicstre por medio de indU'-'s''-''

J^V S" ||I
niatemalica que ----- = ----- -—2____

íA" fl - 2 X)"•'



Comportamiento de las 
funciones y de sus 
gráficas, valores extremos 

y aproximaciones

r

3.1 Volores máximos y mínimos 
de funciones

3.2 Aplicaciones que involucran 
un exfremo absoluto en un 
intervalo cerrado

3.3 Teorema del Rolle y teorema 
del valor medio

3.4 Funciones crecientes y 
decrecientes, y criterio de la 
primera derivada

3.5 Concavidad, puntos de 
inflexión y criterio de la 
segunda derivada

3.6 Trazo de las gráficos de 
funciones y de sus derivadas

3.7 límites oí infinito
3.8 Resumen para el trazo de las 

gráficas de funciones
3.9 Aplicaciones adicionales 

sobre extremos absolutos
3*10 Aproximaciones mediante el 

método de Nevvton, dé la 
recta tangente y de 
diferenciales

o interpreladón de la derivada como lo pendien­
te de la reda tangente proporciona información 
acerca del comportomienlo de las funciones y 

de sus gráficas Se inicia lo sección 3 1 con la definición 
y determinación de volores de funacr] máximos y mínimos 
Los aplicaciones del mundo real de máximos y mínimos se 
presentan en muchos campos diversos como lo 
averiguoró cuando estudie los secciones 3 2 y 3 9 En 
particulor, se determinará lo vigo más resistente que 
pueda corlarse de un tronco cilindrico así como las 
dimensiones de la co|0 que requiere la mínima contidad 
do molerial paro un volumen específico

Uno de los teoremas más importantes en Calculo es el 
feoremo del valor medio el cuo! se trata en la sección 3 3 
Este leoremo se utilizo en lo demostración de muchos 
teoremas tonto del Cálculo Diferencio! como del Cólculo 
Integral, osi como de otras materias como el Análisis 
Numérico.

En las secciones 3.4 a 3 ó se aplica lo derivada en 
técnicas pora groficar funciones Estas técnicas son impor- 
lonfes debido o que proporcionan medios de confirmoción 
analítica que pueden aplicorse a los conjeturas obtenidos o 
porlir de la graficadoro.

En ocasiones, el comportamiento de cierta gráfica 
no es evidente, si pasa o no por ciertos puntos, según se 
muestra en lo pontolla de la groficadora, de modo que 
se necesita el Cólculo poro determinar propiedodes es­
pecificas de los gróficas. Por ejemplo, lo derivada revelo 
los intervalos en donde lo función es creciente y en 

donde es decreciente lo derivado también permite 
locolizor los puntos donde lo recto longenle es 
horizontal, asi como determinar los intervalos en los 

ue lo gráfico está por ambo de lo recto tangente 
/ los intervolos en los que esto por debajo de lo 
redo tangente

En lo sección 3 7 se esludiorón los límites al 
infinito y se aplicarán en lo determinación de 
osi'ntofos horizontales de los gráficos En lo 
sección final del copilulo se estudian tres 
procesos numéricos utilizados poro 

oproximor volores de función
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3.1 VALORES MAXIMOS Y MINIMOS DE FUNCIONES
Uiu aiilitaL-inii inipiin.mtc de- la derivada es determinar dónde una func'- 
alean/a sus xulon's iiiiiMiiiin y iii(mnif>\ Í<’.rm’/;iín) En esta sectión sei: 
tjará el estudii) de los valores extremos de una función con los cxiram,¡r, 
/íimvn, e\lreitun ahuiliinn y el Icorami del valor exireiiio. I^s aplicacir^; 
de estos umeeptos se presentan en la próxima sección.

3,1.1 Definición de volor máximo relofivo
La función / tiene un valor máximo relativo en el número c si existe 
un intervalo abierto que contiene a t. en el que/csiá detinida. tal que 
fu I > /<x)para toda .ten ese intervalo.

Las fijiuras 1 y 2 muestran una porción de la gráfica de una fum;nine¿ 
tiene un valor máximo relativo en c

3.1.2 Definietón de valor mínimo relativo
La función/tiene un valor mínimo relativo en el número c si cxmc 
un intervalo abierto que contiene a c. en el que/está definida, tal qti,; 

S /(t; para toda r en este intervalo.

HGI K.\ 2

Las figuras 2 y 4 muestran una porción de la gnifica de una funciúnc- 
tiene un valor mínimo rclaiiv o en c

Si una función tiene un valor máximo relativo o mínimo relativo eni 
entonces se dice que la función tiene un e.xlrcmo relativo en c

El teorema siguiente se ulili/a para determinar los números poiibliss 
los que una función tiene un extremo relativo.

3.1.3 Teorema
Si /I tj existe para todos los v alores do x en el intervalo abierto tu. h). 
y si f tiene un extremo relativo en c. donde « < r < h. y adema' 
/'ir) existe, entonces/'te) = 0.

HGl R.\ 3

La demostración de este teorema se dará al final de esta sección. En tí 
minos geométricos, el teorema establece que si / tiene un exiremo rel4.- 
en c. y si/'(o c.xiste. entonces la grállca de f debe tener una recta lanjfr: 
horizontal en el punto donde = c Observe que esta situación .se prc'C- 
eii las gráficas de las figuras I y 3. El teorema también indica que si) C' v 
luncinn dilerenciable. entonces los únteos números posibles c para ki'^- 
Ics f puede tener un extremo relativo son aquellos en ios que JU) = 0

l' EJEMPLO ILUSTRATIVO 1 S.a/la lunc,™ ddlnijjp'

/(T) = ,r - 4l + 5

II t l¡

IÍGIR\4

hnioiices l íx) = 2t - 4. Como /’t2» = l). / puede tener un cvKí' 
relativo en 2 Puesto que/(2) = l y i < cuando .v < 2 o t > i' 
delmieión 3.1 2 garantiza que /-tiene un valor mínimo relativo en 2 U''
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/Ul . Il - ^

IK.UU5

1

I ■ M h • :

1 ICl U\ 6

tiura S imieslra la gratka Jl- J. una panihola cuyo vcnicc está en el pumo 
(2. 1) en ilotule la tiratka tiene una reUa tangente liori/onlal ^

Ohscr^e t|ue / (i) puede ser igual a cero aiiiujue / no tenga un exiruiio 
rotativo en i, como se muestra en el ejemplo ilustrativo siguiente

EJEMPLO ILUSTRATIVO 2 c„„ ,j.rc L i.muón/ddi-
nid.i por

f(\) = ít - 1)' + 2

bnlonces/’(i) = - | j- Debido a que/t I) = O./puede tener un extre­
mo relativo en I Sin embargo. eomo/(I) = 2y2 > /ttjcuandov < l.> 
2 < f(x) cuando i > 1, no se puede aplicar ninguna de l.is definiciones 
^ I I ) 1 1 2 De modo c|ue /'no tiene un extremo relativo en 1 La gráfica de 
esta función, mostrada en la ligura 6. tiene una recta tangente bon/ontal en 
el punto (1, 2) lo cual es consistente con el hecho de que la derivada sea 
cero en ese punto M

Una luncion puede tener un extremo relativo en un numero en el que la 
derivada no exista Lsta situación se presenta para las tunciones cuyas grá­
ficas se muestran en las figuras 2 y 4. así como para la función del ejemplo 
ilustrativo siguiente

EJEMPLO ILUSTRATIVO 3

/(U
j 2f - I SI t á 3 
I K - 1 si 3 < V

Seay la función detniida por

La gráfica de esta tuncion se presenta en la figur.i 7. la cual muestra que J 
tiene un valor máximo relativo en 3 La derivada por la i/quierda en 3 esta 
dada por = 2, y la derivada por la derecha cii 3 está determinada por
/Lí3) = -1 Por tanto, se concluye que/'(3) no existe ^

ni ejemplo ilustrativo 3 muestra por que la condición "J (t) existe” debe 
incluirse en la hipótesis dcl teorema 3 1 3

Es posible que una tunción pueda estar dellnida en un numero < donde 
I t() no exista y sin embargo.y no tenga un extremo relativo en ese numero 
El ejemplo ilustrativo siguiente present.i una de estas luncioiies

i

;ni -> I I > • 1
I 1 I

I l(.l'»\ 7

EJEMPLO ILUSTRATIVO 4 Sea/lafunuondellmd.ipor 

/(>) = v''’

El liomimo de / es el coiqimto de lodos los números reales \ su deriv ada es 

I ID = su o

Ademas, / (0) no existe 1 a llgura S muestra la grallca de / l a función no 
llene extremos relativos ^

l-n resumen, si una limeion / est.i defiiml.i en un niimeio t. una con- 
dicioii necesaria p.ira que / tenca un extremo relativo en i es quey'li ) = 0
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/m i' ‘

HC;i'RA 8

o 1|UC l'u ) MI) cxisl.i Tcn^ii en cucni:i (|uc csla condicií'in es ncccs^nj j>.. 
no siitlcicnle

3.1.4 Definición de número crítico
Si ( es un núniLTo del dominio de la lunción /. y si f'(c) = 0 o/V) 
no existe, cmonccs c es nn número crítico de/

Debido a esla delmiuón y a la diseusiún anierior. una condiLiún ncc; 
sana, pero no sulleienle. para que una lunción tenga un extremo relaliuit. 
< es i|ue t se.i un número cnlico

^ EJEMPLO 7 Sea/la ¡unción definida por

yii) = i’ + 4t'' - 2i^ - 12r

I 10 I0|[»r[-|0 10]

/(II t‘ ■ 4i' - 2i- - I2i

(a) Estime gráficamente con aproximación de décimos los números criUo 
de f

(b) Confirme analíticamente las respuestas del inciso (a)

Solución
(a) Como/(x) es un polinomio./'(t) existe en lodo número Por lanlo.l- 

unicos números críticos son aquellos valores de r para los quef'(x) = ( 
esto es, las coordenadas \ de los puntos de la gráfica de/ para los qu'L 
recta l.ingente es lion/ontal La figura 9 muestra la gráfica de/ira/adar 
el rectángulo de inspección de |-10. lü) por (-10. 10). En la graficade^. 
la recta tangente parece lion/onlal en los puntos (-3 0. -V 0). (-1 0.7' 
y (! 0. -y 0) De este modo, se estima que los números críticos son -3^ 
-1 Oy 1 ü

(b) Se calculase iguala a cero y se despeja x

PIGl'RW 4r’ + 12x' - 4\ - 12 = 0
\' + 3t- - r - 3 = 0 

\-(x + 3) - (c + 3) = 0 
1 \ + 3\ - 1) = 0 

r + 3 = 0 A- - 1 = 0
X = -3 V- = I

X = ±1

De esto modo se ha conilrmado que los números críticos son -3. -1x1 ^

► EJEMPLO 2
(a) Delcmnne los números críticos de la lunción definida por

/(X) = x'í' + 4x'/'

Apoxe las respuesias del inciso (a) gráficamente en dos tormas' (b) tM>.i: 
gr.ifica de /. (e> trace la gráfica de NDhRt J(\). x).

Solución
(a) /'tu ^ |a''' + -|.x

= !i ^/'(x + 1)

4( X + I)

3t^/'
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/i«i »' . 4 I' ‘

H(U K\ 10

HGIKA II

Cuantío X - = 0, y cuando x = 0, f‘(x) no existe Tanto -1
Lonio 0 están en el dominio de /. por tanto, los números críticos de / 
son -1 y 0

Ib) La Hgura 10 muestra la (trúflca de / trazada en el rectángulo de inspec­
ción de |-5, S) por (-5, 5) La gráfica parece tener una rectatangente 
luiri/onial en el punto (-1, -3) y una recta tangente vertical en el punto 
(0. 0) Por tanto, la pendiente de la recta tangente es 0 cuando r = —I y 
la recta tangente no tiene pendiente cuando t = 0 Estos hechos apo 
yun las respuestas del inciso íaj

(c) La figura 11 presenta la gráfica de NDERíf(x), x) trazada en el rectán­
gulo do inspección de |-5, 5] por [-5. 5| Como la gráfica de f'íx) mier- 
sccU al eje r en (-1, 0),/'(-l) = 0 La gráfica de f'(xi tiene al eje y 
como a.sfntola vertical, lo cual indica que /‘(Oj no existe De nuevo, 
esto apoya las respuestas del inciso (aj ◄

r EJEMPLO 3 Determine los números críticos de la función 
definida por

gít) = sen reos r

Solución Como sen 2 r = 2 sen r eos r.

j,'ír) = Sen2\ 

g'(r) = jÍcüs2j:>2 
- eos 2 r

Puesto que g’ít) existe para toda t, los únicos números cnticos son aquellos 
para los que g'írj = 0 Como eos Ir = 0 cuando

2x = íff + kn donde A es cualquier numero entero

así, los números críticos de g son j/r + \kn, donde k es cualquier nu­
mero entero A

Con frecuencia se trata con funciones definidas en un intervalo dado \ 
se desea determinar el valor de función más grande o mas pequeño en el in­
tervalo Estos míen alus pueden ser cerrados, abiertos o cerrados en un extre­
mo y abiertos en el otro El valor más grande de la función en un intervalo 
se denomina \ahr máximo absoluto, y el valor mas pequeño de la función 
en el intervalo se llama \ulor mínimo absoluto A continuación se dan las 
definiciones precisas

3.1.5 E>efinid6n de vqlor máximo absoluto en un intervplo

La función/tiene un valor máximo absoluto en un intervalo si existe 
algún número c en el intervalo tal quc/(c) 2 fix) para toda t del inter­
valo. El numero f(i) es el valor máximo absoluto de/cn el intervalo

3.1.6 Definícián de valor minimo obsoluto en un intervalo

La función / tiene un valor mínimo absoluto en un intervalo si 
existe algún numero c en el intervalo tal que/(c) £ /(rl para toda v del 
intervalo El numero/k) es el valor mínimo absoluto de/en el in­

tervalo
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FKitRA 12

*

/U) «xe(-3.21 

HGÜRA 13

V

+

/(I) —í-7 lei-l. I)
I - r

Un extremo absoluto ele una función en un inicrvalu es un valor tniu 
mn absoluto o un valor mfninu) absoluto de la función en el intervalo 
función puede o no tener un extremo absoluto en un intervalo particular Ei 
cada uno de los ejemplos ilustrativos siguientes se dan un intervalo y una 
ción, y se determinan los extremos absolutos de la función en el intervalo | 
es que existe alguno.

1 EJEMPLO ILUSTRATIVO 5 Suponga que/es la funó(, 
definida por

fíx) = 2x

La gráfica de/en el intervalo |l. 4) se presenta en la figura 12. Esta funcK'( 
tiene un valor mínimo absoluto de 2 en |!. 4). No existe un valor máximo^ 
soluto de/en (1. 4) porque llm_/(x) = 8, pero f(x) siempre es mcnori}« 
8 en cUntervalo dado. <

> EJEMPLO ILUSTRATIVO 6 Considere la función/d¿
nida por

f(x) = -.r

La gráfica de /en el intervalo (-3.2] se muestra en la figura 13. Esta funen 
tiene valor máximo absoluto de ü en (-3.2]. No existe un valor mínimo úh.- 
luto de/en (-3,2) debido a que lím f(x) — -9. pero f(x} siempre es nan 
que ~9 en el intervalo dado. 1

EJEMPLO ILUSTRATIVO 7 La función/definida por

no tiene valor máximo absoluto ni valor mínimo absoluto en el inicna 
(-1. l).La figura 14 muestra la gráfica de/cn (-1. 1 j. Observe que

lim f\x) - -00 lím í(x) - +co ^
I-^l'

EJEMPLO ILUSTRATIVO 8 Sca/la función dcfimdJio

/ÍJ)
|j + 1 si X < I
lxr-6x + 7 silSx

La gráfica de/cn |-5.4) se presenta en la figura 15. El valor máximo alw^ 
de/en |-5, 4) ocurre en 1. y/(l) = 2; el valor mínimo absoluto tk/* 
|-5.4| ocurre en -5. y/(-5) = -4. Ob.senc que/tiene un valor máxinwfc» 
tivo en I y un valor mínimo relativo en 3. También note que 1 es un nóof 
crílco de / porque /'(I) no existe, y 3 es un número critico dc/p^í* 
/'(3) = 0. ‘

fh;i'ka 14

EJEMPLO ILUSTRATIVO 9 La funcUín /definid.!•
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no licne vulor máxitmi absoluio ni valor mínimo obsoluio en [2. 4J. La figura 
16 mucsira la gráfica de / en este intervalo. Como lim /(.t) = -oo; 
l{\) puede iiaccrsc menor que cualquier número negativo tomando 
^ y menor que una 6 positiva adecuada También se tiene que

lím^ fi-t) = +00, de modo que f(x) puede hacerse mayor que cualquier

número positivo lomando .t - 3 > Ü y menor que una 5 positiva con­
veniente. ^

/(i> “
J1 t 1 '1« < I
{,• - fu . 7 M I •; »

nta KA15

Se puede hablar del extremo absoluto de una función cuando no se ha 
especificado ningún intervalo. En tal caso se hace referencia al extremo ab­
soluto de la función en su dominio.

i

1-
s

-1- \ 4 5

fui —i— a G|2.4|, . * 3 
X - 3

R(;ilL\ 16

i

' 12,4)

EJEMPLO ILUSTRATIVO 10 La gráfica de la función / 
definida por

f(x] = .r - 4.r + 8

es la parábola mostrada en la figura 17. E! punto más bajo de la pará­
bola es el punto (2. 4), y la parábola abre hacia amba. La función tiene un 
valor mínimo absoluto de 4 en .v = 2. No existe el valor máximo absoluto 
dey. ◄

Con referencia a los ejemplos ilustrativo.s 5-10. se aprecia que el úni­
co caso en el que existen tanto el valor máximo absoluto como el valor 
mínimo absoluto de la función es en el ejemplo ilustrativo 8, donde la fun­
ción es continua en el intervalo cerrado |~5. 4). En los otros ejemplos ilus­
trativos no se tiene un intervalo cerrado o no se tiene una función continua. 
Si una función es continua en un intervalo cerrado, un teorema, llamado 
icorema Jel valor extremo, asegura que la función tiene un valor máximo 
ab.soluio y un valor mínimo absoluto en el intervalo. La demostración de e.ste 
teorema, más allá del alcance de este texto y puede encontrarse en algún li­
bro de Cálculo avanzado.

3.1.7 Teorema del valor extremo
Si la función / es continua en el intervalo cerrado [a. h\. entonces f 
tiene un valor máximo absoluto y un valor mínimo absoluto en («. b].

fut = ,' 4« . H

1 U;i'«A 17

El teorema del valor extremo establece que la continuidad de una fun­
ción en un intervalo cerrado es una condición suficiente para garantizar que la 
función tiene un vulor máximo absoluto y un valor mínimo absoluto en el 
intervalo. Sin embargo, no es una condición necesana. Por ejemplo, la fun- 

'ción cuya gráfica se muestra en la figura 18 tiene un valor máximo absoluto 
en .t = f y un valor mínimo absoluto en .t = d. aunque la función es dis­
continua en el intervalo abierto (-1.1).

Un extremo absoluto de una función continua en un intervalo cerrado 
debe ser un extremo relativo o un valor de función en un extremo del inter­
valo. Debido a que una condición necesana para que una función tenga un 
extremo relativo en un número c es que c sea un número crítico, de modo que 
el valor máximo absoluto y el valor mínimo absoluto de una función/con- 
tinua en un intervalo cerrado («. b\ puede determinarse mediante el prcKcdi- 

miento siguiente:
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1

HGl R \ 18

1. Dctcnnine los valores de la funcUín en los números críticos de/ 
en (u. b).

2. Determine los valores def(a) y f(h).
3. Hl mayor de los valores determinados en los pasos I y 2 es el 

valor máximo absoluto, y el menor de los valores es el valor 
mínimo absoluto.

^ EJEMPLO 4 Determine los extremos absolutos de / en (-Z 3| y 

f(x) = .f^ - 6r - I 

y apoye la respuesta gráficamente.

Tabla I

t -2 -MI I 41 3
/U) 46fi -6Wi 8

Solución Como/es continua en (-2. 3], puede aplicarse el teorema dd 
valor extremo. Para determinar los números críticos de /, primero se calcula 
f(xy.

nCL'RE l!>

f'(.x) = 3-t- - 6

Debido a que f'(.x) existe para todos los números reales, los únicos númemi 
críticos serán los valores de .x para los que/’í.r) = 0. Al igualar f'(x) a cero 
y resolver para .t se tiene

3.t2 -6 = 0
.T = ± -/l 
.X = ±1.41

De modo que los números críticos de / son aproximadamente ±1.41 
y cada uno de estos números está en el intervalo cerrado (-2, 3] Los valore' 
de función de los números críticos y de los extremos se muestran en la tabla I 

Por tanto, el valor máximo absoluto de /en el intervalo [-2, 3) es 8, el 
cual ocurre en el extremo derecho 3. y el valor mínimo absoluto de/en el in­
tervalo (-2, 3) es aproximadamente -6.66, el cual ocurre en el número cri­
tico 1.41.

La figura 19 muestra la gráfica de/ira¿ada en el rectángulo de inspec­
ción de f-2,31 por f-IO, 10], Esta gráfica apoya la.s respuestas dadas. ^

► EJEMPLO 5
/en (1. 5| si

Estime gráficamenic los extremos absolutos tk

|l.51p.irl-l.3) 

/lO = lr 2)’'’

f(.x) = (X -

y confirme las respuestas analíticamente.

Solución La gráfica de/trazada en el rectángulo de inspección de (1.5! 
por (-1. 3) .se muestra en la figura 20. De la gráfica, el valor mínimo absoluto 
es 0 y ocurre en x = 2. El valor máximo absoluto se tiene en el extrcmoifc- 
recho 5. y en la calculadora, .se estima que/(5) = 2 08.

Al aplicar el teorema del valor extremo se confirman la.s respuesu-' 
analíiicamcnie, puesto que fes continua en [1,5]. Como

f'lx)
3í.t - 2)'/-'*FIGUR/V 20
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m) CKislc valor de i p.ira el eual f‘(x) = 0. Sin embargo, como no existe 
en 2, se toneliije que 2 es un número crítico de/; de modo que el valor mí­
nimo absoluto ocurre en 2 o en un extremo del intervalo Los valores de fun­
ción de estos números se muestran en la labia 2.

IJe la tabla se concluye que el valor mínimo asbsoluto de/en [I, 5] es 
0 y el valor máximo absoluto es ^9 a 2.0«. lo que confirma las respues­
tas anteriores. 4

Antes de demosir.ir el teorema 3 1.3. como se indicó, se probara un teo­
rema preliminar que se utilizará en la demostración del teorema 3 1.3. así 
como en las demostraciones de otros teoremas.

3.1.8 Teorema
ll) Si lim/í.v) existe y es positivo, entonces existe un intervalo 

abierto que contiene a c tal que f{x) > Ü para toda a: c del
intervalo.

(üj St lím/f.v) existe y es negativo, entonces existe un intervalo 

abierto que contiene a c tal que /ív) < 0 para toda x c del 
intervalo.

Demostración del inciso (i) Sea lim/lv) = L. donde, por hipóte-
J-.I

SIS. L > 0. Al aplicar la definición de límite (15 1) con f = \L. se tiene 
que existe 6 > 0 tal que

SI 0 < |.t - c| < 5 entonces \fix) - L\ < \L (1)

ComoO < |.v - c'l < ¿equivale a la proposición

V está en el intervalo abierto (c - 6, t + donde t ^ c (2)

y |/(v) - /-I < 1 ¿equivale a la desigualdad continua

;¿ < /(.V) < :¿ (31

Si se sustituyen (2) y (3) en (11. se tiene la proposición

si .V está en el intervalo abierto (f ~ d.c + 5). donde.r ^ c. 
entonces [L < /(v) < ]¿

Como L > 0. esta proposición significa que /(v) > 0 para cada .v r del 
intervalo abierto (i- - ¿. f + ¿1 ■

La demostración del inciso di) es semejante a la del inciso (i) y se deja 
como ejercicio (vea el ejercicio 57).

Demostración del teorema 3.1.3 Se desea probar que si/(.t) exis­
te para todos los valores de .i del intervalo abierto ia. h), y si/tiene un e.x- 
iremu relativo en r. donde <1 < t < />. y .si/'(f) existe. cntonces/’(c) = 0 

Suponga que/'(O s* 0. Entonces/’U ) > 0 o/’tc) < 0. Si/'d ) > 0 

entonces

lim rín. > „
X c
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l’ur tiinlo, por el icorema 3 I K íi). existe im inlervíilo ¡ihierln / ijuc eoniicfí 
a ( tal i|ue

/I- tic) > 0
- <■

para tinla t r en / Además.

/li) - /((■) = U - r) ~ st i ^ £

De (4). el cociente del miembro derecho de (5) es positivo si a está en / h; 
tantt), de (5) se concluye que si eslá en /, entonces fíx) - f(c) y x - c 
tienen el misino stjino. esto es

f(\) > f(c) si X > c 16,

y
/■(A) < fie) SI X < C |7|

De í(i},J no puede tener un valor máximo relativo en c y de (7) / no pucih 
tener un sabir mínimo relativo en c. lo cual contradice la hipótesis de que/ 
tiene un extremo relativo en £•.

Si fie) < 0. se obtiene una contradicción semejante. Se le pedirá q_* 
pruebe esto en el ejercicio 58

Así. la suposición de que fie) ^ 0 conduce a una contradición, portr
to.r'í) = Ü. I

EJERCICIOS 3.1
í.ii ¡US íjin ic;m l a S. (a) truiv Ici linijUa itv ht fiiinitin \ evíi- 
tiif lin números iritieox líe la fiiiuión l•n¡fnllmcllU■. (h) Cim- 
lirmc lai resptieslaf deí imvo» (<il aiuililu iiinenle.

1. /u» = A ’ + 7r* - 5t

2. = Ii* - Iv* - lót + I

3. etx) =

4. yíu = A^^' + - 3i"’

A + i5. flx) (>• fix)
2x -9 
X- - yA* - 5t + 4

7. C(r) = í» - 2)’m + l|-

8. Fin = t.S -f a)*(2 - n-

Di los ejcreicins 9a 14. {a) Jeieniunelosníwienn vnliios déla 
/uní ion f ü/iíj/í/íí «nmiíi'. .\fio\e lax respueíitn del nuiso {ai en 
dos formas: (h) irme la i;ri¡Jiea de f. U i irme la sirófua de 
NDF-R(An, n
y. flx) = + I k' + M\- + l^r - 2

Jl). flx) - + 4t’ - 2x- - I2x

II. yiM - 4)’-^’

12. I(ss) - (u ^ - 3ii ■ + 4)'^‘

X* + 4
13. ini = -X - 2

- + 2x + .*514. nsi

En los ejereieios 15 a /.S, deiennine los ntimerox < riluos ¿eL 
fiini u'm.

15. /tn = sen 2i cos 2t

16. fix) = sen2x + cus2x
17. Fi XI = sec’ 3 X

18. GiX) = lan’ 4 x

En los cjen laos 19 a 3H. {al ddmje la aráfivu de la fuiuivn c¡ 
el intenalo imlnailo. (I>¡ dciermtne los exlreinos ühsoltiU'í¿t 
la film ion en el intenalo. si e.xisie ali{imo, y delermme 
lores de xxn los t/iie ot lirren lt>s extremos ahsoliilos. 

ly. yiAl = 4 - 3x11-1.21

20. /(xl is X* - 2x + 4;(-oo. + oo)

21. A-txl = 1.1-2.3!
X

22. /(X) = i. [2,31

23. f{\) = 2cosi:[-^n’. ^;r)

24. G(\) = -3 sen x. |(), ’ m

25. Jix) - V3 + A ; j-3. + w)

26. f(\i ~ A*; (-2. 2»

27. /í(i) = ------¿__;|2.5»
(X - 3)-

28. v(x) = -1L_.(-3.2|
y - A'
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jy. Mil =

30. /'»»

31. «.•'»>

32.

|, .l| ^ I lO (.)

I I |- I .< 00. + col 

^ I f 7» .|l). 3)

I I» 4 I| M t ■'.h2.D 
n M X = -I

3.V íi'l

.U Ani 

f MI -

¡T^

I 2 M l ^

í'Hi n» - iiiIhíkIl-

I n M X < u ,_| j, 
I 1 M o •' X

35. /Hi = ‘ n»D.*i.
3A. Mxl 2x + |]2x - ID <1.-1 

37. M»! = I-
3H. /(X) - Mn2i,(- \ n.

£n /m ejfnniii'i ti -í'i lUwrmuu Ini rartiiio\ ulmiliitin ih‘ 
l,¡ fumiiin III ti iiiUruilii iiiJiuuIn nuiliiiiiw i7 tiu'loJo lUI 
fjempliiJ X <;/>"!«• Iiis n ipiirlitis i;rtifi< (iiiiriilf

39. iJl Mxl = x^ - Si- + lí).|-4.(l|
<hl /(ti = X' - Hx- - If). 1-3. 2|

40. (al JHf = - Sf + l(i.|0. 3)
11)1 /(X) = x^ - Sx- + lfi.l-l.4l

linw h\ rfspiiniiis iiiuilíiuiwunit iiuuluiiilv il iiniodo </,•/ 
fjfiiijilii 5

47. /(X) = + 5t - 4,(-3.-||

48. «Ixl - x’ + .1t* - Vx; (-.l.4|

49. J.7I) = 2 m;c \i. (- ',/r. ín\

50. Jii) = 3 tns 2í, I j ;i. ’ .t]

51. /(t) = (x - I)'/* + .i.[(j 2|

2 ■ I" '■

£»i los ijt n n im 5J ii írt. loi ihhiijt tu f;riifnii <h' lu fiiiu ion tu 
el mieniilo iiuIkuiIii (/») ¡Jiumiinc hif eureiiiot ulnoliiim de 
lii/imi ion cu 11 iiih rudo

53. /fx) =
J'J. SI -.3 s X £ 2 

SI 2 < X S .3 ■
l-.k .1)

54. /(r) = li - 7 SI -! £ T £ 2
.1*1.4)

1 - X- SI 2 < V í: 4

55. /•(x> = 3x - 4 
^ _

SI -3 £ X < 1
.l-k 3|

X- - 2 SI 1 <: X £ .3

5fi. filil
[4-(x+5r

I 12 - (X * II-
“•i - 6 £ X £ - 4 
M -4 < X £ I)

.1-0 ()|

57. Daniic\trc el inciMi mi dcl (eurcm.i 3 I 8

41. luí = 2 sL-n / [-.T -Ti

42. í,'(fi = [ese 2(, 1- ^ ¡

43. e(..i = —2[
II ♦ 2

44. Kn = L.^. 1-5.21
r 3

45 jiii = (X h l|-^‘,|-2. I|

4fi efJI - 1 If - 3)-/'. 1-5. 4)

hi los ijiniiiiis 47 a .52, íul euiiiie s;riifii iinie/Ue los t urc- 
inii\ ah ri/«/ín di hi fiiiii ion mil mu rudo milu lulo (hl Con-

58. Dcimicsirc el teorema 3 1 3 ton la suposición de 
i|uey (rl < 0

59. Si I.i luneion / es dilercneiahle en todo mimcro v 
f 'U) =s U, , puede ei»nduirse iiuc / tiene iin cxireiiU) re 
Ijlixoen I ’ L\plix)ue su respuesi.»

fiO. .Si I.i Itineion y tiene un evirenm rel.iiixo en el nu- 
nicfu < «puede eimeluin-e que /(i I = (I’ I:\plix{ue su 
respuesi.i

61. Destnli.i xiinui oixtendna Jiuliiicamente los evirenuis 
.ibsuluios de una luneion euntimia en un inlerx .do cerrado

3.2 APLICACIONES QUE INVOLUCRAN UN EXTREMO 
ABSOLUTO EN UN INTERVALO CERRADO

Alior.i .se aplic.ir.í el leoienu del x.ilor eviremix j priiblcm.is en los que Ij so- 

lucn'in es un extrcnio .itisxiluiu xle tin.i luiieinn en un iitierv.ilo e'crr.iilo ronix» 
se dijii en l.i secLiim .inlenur, el leurein.i .3 I 7 .isegur.i xpie iiii.i liineiim eonli- 
iiiM en nn mier\.iln cerr.idn nene un x.ik'r iii.i\iimx .ihsxilulo > un N.ik'r 
iníniimi .iIxmiIuiu en el mter\.ilo. Se nii)sir.ir.i el prxixexitmiemxi p.ir.i xibtener 
lx)s exireiniis .ilisxiliiins xk* iin.i luneion en el eicmplx* ilnstr.ilt\o siéntente. 
.il eoiisixler.ir l.i siin.inxin disuiiixi.i cu el ejempixx 4 de l.i seeeion I..3 v en el 

eieinplxi ilnsir.xlivo 2 xle l.i seeeixm l

! EJEMPLO ILUSTRATIVO 1 I n l.ilinx.inu de e.tias de
xTirlon i|uieie el.iborar e.q.is .ilueilas ,i p.iiln xle lio/os reel.ineulaies xle v.irlx'it
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II) pu1{!

I

n(',rR.\ 1

ccin dimensiones de 10 pulg por 17 pulg. cortando cuadrados en las cua-- 
esqmnas y doblando los lados hacia arriba Se desea determinar la longi- i 
del lado de los cuadrados que se deben corlar de modo que la caja lcn¡rj¿ 
mayor volumen posible, I-a figura I muestra uno de los tro/os de canfín i> 
dicados y la figura 2 representa la caja. En el ejemplo 4 de la sección 1.3 
mostró que si x pulgadas es la longitud de los lados de los cuadrados q. 
se cortarán y Vl.r) pulgadas cúbicas es el volumen de la caja, entonces

V'í.g = I70t - 54t2 + 4x^

y el dominio de Ves el intervalo cerrado |0. 5) Como Ves continua en |{|,5. 
se sabe, por el teorema del valor ejuremo, que en este intervalo V tienes: 
valor máximo absoluto, el cual ocurre en un número crítico n en un extrcD 
del intervalo. Para obtener los números críticos se calcula V'í.rj y se detK 
minan los valores de.r para los que V'(r) = 0 o V'í.\) noexiste

V'í.t) = 170 - I08t + ]2jt

V’í.vj existe para lodos los valores de .v Al igualar V'(.\) a cero y d¿‘[^ 
jar.t se tiene

FIGURA 2

2í6r - 5Ax + 85) = 0

-----------^-|2-------------------

De donde se obtiene x = 6.97 y x = 2.03. De modo que el único valoren 
tico de V en (0. 5| es 2 03. Como V(0) = 0 y l't5) = 0. mientras q_- 
V(2.03) = 156 03, el valor máximo absoluto de V ocurre cuando x = 20’ 
Este resultado puede apoyarse en la graficadora como se hi/o en el ejemp!n4 
de la sección 1.3

Cnncliisión; El mayor volumen posible es 156 03 pulg\ y se obtiene ou.'- 
do la longitud de los lados de los cuadrados que se cortarán es de 2.03 pulg ^

FIGURA 3

^ EJEMPLO 1 Los puntos Á y B están en las orillas de un n’ 
recto de 3 km de ancho y son opuestos uno del otro El punto C está en b 
misma onila que B pero a k kilómetros de B río abajo Una compañía ieleíi> 
nica desea tender un cable de A a C donde el costo por kilómetro de cablera 
tierra es de SIO (KK) y el de cable subacuático es de S12 500 Sea P un punv 
en la misma orilla que /) y C de modo que el cable se tienda de A a P y luec 
a C. Consulte la figura 3. (a) Si x kilómetros es la distancia de B a P. oblengi 
una ecuación que defina a C(x) si C(.t) dólares es el costo total del cable ten­
dido y csiable/.ca el dominio de C. (b) Si k = 2, estime en la graficadond 
valor de x pura el cual el costo del cable tendido sea el menor costo posible 
Después confirme la estimación analíticamente.

Solución
(u) La distancia de P a Ces - .») lolómelrns. y. del teorema de Piiágora^- 

la distancia de/I a/’es v3“ + .v- kilómetros. Por tanto.

CU) = l2f>myfT+ X- + lOOlKKA - .1)

El dominio de C' es (0, k\.
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Ib) f'oiiL = 2 en lacai.it.mn (I), se ikTK;

|(1 2| p.it [It MHIIKII

* i- ’ iniNMii: II

IK.IIU4

I" l'lh-íll’ilOlKI lioiioni 

'•''“I s') I t ‘ . iitonoMii II

iicn{\5

r IM 12 S()() ,.y + ^ 1001)0(2 - \¡ (2)

mn i G |l). 2) la j:ialn.a de csl.i cuiauón trazada en el rectángulo 
de inspeLcmii de [0. 21 por [0. 6(1 000| se muestra en la ligura 4. la ui.it 
iiidiL.i i|ue el \alor inmimu abMiluto de C en |0. 2| ocurre en el extremo 
dereclio Al iitdi/ar la leda iTnAcrl {uisin o) de i.i graíle.tdoni. se obtiene 
((2) = 43 06‘> l’or tanto, se eslim.i (pie d costo del cable tendido es 
niiiiimo uiando r ~ 2 y e! cosio mimmoes de S45 06'J

Ahor.i se conitrinara ¡in.dilic.iinenle esl.i eslimaemn Como Ces c»m- 
limi.i en [O 2). se .iplicu el teorema del valor extremo, por lo que C tiene 
un valor máximo absoluto y un \alor mínimo .ihsoluto en |0, 2| Se de­
sea determinar el calor mínimo absotulo De la ecuación (2).

Ou = ’ “ *' - lOÍHlO
\ y + I *

C (V) existe para todos los calores de \ Al igualar C’< v) a cero \ resolcer 
para \ se tiene

- KJOUII = 0
% M + \ -

l25(H)í - lOOOOcd +1' =0
5v - 4n'J -1- i- (3)

23\- = 16(9 + c'l
^ 16 9

V- = 16
c - +4

hl numero -4 es una raí/ extraña de l.i ecuación O). > 4 no esta en 
el intercalo |0. 2|, lo cual indie.i que no existen números critictis de C 
en |ü. 2| i’or tanto, el calor mínimo absoluto de C'en ¡0. 2| debe »ku- 
rrir en algún extremo del intercalo Si se ealeula t'(0) y 02). se obtiene

OO) .37 5(H) > í’(2) = 4.31)69

De modo i|ue el calor mínimo .ibsoluio de C en [0. 2| es 45 (Hi9 cuan­
do c = 2. lo cual eonfinna lo esiinudo antenomienle

Conclusión I-l eosio del cable es mínimo cuando este se tiende diree 
lamente de A a ('bajoel agua ^

^ EJEMPLO 2 Haga el inciso tb) del ejemplo I eonsiderainlo 

alioraijUcL = H).

Solución Con L - MI en l.i eeii.icion 11). se Iteiie

C(\) I251)l)c9 1 i- + lOOOOilü d !•*>

p.ira \ G |l). 11)1 l-a tigura f> imicsti.i l.i iTallca de esta ecuación trazada en 
el red.inguto de inspección de |(l. 101 por 1120 OOU. 140 (K)0| I .ls cinirdena- 
d.is del punto más b.i|o ile la curca son. .ipioximadamente. (4. 12'500) Por 
l.into, se esiim.i que el costo del cable tendido, en este caso, es iiiimmo eiuii- 
(in i 4 y el costo iminmoes de 5122 '>00
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Lua cstimauiin se tonlirma analiticanienli: en la misma lorina 
se hi/o en el ejemplii I De la euiauon (4). la expresión para C”(i) es 
la que se nbluso de la ecuación 12) Por lanío, otra ve/ se obtiene r = >. 
cuando C'(v) se i)!unLi a cero y se resuelve para x Como 4 esta en el ir,- 
\itlo cerrado |0, 10], ahora 4 es un numero crílico de C Si se calculan 0( 
C'(4) y C (MI) se obtiene

(10) = nVSOO C(4) = 122 5(K) GIO) = I305W

Ln consecuencia, el valor mínimo absoluto de C en |0. 10) es 122 ‘i(K) cuar 
\ = 4. lo cual coníirma lo estimado anteriormenle

Conclusión, Cn este caso, el costo del cable es mínimo cuando se iii.r¿ 
de /I a P el cual debe estar a 4 km de H <

Para la función C definida por la ecuación (I) con r € |0. A) se inn ' 
en el ejemplo I que cuando A = 2. el valor mínimo absoluto de C ocurrir 
el extremo derecho del miervalo (O. 2] mientras que en el ejemplo 2. cuarl 
k = 10. se mosiro que el valor mínimo absoluto de C ocurre en el míen., 
lo abierto (0. 10) Cn el ejercicio Vi se le pedirá que determine los valorcsi 
k para los que el valor mínimo absoluto de C ocurrirá en un numero d¿l i 
tervalo abierto (0. k)

ik;uu6

r EJEMPL0 3 Un terreno rectangular se encuentra en la on­
de un río y se desea delimitar de modo que no se utilice cerca a lo largo d. 
orilla Si el matenal para la cerca de los lados cuesta $12 por pie colocado- 
$18 por pie colocado para al hido paralelo al no. determine las dimesior 
del terreno de mayor arca posible i|ue pueda limitarse con $5 4ÜÜ de uri- 
Apoyc grátlcamenle a la respuesta

Solución Sean v pies la longitud de los lados del terreno no paralelus.. 
no, V pies la longitud del lado paralelo al no y .1 pies cuadrados el areaú- 
terreno Refiérase a la figura 6 En consecuencia.

A = r\ I'

Como el costo del matenal para cada lado no paralelo al no es de $12 pt 
pie colocado y la longitud de estos lados es v pies, entonces el costo total-- 
la cerca para cada uno de estos lados es llv dolares De manera siintlof u 
costo de la cerca del tercer lado es 18\ dolares Por tanto.

Ilv + llt + 18; = 54{H) if

A fin de expresar /I en termtnos de solo una vanable, se resuelve (6) pora- 
en ténmnos de r y se sustituye este valor en (5). obteniéndose A como utj 

lunción de i Así

Mx) = t(^(X) - I V)

De (6). SI V = 0. t = 225. y st ; = 0. v = .100 Puesto que t y ; no 
ben ser negativos, el valor de t que hara de A un máximo absoluto, debe c't-' 
en el intervalo cerradt» (0. 225) Como A es continua en el intervalo |0 225’
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|nir d iL’nrcnu ild v<ilin u\lrciiu). /\ iiciic valor máximo ahsoliito en d mlcr- 
v.ilo De <7). NC llene

l(x) - 100» - ¡ i-

\'(\) -

( orno V(U existe p.ira loilo r, U»s números trílleos de A se delenninan al 
uinsiderar.l lil 0. de lo c|iie se obliene

I = 1)2 5

ii u II ''nn ^ > I

H(.IU\7

K! imito numero trilito de /\ es 112 5, d tual se entuenira en d inter­
valo terrado [0. 225| l'or lo que d valor rn.íximo absoluto de A debe otumr 
enO.II25o225 Debido a que/\(0) = 0./U225) = Oy/Ull25) = 16S75. 
el valor máximo absolulo de /I en |0. 225} es I(j875, d tual oturre tuan- 
do V = 1125y\ =: 150 (obtenido de (b) al sustituir 112 5 por r)

Con el hn de apojar yr-íllcamenle la respuesta, se iraya la gráUta de la 
liiiition A delmida por la etuación (7) en el retlangulo de inspcttion de 
|0. 225) por (0. 20 (KM)), tomo se muestra en la figura 7 Se determina que el 
punto mas alto de la gr.ífiea es 1112 5. Ib K75). lo cual Lonílnna la respuesta

roncliisióti U terreno de ma>or área posible que se puede enterrar ton 
S5 400 de terta nene un área de Ib 875 pie*, obtenido cuando la longitud dd 
lado paralelo al río mide 150 pie y la longitud de cada lado no paralelo al río 
es de 112 5 pie A

^ EJEMPLO 4 hn el ejemplo b de la sección I se tuvo la si­

tuación siguiente En una comunidad de 8 (KH) personas, la tasa a la tual se 
difunde un rumor es tonjuntamente proporcional al numero de persona que 
han estudiado el rumor y al numero de personas que no lo han estuchado 
Cuando 20 personas han estudiado el rumor, este se difunde a una lasa de 
200 personas por hora Determine analítitamenle cuántas personas han estu­
diado el rumor cuando éste se ditundc a la mayor lasa posible

Solución En la settióii I se obtuvo el modelo matem.itito

/(,) = ^.'„(8t«)0i - I-)

donde flx) personas por hora es la lasa a l.i tjue se diliiiide el riinuir cuando 
V personas lo lian escudiado Puesto que la comunidad tiene una población de 
8 (KK). i esta en el intervalo terradi» |0. 8 0()0| A Un de aplicar el concepto 
de toiiliiiuidad, se considerará que i es cualquier mmiero real de este inter­
valo Como /(V) es un polinomio, entontes/es toniiniia en iO. 8 ()()<)]. por 
lo que puede .iplicarse el teorema del valor extremo Al taltular f'(x) se tiene

/■(T, = „;(K(Kin - Id

El liiiito numero trilito de/se tiene tuaiulo_/'(\J = (I. y es v = 4 0(10 Como

/((!> = 0 /(4(100) - 20050 I /(8(MM0 = 0

ti valor máximo absoluto de / ocurre cuando i — 4 000 Este valor de v es 
acorde ton el que se obtuvo gráficamente en la sección l }

(■onvli»‘'í'»» I I 'U"'"'' hisa posible cuando llMK)
personas. I.i inil.iil de la pobl.ition han twciidiado el rumor ^
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^ EJEMPLO 5 l:ii el ejemplo 4 ile l.i sección 2.2 se tuvo |j . 
uóii siguiente- l ii la plancacii’m de iitia tafelería. la ganancia diana \ec - - 
en $16 por lugar si la capacidad es de 40 a KO lugares Sin embargo, si [j 
patulad es major ijue KO lugares, la ganancia di.iria por lugar disniiiujirj. 
$0 OS veces el número de lugares que exceden a KO ,.Ciiál debe ser la i - 
Lul.id de la c.iictería de modru|ue se obtenga la máxima ganancia diaria’

Solución l-.n la scLUi'm 2 2 se obtuvo el modelo matemático

/»(i) 1 ''i 40 < i S KO
i22.40t - O.OKi- SI KO < r £ 2K0

donde /■'(.i) dólares es la ganancia diana de la ealetería cuando su capj.tj 
es de X lugares. Además, en la sección 2.2. se consideró que \ toma todis 
valores reales de su dominio |40. 2K0J y se mostró que es continua tnr. 
interxalo cerrado y que no es difcreneiable en KO.

De la continuidad de P en [40. 2K0], el teorema del valor extremo cj-.- 
ti/a que P tiene un valor máximo absoluto en ese intervalo Como /''(Wi.- 
existe. KO es un número crítico de P Para determinar cualquier otro n:~. 
m crítico de /’. se calcula P'ixy

^ j 16 si 40 < .t < KO
122 40 - 0 I6t si 80 < r < 2K0

P'{\) =. ()cuando

22 40 - O.líit = 0 
.c = !4Ü

Por lo que 140 es un número crítico de P Enseguida se calcula P( ti en 
extremos dcl intervalo [40. 280) y en los números críticos de P'

/J(40) = 640 /’(KO) = 1 280 /'(140) = 1 568 Pl2K()l = 0

Por tanto, d valtir máximo a^'stiluio de es 1 56K y ocurre cuando x = I-

Conclusión La capacidad de la cafetería debe ser de 140 lugjíc- 
que proporcionará una ganancia diaria de SI 56K. *

^ EJEMPLO Ó la) En la graficadora. estime las dinicri'K’ 

dcl cilindro circular recto de mayor volumen que pueda inscribir'O en. 
cono circular recto cuyo radio mide 5 cm y su altura es de 12 cni. (blG*' 
me analíiicainenie las estimaciones del inciso ía).

S tni

Solución
(a) Sean r centímetros la longitud del radio dcl cilindro, h cenlímein'-' 

I2cin altura y ^centímetros cúbicos su volumen.
1-a llgura 8 muestra el cilindni inscrito en el cono, mientras qie- 

llgura 9 presenta una sección plana que contiene ai eje dcl cono.
Si r = 0 y/i = 12, se tiene un cilindro degenerado, el cual es 

del cono. Si r = 5 y /i = 0. también se tiene un cilindro degenerai.’.- 
cual es la base del cono. El número r está en el intervalo cerrado [0.51 

el número li pertenece al intervalo cerrado [0. 12]
La fórmula siguiente expresa V' en términos de r y h:

FU;i lU 8 V = nr-u



3.2 aplicaciones que involucran un extremo absoluto en un intervalo cerrado

IH.l

n(;un lu

A lin (II* cuprcs.ir V'i;!] t(.rmmi)s de sñio uiu variahle kc ncccsil.) oIm 
CLuauitn (|uc uinlenpa a r y /j De los triángulos semejantes de la figura 
M, se tiene

12 - h ^ 12
r 5

Si se sustituye de (9; en la rórmula (8j. se obtiene l'(.nmo una funeión de 
r, lo (|ue se estribe C( mo

V'(r) = ‘;;r(5r’ - r’) r G |0. 5| (10)

La figura lü muestra la grafita de I' trazada en el rectángulo de inspec- 
eii'm de |(), “ij por (0. 150) En la graficadora, se determina que el punto 
mas alto es (3 33, 139 03) Por tanto, se estima que el radio del cilindro 
circular recto mide 3 33 cm y, en consecuencia, de (9) se estima que su 
altura es de 4 01 cm

(I)) Para confirmar analíticamente las estimaunnes. se aplica el teorema 
del valor extremo ya que V, definida por la ecuación (10). es continua en 
el intervalo cerrado [0, 5) Se desea determinar los valores de r y /; que 
proporcionen el valor máximo absoluto de V De (10) se tiene

V(r) = '-rUUk - 3r')

Con objeto de determinar los números críticos de V'. se considera 
V’ir) = Oy se despejar

r(10 - 3r) = 0 
r = 0 r =

Como V'(r) existe para lodos los valores de r. los únicos números críti­
cos de V' son 0 y los cuales están en el intervalo cerrado [0. 5) El 
valor máximo absoluto de en iO. 5) debe ocurrir en 0. o 5 De (10) 
se obtiene

V'(0) = 0 V(‘;') = l'(5) = 0

Por tanto, el valor máximo absoluto de V' es /T = 1.39 63. el cual 
se obtiene cuando r = ~ ^ 333 Cuando r - se obtiene de (9). 
/í = 4 Estos resultados confirman las cstim.iciones anteriores y pro­
porcionan los valores exactos de r y /i

Concliisión El cilindro circular recto de mayor volumen inscrito en el 
cono dado tiene un volumen de ;rcm\ lo que ocurre cuando r = '^'cmy 

// 4 tm ^

EJERCICIOS 3.2
£'> cjinuii'^ ditiiui príít\a/iuiiif liKÍtu las uinables iimto 

ditx’iirtif <lt vsinhir iiim itmilusiim al final de cada
ej< n u III

L IJeicrmine un nnmeru dd intervalo [ '. 2] tal que la suma 
del numero y su recíproco sea (u) un mínimo y (h) un 
niaxinu) Apove gráficamente las respuesiav

2- I' ' mime un numero dd intervalo I-1. 11 tal que la dife- 
rsiiui 1 dd numero menos su cuadrado sea (u) un máximo 
i Ibi un mínimo Apoye grállcamente las respuestas

En lui ejcniaoi 3 a Id. innfimw analiiiíamiiite la fUima- 
aán ohienida en la i;rafuüdiira m el iniiw h I dd ijinuin
indicado de ¡asen

3. Ejercicio 13

6. Ejeiciuo 16

9. Ejercicio 19 

12. Ejercicio 26

4. Ejercicio 14 

7. Ejercicio 17 

10. Ejercicio 20 

1.3. Ejercum 27

5. Ejercicio 15 

H. Ejercicio IH 

11. Ejercí.. .1 J5 

14. Ejc'.icio2H
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15. , C'ii míos osimli.iiiU's ilihi'n .isisltr .1 l.i cMiirsinti. ilil e|er 
Olio 17 ilf l.i scvLiuii 2 2. p.ir.i íjik- I.i cmucI.i reuha el 
111.1M1110 inpK-so hmio'

16. , Cii.inlos (. sUuli.mti s (IcIk'I) .isisiir .1 l.i cHUisioii. tiel cjer- 
t-iuu IS de 1.1 scLeiun 2 2. p.ir.i «|uc I.1 csiucla icuba el 
iiUMiiio inereso hniio ’

17. Dcl modelo malLmálito oblemilo en el ejercicio 39 de la 
sección 2 2. determine cuánUn naranjos deben plantarse 
por acre en California de modo que se obtenga el mayor 
número de naranjas

IK. .Cu.innis miembros proporuonaran el mejor ingreso, de 
hido a las cuotas anuales, al club pmado del ejercicio 40 
de la sección 2 2'

19. (til I ii..uentre dos nuinems no neg.itisos cuya suma sea 
12 tales que su producto sea un máximo absoluto y apoye 
gralkamente las respuestas Ib) IJclernmie dos números 
lio negjiivos cuya suma sea 12 lales que la suma de sus 
cuadrados sea un iiiinmio absoluto, y apoye gráficamente 
las respiiesius

21). .Suponga que se tiene un cuerpo suspendido por debajo de 
la meta bon/ontal \fí mediante un alambre en Inrma de Y 
Si la distancia entre los puntos A y U es de K pie. (n) estime 
en la eraficadoni con aproximación de pies, la longitud 
mas corta del alainba* que pueda emplearse (b) Confirme 
la estimación dcl inciso la) analíticamente

21. L'na isla esta ubicada en el punto/\. 4 km mar adentro del 
punto mas cercano fí de una playa recta Una mujer, m la 
isla, desea ir al punto C, a 6 km de H playa ab.ijo I a mu 
jer puede dingirsc hacia el punto /'. entre ¡i y C, en un 
bote de remos j 5 km/h y después caminar en fomia recta 
de a C u K km/h la) Estime en la graficadoni la rula de 
/I j C que ella pueda recorrer en el menor lieinpo Ib) 
Conñriiie la esiimación del inciso (a) analíticamente

» A km---------- »

i *0 • •
/' C

4 km

22. Resuelva el ejercicio 21 considerando ahora que el punto C 
está a 3 km de H pkiya abajo

23. tal l'iiltce la gralicadora para estimar las dimensiones Jel 
eilmdni circular meto de mayor ama lateral que pueda ins- 
ctibiise en una esfera cuyo radio mide 6 pulg Ib) Confif' 
ine analíiicamcnie la estimación dcl inciso (u)

24. (a) Utilice I.1 gnilicadora p.ira esiinur I.is dimensinr.s 
cilindro circular redo de m.iyur siilumen que pucib 
cnlnrse ui una esfera cuyo radio mide 6 pulg Ib) ( 
me analiiicamcnle la estimación del inciso la)

25. Dada la circunferencia cuya ecuación Cs <' -i- s, 
dciemiine (a) la distancia mas cuna del punió 14 5i« 
punto de la circunferencia, y Ib) la distancia mas gres 
del pumo 14. Sj a un pumo de la circunferencia le) A', 
las respuestas de los incisos <a) y Ib) gráficamenie

26. la) Delermine el arca del reciangulo más grande qus t 
ga dos verilees en el eje x y los litros dos en la pj.'-
V = ') - r’. por arriba de! eje t Ib) Apoye graílcarr^r 
la respuesta del inciso la)

1

y

27. Considere que la disminuLion de la presión >aneuin;aí 
una persona dependí, de la cantidad de cierta susiancui. 
ministrada a la persona De modo que si se admini'"- 
I miligramos de la sustancia, la disminución de la prc' 
sanguínea es una función de r Suponga que/n) inf­
esta función y que

ytx) = \ \'{k - t)

SI r 6 (0. A|. donde k es una constante positiva. IV- 
mine el valor de x que ocasiona la mayor disminutiasi 
la presión sanguínea

28. A\ toser el radio de la traquea de una persona ilisni.'- 
ye .Suponga que el radio normal de la tráquea Cs ib* 
ccnumetnis. nneiiiras que al toser, el radio de la nusrat' 
de r cemíinelnis donde R es una constante y res uiu'^ 
nahie I-i vcltx.idad dcl ain: a través de la traquea p-»* 
expresarse como una función de r. y si Viri ccnunir- 
por segundo es esta selocidad. entonces

V'tr) = kr'fR - r)
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Ji.iulc ^ eii d mtLT\.il>i
I I ^ A'l Ditcrmim' d r.uiin ik' l.i ir.ii)uc.i Luando %c liv-i: 
dJ iiiih'*’ ‘1'“^' *■' ‘•‘■I •* lí-l'C' de 1.1 (lat|UC.I
sCJ IIUMIM I

n) 1.1 ile imi \i¡m uin)iitil.imemc
ii .iiuliiiM y -il cii.Klr.ulii lie mi espcMir 

D.iim'iiK l.i'' ilimensiofies de l.i \ ij;.! de iiuyur rcsiMeiiu.i 

i[Lie pii.di iiiil.ir'-e de un ll•1nLl1 lkii lomu de Liliiulru 
iiikut.ir u»>'> r.idiii 1-. de 72 un

30. 1-1 n¿:iJe/ de una viya reLtjngul.ir es eiinjunlnrnenic pro- 
pufviiTul a su ant-hura y al cuhn de MJ espesor. Üelermine 
las dimensiones de la viea de mayor ngide¿ <juc pueda 
Loriarse de un iioneo con iomi.i de cdindro circular recio 
cuyo radio es de a cenlimclros

31. l'ii iro/ii de .dambre de 10 pie de longitud se corla en dos 
panes Con un.i parte se luce una circunferencia y !a otra 
se dobla en torma de cu.idrado ,CVimo debe corlarse el 
alambre de modo que luí el arca total de las dos figuras 
sea la mininu pisiblc lli) cl urca total de las dos figu­
ras sea la maxima posible

32. Resuelva el ejercieio .^1 considerando abura que una parle 
se dobla en torma de inángulo equilátero y la otra en for­
ma de cuadrado

33. Si H pies tsel alcance de un proyectil, entonces

f!

donde i„ pies por segundo es la velocidad inicial, g pic/s* 
es la aecleración debida u la gravedad, y tíos la medida

en radianes del .ingulo que el caiión fnrm.i con la hori- 
/nnlal Deicnmnccl valor de «que luce máximo el alcan­
ce del proyectil

.3J. Si un cuerpo que pesa II' libras se arrastra a lo largo de un 
piso liun/onial a una velocidad consume medí.inte una 
liier/a de /• lilmis de m.igniiuil y dirigida un ángulo de 
0 radianes con respecto al plano del piso, entonces f está 
dada por la ecuación

A sen 0 + eos 0

donde k es una constante llamada leiiie tic frucióii 
y Ü < A < 1 Si I) < 0 S determine eos «cuando 
/ es mínima

.35. En una fahnca se elaboran dos productos, /I y l¡ Si C es 
el costo total de producción de una jomada de K horas, 
entonces C = 3x* + 42v. donde x es cl número de má­
quinas uiili/adas en la elaboración del producto /I. y y es 
el número de máquinas empleadas en la elaboración del 
producto B. y durante una jomada de K horas trabajan 
15 máquinas (u) Delcrimnc analíticamente cu.inias de 
estas maquinas deben utilirarse para elaborar el producto 
Á y cuántas para elaborar el producto B de modo que el 
costo total sea mínimo (b) Apoye las respuestas del ma­
so (al gráficamente

36. tu) En cl ejemplo 1. <,p.ira qué valores de k ocurrirá cl 
valor máximo abvotuto de C en un numero del intervalo 
ubictio lO. f)''(hl Los ejemplos I y2.y los ejercicios 21 y 
22 son casos especiales del siguiente problema más ge­
neral Sea

/u) = l( V«* + X- + i«> - t)

donde resta en el intervalo |0.6| y li > »■ > I) Demues­
tre que para que cl valor máximo absoluto de/ocurra en 
un mímeio del míen alo ahieno (0. /•). se debe satisfacer 
la desigualdad siguiente, uv < b Vir — .

3.3 TEOREMA DE ROLLE Y TEOREMA DEL VALOR MEDIO

H(il K\ 1

Como se indicó en iu introducción de este capítulo, uno de los teoremas mas 
importantes dcl Cálculo es el teorema del valor medio, el cual se emplea en la 
demostración de muchos teoremas tanto de Cálculo Diferencial como de 
Cálculo Integral así como de otras materias como c! Análisis Numérico. La 
demostración del leoremti del \alor medio está basada sobre un caso espe- 
ctal conocido como leorema de Rolle, el cual se discutirá primero.

lil matcmáiico francés Micliel Rolle (1652-1719) demostró que si y 
es una luiiuón continua en un iniersalo cerrado Íci. h\ y diferenciable en 
el intervalo abierto («. I». y si fia) > /(/») son iguales a cero, entonces exis- 
le al menos un número e entre o y h para cl cual/'(i) = 0.

A coniinuaeión se verá lo que significa geoméineamenie este leorema. 
I.a figura 1 imiesira la gráfica de una función /que satisface las condiciones 
del párralo anterior .Se aprecia intuitivamente que existe al menos un punto
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f KU K\3

lie la uin.1 ciiíre Ui 0) > (/». Oj eii d que la recia langcrilc es p.iralda al cj.-, 
esKi es, la ptruliLiilL ile la retía tangente es cero hsta siluauón se ilu>irjr- 
la ligura I en d piiiilu /' De imnií) i|ue la abstisa de 1‘ es í. para 
/ ‘I. ) = 0

I a liJiKiKti. ai\a grahea se muestra en la llgur.i I. no solo es dilererKi 
ble en d intervalo abierto lo h\ sino (|ue tainbiLn Iti es en los exirumíiw' 
iiikrvalo Sin einbaigo la eoiuJiuón de que/sea dilereniiable en In^ cvir 
mos dd intervalo no es netesana para ipie la gráfica tenga un.i recia lanji- 
le liori/onial en algún punto dd tnlervalo. la figura 2 tiusira esi<» f;n |,i fieurj* 
se aprecia i]uc la luncinn no es dilerenuable en a ni en h. sin embargo, evi • 
la recta tangente Imri/ontal en el punto donde r = i. y i está entre <i y h

No obstante, es necesarto que la lunción sea continua en los exircir 
dd intervalo para garantizar una recta tangente hon/oillal en un punto ir- 
rior dd inlerv.ilo l,a figura 3 muestra la gráfica de una luncion coiiiinujr 
cl intervalo ¡o h) pero discontinua en />. la lunción es diferenciable en ul i- 
tervalo abierto (<i. I>f y loc valores de la lunción en los dos extremos sonuT 
Sm embargo, no existe un punto en el que la gráfica tenga una recta tan^.^- 
le horizontal

A continuación se establecerá y demostrará d teorema de Rolle

3.3*1 Teorema de Rolle
Sea / una lunción tal que

(i) es continua en d intervalo cerrado |<i./z|. 
líí) es (lilerenciabc en el intervalo abierto (o./z).
(iii) J(a) - I) y fih) = fi

I'iitonces c-Msie un numero r en d intervalo abierto lii. h) tal que

na = 0

Demostración Se consideraran dos casos

Oivo / /<»! = () para loda t en lo. /i|
linlonces / l\) = 0 para loda v en [ti. h). por tanto. cu.ik|uier num- 

entre ti y h puede considerurNe como t

I l(>l'R\ 4

C'íiVí» 2 /(Oes dilerente de cero para algún valor de t en el mlervalotu./'I 
Como f es continua en el intervalo cerrado |íi, h], entonces, por el leotL 

ma dd valor extremo./tiene un v.iíor mavimo absoluto en [<i, h\ y un va' 
mínimo absoluto en |o. De (iii). /(<i) = 0 y }[h) = 0 Ademas, /ivti-’' 
dtlerenle de tero par.i algún valor de \ en d intervalo (o. h) bn consecueiii- 
f tendrá un valor mavimo absoluio positivo en t| dd inicrvalo it/. /zi. ov 
valor mínimo absoluto negativo en i ’ dd intervalo (u. h), o ambos. Asi pa’- 
I = 0| o ( ~ II. según sea el easo. existe iin evtremo absoluto en un put’ 
interior dd intervalo |fi. /»1 Por tanto, d evtiemo absoluto fu ) es también i- 
extremo relativo, y como / ’Ií > existe por hipótesis, se deduce, por el ti.x'- 
rema ^ I 3. qtie/’í«) - l'sto demuestra el teorema *

Puede liaber mas de un numen* en el intervalo .ihierto {a. h) para 1'' 
cuales la derivada de / es cero. L'sto se ilustra gcomctricamcnie en la figura-^ 

en la i|uc se muestra una reda tangente lionzmiial en d piintv» donde x = > 
y iaiiibieii en d punto donde x - < 2* P‘'f^ i” i * ” ^ ^ 2^ “ **



l-| KxipiiiLo ik-l tciiiciiu<lc Rolle nocs valido. Hsioes. iio se puede eon- 
iliiii ijiie SI una liiiiuon/es tal que/ lí) s I», etm « < < < /;. entonees las 
eoiidii.iones (11, (iij y (tii) se tumpleii Vea el ejercicio 36
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► EJEMPLO 1 Sea

/MI = -h ' - iJv

veiilique que las tres condiciones de la hipótesis del leoreina de Rolle se sa- 
Iislaccii para c.ida uno de los iniervalos siguientes |-'.01. |0. I
DeqiUw-s haga una eleccnhi adecuada para r en cada uno de estos inlercalos 
ile modo que / ’(( i = 0 Apoye la elección de < gráfieamenie ira/.iiido en el 
nii>mo reclangulo de inspección las grallcas de / y de la recta tangente hori­
zontal en el ptinlo (r. f(t )l
Solución Al ditereiiciar / se tiene

l'ix} = ll\- - V

(’oiim /'(\) eusle par.i lodos los valores de \,J es dilerenciable en el intervalo 
t-M. +03) y por tanto, continua en en el intervalo (-«. +ooi .\sí. las 
coiidiuones (i) y (ii) del leoreina de Rolle se eumplen en cualquier intervalo 
\ lin de determinar ios intervalos en los ipie se cumple la condición (in). se 

obtienen los valores de V para los cuales/(i) = () Si/tvi = O entonces

4i(i- - I = O
i = -; V = (» V = ’

Con a : - ¡ y /> = O. el teorema de Rolle se cumple en ¡- ,. 0| De manera 
semejante, el leorent.i tie Rolle se cumple en [O, 1| \ 1-;.

Con el Im de deierniinar valores adecuados para t. considere M V1 ~ 
de donde se obtiene

I2v- - V = O
X = - \ \ ^ \ ~ ' V 3

Por tanto, en el inlerv.ilo [- 0], una eleccnm adecuada par.i i es - 1 \ .3
lin el intervalo |(). '] se toina < = S-3 hn el intervalo J e\i'-
tcri dos valores posibles para t -v3 o ' •, 3

l.a figura 5. ipie muestra las grafic.is de / y de las rectas tangentes lio- 
n/ontales en los puntos donde i = - J %3 -t)S7 y v = I \ 3 l)S7.
trazadas en el rcct.íngulo de inspección de [-1 5. I 5i por |*-S. S). apoya las 
ciccctones de í ^

Alior.i se .iplicar.i el teorema de Rolle en l.i demostración del teoiem.i 
del valor medio Debe conocer muy bien el sigmllcado de este teorema

3.3.2 Teorama d«l valor medio
'* '»■ Sea / un.i luiicioii tal (pie

IKR R\5 ti) es Loiilimi.i en el intervalo cenado [o h\.
(ii) es dileieiicnible en el intervalo abieito (o. />t

I mollees evisie un immeio i en el mteiv.ilo .ibieito [ti, h) i.il i|ue

11- t
/(/>l lui) 

h it
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Amos df dciniis'rar cMc leoroma. se inicrprclíirá gcomélricamcnte

lu P.ir.i la (jrafiLa de l:i luneión f. es la pcndienle del segme-

ilc recia i)uc une los punios A(m,/ím» y il(b,f(h)} El teorema de! valorr^ 
dio establece que existe algún punto de la gráfica entre A y U en el qy-’ 
recta tangente es paralela a la recta secante que pasa por A y B: esto es.«. 
algún número c en el intervalo («. h) tal que

h - a

Refiérase a la figura 6.
Considere el eje x como el segmento Aíi y observe que el teorema ¿ 

valor medio es una gcncrali/ación del teorema de Rolle, el cual se emplcji* 
su demostración.

Demostración del teorema 3.3.2 Una ecuación de la recta 
pasa por los puntos A y Búa la figura6 es

V - /(«) /(/;) - /(«)
Í.V - a)

h * a 

_ f(bj~ _
h - o

f.r - íi) + /(o)

Ahora, si Tí») mide la distancia vertical entre el punto (x.fix)) de la grifij 
de la lunción/ y el punto correspondiente de la recta secante que pasapcft 
y fí. entonces

fix) = fix) - - a) -/(«) II'
b - a

Se mostrará que esta función F satisface las tres condiciones de la hip- 
tesis del teorema de Rolle

La lunción Fes continua en el intervalo cerrado [o. b\ porque es la 'tr: 
de/ y una función lineal, las cuales son continuas Por tanto. F satisíaccli 
condición (i) También F satisface la condición (iii ya que/es diferenvi.l'; 
en líi. b). De (l|. Fía) = 0 y Fíb) = 0 Por tanto. F satisface la conüic: •
(iii) del teorema de Rolle.

La conclusión del teorema de Rolle establece que existe un núinerurc 
el intervalo abierto («. b) tal que Ftc) = 0 Pero

Fdi = fíx) -
fíb) - /(<!) 

b - a

De modo (|ue

/••’((') = /'(O -
fíb) - fía) 

b ~ a

En consecuencia, existe un mímerti ren {o. h) tal que
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l I) 1.1 in.ijon.1 de liis (.a'-ns no se puede determinar el valor exaeto del 
luimern t yar.inli/ado por el teorema del salor medio .Sin embargo, el valor 
de ( no es signdie.itiui porcjue el lieelto erueial del teorema es ejue tal nume- lo i existe Por esta ra/on, se díte i|ue el teorema del valor medio es un teo- 
reniii de existeiiciii Miidios eoneeiilos imporl.intes en maiemálieas est.ín 
h.isados en teorem.is de existeneia, otros ejemplos de estos teoremas son el 
teorema del valor intermedio y el teorema del valor extremo L.i eonclusión 
de im teorema de existenei.i iisualmente .isegur.i la existencia de uno o m.ís 
números que tienen un.i propied.id especillea. y el eonoumiento de que el nú­
mero existe es mas signitlcalivo que determm.ir tal numero

ti ejemplo siguiente, present.ido p.ira mostrar que se cumplen las eondi- 
uones del teorem.i del valor medio, implica una tunción para la cual es posib'e 
calcular el valor del numero i garanli/ado por el teorema

► EJEMPLO 2 Sea

/(V) = _ 2r

verifique que se satisfacen las hipótesis del teorema del valor medio para 
ti = I y/; = 3 Después determine un número t en el intervalo abierto (1. 3( 
tal que

fío
y(3) - fi\) 

3 - 1

Apoye la elección de t gráficamente trazando en el mismo rectángulo de ins­
pección la gráfica de f. la recta tangente en el punto donde \ = t y la recta 
secante (|ue pasa por los puntos 11, /(I)) y (3. /(3))

Solución Como / es una función polmomial.y es una función continua 
y diferenciahle en cualquier número Por tanto, se satisfacen las hipótesis del 
teorema del valor medio para cualesquiera o y h 

Al dilerenciar/se tiene

J'(\) = 3t* - 2r - 2

Como/(l) = -2y/(3) = 12, entonces

/(3) - /(l) ^ 12 - (-2)
3-1 2

= 7

Si se considera J (c) = 7 se obtiene

3i - - 2. -2 = 7 
3f- - 2( -9 = 0

-(-2) ± x'(-2)- -~4(3)(-9)

2 -t- si 12

2 II)

2 - n1I2
()

-1 43

Debido a que -l 43 no está en el intervalo .ibierto ti. 3). el único v.ilor poM- 

ble para c es 2 10
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1 .1 íifura 7 iiiucsita la gráfica de /. la rcUa langcnic en el punid ü • 
t 2 lU s la recta sec.mte (¡iie p.isj pi)r liis puntos (I, -2) y 12;tri/ 
en el lecl.mt’uln de inspecuóti de |0. 5| por 15] hl liecho de (¡ue |j, 
tangente es paialela a la recia seeanie apoya la elección de i como 2 Id ^

► EJEMPLO 3 Sea

/ID ' l-'*

trace la grahea de / Muestre analíticamente que no existe ningún nuir.- 
en el intersalo abierto (-2, 2j tal que

ru)
Ii2} - /(-2i 

2 - (-2)

, Que condición de la hipótesis del teorema del \alor medio no cumple/^, 
do íi = -2 y /> = 2 '

I K>1 K \ K

Solución La gráliea de / trazada en el rectángulo de inspcccun^ 
[-L 3| por [-1.5] se muestra en la llgura K 

Al dilerenciar J se tiene

Hu =

De modo ipie

Ademas.

/Í2l - fi-2) _ 4‘ • - 4‘ 
2 -(-2) ” 4

= t)

No c'visie ningún numero i para el cual 0

I a luncion / es continua en el mtersalo cerrado 1-2. 2|. no obstante " 
es diierenciable en el intersalo abierto (-2. 2l porque /‘(Ot no e\i'’e • 
tanto. la condieion (in del teorema del salor medio no es s.ilisíeclu p 
cuando íi = -2 y /> = 2

bl ejemplo siguiente muestra el poder del teorema del s.ilor medio

^ EJEMPLO 4 l'tiliee el teorema del salor medio para 2.'" 

Irarqiiesi t > ti. entonces sen \ < \

Solución Si s > i. entonces como sen t < 1. sen \ es en \crd-J" 
tiorqucM Considc-ie entmtces que 0 < t £ 1 \ sea

/ID - r - sen i

entonces

/'Id 1 eos X
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( oiim I es Liinimii.i > ililciciiLi.ihlc en i.u,ilijuicr nunicro, se (.oiicliiye, por 
d leoreiiu dd valor iiiedin um ,i = (] y h i. c|uc existe algún numero c 
para el cual <J < r < x '' l,lal(|ue

i - U

Debido a i|iie/(Uj - = I - eos <, de la eeu.iuón aniennr se tiene

x( I - eos i I - l(x¡ 0 < f < I

[ II el nneiiihro i/quierdo de esta eeuaeión los dos laelores son positivos De 
modo que

(1 <
0 < i - sen X 

sen t < t

hn los ejereicios 2K a 30 se le pedirá que demuestre algunas otras des­
igualdades mediante un método semejante al del ejemplo anterior

A tln de seguir mostrando el poder del teorema del \alor medio, se mos­
trara su uso en la demostrauón del teorema siguiente, el cual se necesitara en 
el capítulo 4

3.3«3 Teorema
Si /es una función tal que /'(i) = 0 para todos los valores de x en un 
intervalo entonces/es constante en I

Demostración Suponga i|ue f no es constante en el intervalo / Enton­
ces existen dos números dilerentes x; y X2 en I. donde .r¡ < xt. t.des (¡ue 
JiX]) /Ixt) Puesto que, por lllpotc•^ls./’(x) = 0 para toda « en /. enton­
ces / (i) = 0 para toda x en el intervalo cerrado (xj. xj] En consecuencia. / 
es ililerenciable en tod.i i del intervalo [x|, xi). por lo que / es continua en 
[X|. xs| Por tanto, las hipótesis del teorema del valor medio se satisfacen, de 
modo que existe un número (. con X| < i < X2. tal que

ru) =
/(^|) -

xi - X2
(2)

Pero como f (x) = 0 para toda x en el intervalo |x). xs]. entonces f'íi) = 0. 
y de (2) se deduce que Dx¡) = /(X2I Recuerde que se supuso que 
/(X|) ^ f(\2) En consecuencia, se tiene una contradicctón. y por tanto. / es 
constante en / ■

En la próxima sección se vei.í otra .iplicMcmn del teorema del valor 
medio al demostrar el teorem.i ^ 4 3

EJERCICIOS 3.3
l-n lo, ,j,I, ,1 I „ I ifin i,ix irc\ Iiiiiilii iiiiit \ tlf lii

VM ilfl I, ,ir, „i,iliiilh’ uin uiti\lttlu¡\¡líir lu fiiiii lóii i7i
‘Imunulí, iiiiIk ¡1,1(1 Dcv/'hi x ¡ilih nvu un \iiliiruilt < iiiuJn luini 

iu/o;ííi^p,j la 1 uui luuuii ,Ul inirniiü <h lUilli A¡unf l¡i 
ót. (/,!/, ,1,., aiiiiiil, inraiulii mil mi una uilíiiu:ul>i df 
‘"'lu,i„i, l„x I ^ ,1, i„ iain;init' lianTimtiil at

1. /(X) - V- - 4x -f .3.11.31
2. /(V) »’ - 2x- - r + 2.11,2|

3. /MI -.11 2x ID. 1<7|
4. /M) t cus- \. I ^7. ' .T|

l.n las i /< It 11 las .s a lll, luiK<i l>’ sn;iiuiiii fu) luuc la coj/imJ 
il, la lamí,'II lll ,1 iiiliTxala m,lumia ihl K’fif/í/m las in-s
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ii'llilli lililí \ lie lii liiimli \M ihl h niiilhl ili llulh ^ ih ti niiiiii 

l/lli I lUItllt lililí \ Uill íílllíh I lilis 1 I mili SI /lis /;,is ;|ii S( su- 

lisliu til h I SI his iri s iiuiilii nuil s ih I lili isn ihi siiii snlish 

ihiis iiiiiiiiii\ ilthimiiii lili ¡niiiiii ih hi {¡rnlitii m ,¡ i¡u,

1 us/<j mili mili Iiiin:i)iiltil s iiium s;iiiliiiiiiiiiiii In
It spill 1/(1

5. /u) X w ■ -1" 1]
6. /111 s‘ ‘ 2.' ‘ . 1*' 11

7. /til l ‘
> n

8. /tu 1 - l'l-l 1 II

9. / (u \ i
s

si l • 1 [ -T *'
-i 1 X '

1(1. /IX)
K

4 (>
•1

M ' < 1 1^2 4|
SI 1 X

l n los t/fr, 1,IOS 11 ii 2ll \i rifíi¡iu‘ i¡in ¡as hipou \ ts ilil tiiirf- 
iihi ihl \iilor iiuilio son sntisici luis por In fmiLiiiii tu el iiiii r- 
salo iiuJhlilla \ í¡ l>\ Di spm i nhieiii'a un uilnr ailniiado pina 
I ipie \a¡islaí;a la laiulauoii ikl ¡loruna chl uilar malla 
\posi la ihíiian ih t i;r<///iuft iui:ainln ui il miuiia 
ntUins;iilii ile inspinioii la (.Tu/itu i/t f ti¡ el inienalii urra- 
lia la rula hini;ente en el /<íí/j/o (c /(i)). s la rula ruante tpie 
pasa par los punías lu lUii) \ l/>, lihíi ahunaiuln ipn la 
rula lamiaue \ la reí la ui «tUi san paraldns

n. Ha = i' ^ I!

12. /(\ I = X ■ + i' t, I -2. ! 1 

t.^ /ui .= x^'-|<Ul

14. ,(,t - í'l

15. /i u \ I + eos «.[•', ,7 7|

16. s I -- si- sen \ . [0 ' 7j

17. /ni = i’. n.

J«. /U) = X-. |2.4|

19. fix} ^ sen s. [(I. I7)

20. /H) = 2 LOS 1.1 I 7. .T|

l'iira nula una de tas fiiiuianLS de tas íjenniiis 21 a 24. na 
e Kiste manera t m el múñala Ui. I>í tpii salís finia la 1 am In- 
saín íh I u ari nía del i alar inedia En 1 nda 1 ji n n m, di lermi 
ne ipu partí de la liipatesis di I U ari ma di I salar iiudiii na xe 
I limpie Dihiije la uralUa di I s la rala ipie pasa par las 
punías Ui. lía)) \ lli fíh)\

[ h - Is

22. hx) = ¡. u = t,6 = 2

2.1. /ai = llr - 4r'\u = -4.1, = 5

24. /a)
j2r + 1 ‘ ^ ,j
I1.5 - 2i M 1 c l’

■\.h -- 5

25. .Si /ai I ‘ - 2 X' 1 21' - i, enlsiiiLcs/ ai • 4v * - 
f)>“ -f 4i - I üeinuestre iiieJujile el letnenu de Kolle

i|ue 1.1 siiiuienie llii.ivIoh liene .il iiiliio-. mu 
inlerv.ilo .ibieílo (11. I)

•h ’ - 6t’ + 4t - I = 0

26. DeiiiiiLSire muíame el leureiii.i de Rolle ijue l.s ctu.
> + 2i + i = 0 donde k es ualijuier eonsiju, , 
puede lencr m.is de una raí/ real

27. Uiiliee el leoreitu de Rolle para demissirar i|ue la e..u_ -

4v' -H 1s' 4 Ir - 2 = 0

llene eraeiamenle una r.u/ en el inierxalu .ibieno di ; 
S'm,’iT</)(/// primero muestre ijue el intervalo (1) lu,. 
nene al menos una raí/ de la ecuautín Después n... 
i[ue 1.1 suposteii'm ül i|ue el iriierr.ilo eontiene mas li. 
r.ií/ LonduLC a una LtuiiradiLuón

2H. Emplee el icnrema del valor medio para duimsiran,^
» > 0. cnnmccs

tos r > 1 - 2_
Sin-eniicia sea/íi) = eos r - (l - -1_| y

ejue el teorema del valor medio a la funtion /para a . 
y I, = r eomo se lii/o en el ejemplo 4

29. Use el teorema del valor medio para demostrar ij.;
X > 1). entonces

sen X > X - —
6

Consulte la sueerenci.i para el ejerciuo 2K 

.10. Ulilae el teorema del valor medio para demostrar 4..•
X > Oyr > l.üonderesunnumeroracional.enli't.í-

(1 4 xi'’ > 1 4 rt

Vea la suyerenua para el ejerucio 28

.11. Emplee el teorema del valor medio para demostrar q-; 
íj < h. entonces l.i media .trumelica de a \ l>. ' tu • I 
est.í en el intervalo .ibieno {a. h) Saamuin totisiic 
J(\) = r-

32. Use el (eorenia dei vj|i>r medio para demostrar qc;
U < íJ < />. entonces la media ^eoiiiclnca de los di 
meros a y h. \al>, esta en el intervalo abierto o

Site»/t’Mi ni. sea/ai = —

.13. El líiiiile de velocidad en una autopista p.inicul.ir de í- 
íoniia es 6.5 mi/li Suponj:a i|ue en un punto \ un ntl.- 

de caminos midió l.i velivulad del umducUir > 30 m’- 
tos después, a 33 millas de un secundo otlciat lair^ 
midió la vdiK’idad del conductor Aunque los dos nfi.'- 
les deleriiunaron que el conductor se mantuvo lujo d ¡ 
mile de velocidad en los puntosA > H. el segundo <>fi.- 
detuvo al umductur por conducir a alta velocidad Eli'-t 
el teorema dcl valor medio pañi vcnficar que en realiJJ*^ 

conductor rebaso el límite de veliKidad en algún r-^'- 
Sin-ereihia suponga que la ecuación de niovimienii’ 
conductor es Un y que f es una luncion dilerenci*-
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11 Si '■ ^ ^ PJ*''
■ ' I p.if.ii'Kl» tcnd 2;r|
15 Si 1.1 luiM'iii / ‘•'H"'!"’-' i-'i* 1.^1 inlcrs.ili) iL-n.iJi> [<i. h\

^ (I,, I p.ir.i Iniln I Jfl iiiU'rv.iln .ihicrlu (<i, />). ilc-

iiuif'l'i-’ 'I'*'-'

/iii \ II • /I'»' 

pii.i 1'hI.i > en 1.11*'. ^'1
\fi i I K'upri'^" «leí reurem.i ile Rolle no es seal.idero lii- 

lUiie nn iKiiipl" ile un.i luneton pjra l.i eii.il l.i eonelu- 
.i,ii) iLl ie‘trein.1 «leí Rolle e.. veiJjder.i üc inodo que (a) 
|j iimJuion iil no se pe-io Ijs eoiidieiones lio y
iiiii-.i, ih> l.ieiiiuluioJi liitno scLumpl.ipem lasioiuliciu* 
nes III y mil si. leí la eondieion (mi no se s.ilis|jgj piro 
|,is Londisiimes iii \ mi 'i Dihuje l.i ^rdllca mriilr.mdo |j 
fixia ijn¡;enie tinn/onul en cada caso

37. I'iilite el leorciiia de Rolle para «Iciiiostrar que si (¡«la 
tiinLiiui polimmiial de segundo grado tienen a lo mas dos 
laíces reales, entontes tad.i fiinuiín polmiiinial de lerter 
grado tiene a lo mas tres raíces reales Siivm iii iii 
imiesite que la suposiui'm de que un polinomio de ter­
cer grado tiene cuatro raíces reales conduce a un.i con­
tradicción

3H. hmptee el nielodo del ejereieio 37 e inducción mate- 
nidlica para demostrar que uii pulmomiode n-esimo grado 
tiene a lo mas ii raíces reales

-3y. Suponga que i - /tn es una eeu.ieión de moumienio de 
una partícula que se desplaza 'ohre una recta donde / 
es una tunciiín ditereiici.ihie |-I<cplique por (|ue se puede 
concluir que en algún instante de euutquier míen alo 
de tiempo, la celocid.id instantánea será igual a la velo­
cidad promedio durante ese míen alo de tiempo

3.4 FUNCIONES CRECIENTES Y DECRECIENTES, Y CRITERIO 
DE LA PRIMERA DERIVADA

i \
. /m

En esta .sección y en l:is siyuieiiles. se aplicará la derivada a lln de nhiener 
propiedades de las {graneas de las tunciones Estas propiedades no sólo se 
iilili/arán para anali/.ar el tomporumienio de las funeiones smn que también, 
en la sección para deleriiiinur extremos absolutos de tuneiunes para las 
t|iie no se cumple el teorema del valor extremo. .Se mietará esta sección con 
una discusión sobre I unciones c n< (c/i/cv > (/i'i ri'ruiiif\

Consulte la tlnura I, la cual presenta la gráfica de una función f continua 
para toda rdel intervalo cerrado 11|. T7I. La figura muestra que cuando un pim­
ío se mueve a lo largo de la curva de A a B. los valores de función uunienian 
confomie la abscisa aumenta. > que cuando el punto so desplazca de ¡¡ a C. los 
valores de función disminuyen eonlorme la abscisa aumenta Enloiiees. se 
dice que/es i ni ii'iilc en el intervalo cerrado 1\|. iil y c|ue/es ik-inru-iiU’ 
en el intervalo cerrado [ti. v,l A continuación se presentan las definiciones 
precisas de función creciente \ función decreciente en un intervalo.

3.4.1- Definición de función creciente
Una lunctón definida en un intervalo es creciente en ese miervalo si 
y sólo si

/tVil < /(vyl Siempreque X\ < .r^ 

donde V| y \2 von dos nunicTos eualesquieradel intervalo

La función de la figura l es creciente en los intervalos cerrados si­
guientes- [t|,.r2l, [Vy. \4|. IV5. T;l; [Ví. V7I

3.4.2 Defihfcrpqvde funcí5ry^SS»fenté
Una luncn'in di-liimia en un intervalo es decredenlc en ese miervalo 

si y sóUi .SI

fí\\i > Vi»:’ viempreque \\ < V2 
donde i| y .cs ‘l"'> núfiieros cualesi|mera del intervalo.
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I .1 tuiiLKin «le l.i h|iur.t 1 es dctreucntc en l«)s iniLTV.ilos curtaJu 
iMiicules I»,. i,|. hi. '-.I

Si tiiKi tuiiuon es creuenle o deereuente en un inter\.ilo. «.niunu. 
ilkc i]ue es ninnóloiKi en e-c mlervald

\nle. «le esi.ihktLr un tenrein.i que prnpuainn.i un erilerio para ij^- 
min.ir si iiii.i ImiLiun es iimimlona en un iniersaio. se será lo «|ue - 
L’eoiiKine.iinenle Keliir.ise .i l.i liyiira I y ohserse que cuandii la penj 
te «le la teUa lailjtenle es piisitisa. la luiu.i«in es trceiente, ) que euari! 
puulienlu es negatisa, la liiiiutm es deereuenle l’uesiu que /'(w es lap 
«líenle du la recta langenle a la curva \ = j es crecienle cuj- 
/(\) > 0. y es decreciente cuandii_/'t«i < 0 ’i anihicn, como / (\) es la • 
de sariacii'in (o ra/on de cambio) de los valores de fuiicn'in/(i) con re'p^^ 
a «. cuando f (\) > 0. los valores de tuncion aumentan conrorme i aur^
la.) cuand«iy'í\) < 0, ios valores de funenm disminuyen cuando tauire'.

3.4.3 Teorema
Sea Ama liinción continua en el intervalo cerrado (<;, />] v diterenciabi¿ 
en el intervalo abierto (ii. hy

(i) si /'ID > 0 para toda i en l«i. h). entonces/es creuenle en |u h\ 
Ni) siA') 0 para toda r en íü./j). enlonccsy es decreeiente en

/ru a’ ti' ) y(«1 I V,- - fu

nc,LUV2

Antes de demostrai este teorema se prcseni.irá un ejemplo ilusir- 
que mostrará su significado

EJEMPLO ILUSTRATIVO 1 La figura 2 muestra lasp
ficas de

/(v) = v’-A- y yu) = 3i--6i

trazadas en el rectángulo de inspección de 1-5. 5| por (-5. 5| Obsencs. 
cuand«) r < I). y (V) > 0 > / es creciente en el intervalo l-co. 0|. uiJ- 
I) < X < 2. y'tv) < 0 V y es decreciente en el intervalo |(). 2|. v n-
do t > 2./'(x) > 0 y/es creciente en el intervalo [2.+00) ^

Demostración del teorema 3.4.3 (i) Sean T) y t2 dos num' 
cualesquiera del intervalo |íi./>) tales que V| < u Enloncesy es coniinuí' 
(r|, xs) y direreneiable en tX]. x^) P‘»r el teorema del valtir mcdi«). evi'W- 
númentcen (t|. xi) tal que

fU} =
yf X; ) - f( X| I

A - *1

Com«>X| < Xs entonces Xs - V| > 0 También.y'(«) > 0 p«ir bipoiesis P' 

tanto, ytxj) - /lt|) > 0. de modo que /<Xi) > /(ti) Asi. se lia mo'lí- 
que /"ÍXi) < ytt;) siempre que \\ < x;. cuando x¡ y X2 s«m d«>s nunií 
cualesquiera del intervalo [d. />| Por tanto, por la deílmeion 4..T I. f fsC'^ 

cíente en [«/, h\
La demostracn’in del mus«i un es semejante a la del inciso ii) y sci- 

c'oino ejercicio (consulte el ejercicio 511 *

Se aplicará el teorema 3.4 3 en la demostración del trihrio de /‘'T 

mera dt-nmchi pora rxíreium rehiinox de una lime ion
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3.4.4 Teorema Criterio de la primera derivado paro,v.- 
extremos relativos

Scd / iind lunuon cnniinua en todos los punios del iniervuio ahicrlo 
iíi. h) que contiene ul numero <. y suponj-M que / existe en todos los 
puntos lie (el. h) excepto posthlemente en r

(h sij i\) > o pjr.1 lodos los valores de t en aljiun intervalo abierto 
que conlenjia a t cotno su extremo derecho, y si /'ti) < 0 para 
todos los valores de r de algún intervalo abierto que contenga a 
( como su extremo i/quierdo, entonces J tiene un valor mavimo 
relativo en <,

(ii) si/'ir) < 0 para todos los valores de t en algún intervalo abierto 
que contenga a í como su extremo derecho, y si/<ii > 0 para 
todos [os valores de i de algún intervalo abierto que contenga a 
( como su extremo i/quierdo. entonces J tiene un valor mínimo 
relativo en <

;iii n

il(.lK\4

Como se hi/o con el teorema y 4 y. se presentara un ejemplo tlu^l^allvo 
para ino->irar el contenido del teorema t 4 4 antes de su demostraciíín

EJEMPLO ILUSTRATIVO 2 Consulte otra ve/ la tlgura
2 Observe ipieJ'(x) > 0 para todos los valores de i de algún intervalo abier­
to que tiene a 0 como su extremo derecho v i|ue /tu < 0 para toJo> los 
valores de r de algún intenalo abierto que contiene a 0 eomn su extremo 
i/quierdo .Ademas./ tiene un valor máximo relativo en 0 Lsto ilustra el 
inciso 11) del teorema 14 4

lambien en la figura 2. observe que / iv» < 0 para lodos los valores 
do V de algún intervalo abierto que tiene a 2 como su extremo derecho, y que 
/"(U > 0 para lodos los valores de t de algún intenalo abierto que contiene a 
2 como su extremo i/quierdo. ademas. / tiene un valor mínimo relativo en 2 
Esto ilustra el inciso (iii del teorema 14 4 4

Demostración del teorema 3.4.4 (i) Sea ti/ < i (donde J > </) el 
míen alo abierto que contiene a ¡ como su extremo deredio para el cual 
/'(v) > 0 para toda v de! intervalo Del teorema 14 1 (ii. / es creciente en 
[</.([ Sea Ir .< ((donde f < /o el intervalo abierto que coiiliene .i < como sU 
extremo i/quicrüo para el cual^ (\) < 0 para toda v del intervalo Por el teo­
rema 1 4 1 (II).y es decreciente en |«.«| Puesto que / es creciente en |*/. 11. se 
sabe de la denmeiun .14 I que si v, esta en |i/ ¡1 \ V| i. entonces 
/■|v,) < fl() Tamhicn. como/es decreciente en |(.i-l.sesabedeladellni- 
ciim .1 4 2 que SI \;¡ esta en |c. c’l v ij ^ c. entones » > (íi:l Por tanto, de 
l.ideUmciun 1 I I./'tiene un valor máximo lelalivo en (

I.a deniostr.icinn de! inciso (ii) es semejante a la del inciso iii \ se deja 
como ejercicio (consulte el e|ercieio 52» ■

1 I ciilerio de la primera derivada p.ir.i cxticinos iclalivos esi.iblccc 
que SI / es conlimia en i y /'lv( cambia de signo algebraico de positivo a iic 
galivo al pasar por < conloimc \ ciccc. enloiicCs / tiene nii valor nnixiino 
rd.mvo en «. y si / ivi cambia ile signo .ilgebraico de negativo a positivo al 
pasat por < coniorine i ciccc. entonces / tiene un valoi mínimo relativo en .

1 as figuras 1 v 4 iliisiran los incisos m v (in lespeetivámenle, ue! criie- 
11(1 de la luiinci.i delicada cinndo / u ) exisie 1 a lignia .'i imicsiia la gialu i



226 CAPITULO 3 COMPORTAMIENTO DE LAS FUNCIONES Y PE SUS GRAFICAS, ...
m

i i(.i m 6

(k iin.i liiiiuon / ijiif lictiL- iiii N.ilnr m.uimu n.l.ili\ii lii un nurni.ii,,
/ U ) m» LXtsiL*. Sm Liiilniriio. / í i) > 0 uiaruln v < r > / (v) ^

i > ( l-n l.i lipur.i íi. se IiL-nu l.i gralu..! ik-un 1 luiKion/■para 1.1 (|u.,
miint.ni irilicu. y f'ixi < 0 cuando i -^ ( > / (i) < (J cuando x ^ , 

nene un extremo rel.mco en t
Oir.is ilustr.iciones tic! cnlerio de h primcM denv.ida se iiuiim*- 

tipiir.i I I n y '« I'»)*-'*'» '‘'I'’*' nniximo rdaiiso y ,
la luncion lieiic un v.ilor imniino rel.ilixo .turujue v. s's un iiiinKrocnii 
se tiene un extremo relaliui en v.

A eoniinuaeion se resume el proeedinuenlu para ohlener los tMr 
rel.ilivos de un.i luneiun

Para determinar analilieamenle los extremos relativos de/

!. Caleuleytv)
2. Determine los números ertiieos de/, es decir, los valores de tp_’¡ 

los cuales f (xi 0 o para los que J (t) no existe
3. Aplique el criterio de la primera derivada (teorema 4 4)

I os ejemplos sujuienles muestran como se aplica este procedimiiirt’

EJEMPLO 1 Trace la gráfica de la función deíln'da por 

f(\) = r' - 6v- + 9r -* I

I K.l R \ 7

Dclcrmine a partir de la grullca los extremos relativos de j los valorestli- 
los i]je ocurren los extremos relativos, ios intervalo-, sii los que /estrcsi 
V en los que f es decreciente Confirme analiticamenie la infornucif' 
temd.i gr.ificamenle

Solución I a figura 7 muesir.i la gralic.i de / ira/ada en el rcUa: 
de inspección de |-1, 5| por [-2. (i| A partir de la gráfica se dctcrminjs- 
liUic un v.ilor máximo relativo de 5 en V = I y un valor minmio relata - 
i en V = 1 También, a partir de la urafica se delemuna que / es crcucr.' 
los mlcTv.ilos (-00 l|y[1, +:«). y es decret-icnte en el intervalo [ I '^1 

Ahora se confirmara esta intormacion mediante el criterio de la p" 
r.i derivada c.ilculando primero la derivada de J

f'(x} = -(r- - 11\ ^ y
l Os únicos números críticos son aquellos para los que y (t) = O

3v- - \1\ + y = O 
1(1 - l)(x - 1) = O 

r = 1 r = I

por tanto, los tiiimerns critico'- de / son 1 y 1 Pai.i delcnmnar si /"lu-''- 
extremo relativo en estos números se aplica el criterio de la pnineradcn' 
\ los rcsiill.idos se presentan en la tabla 1

¡(iht,i I

/II) /III (mu liiMiiu

' I * /iStfkULIIIl

• n / litnL’mi v.il ii III iMiiii) rd itiMi
' ' /. Ji.ti..n,nii

t u lililí mi s il.ir iiiiiiiiiii’ul lio»

' • /"i-ssii ank
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► EJEMPLO 2 sc.i

/(\) - » f

IXterimiic Ins cxircmiis rckilivos de / y los v.ilnres de t en donde ellos otu- 
rieii l.mihiéii dcleriiiine los inierstilos en los que / es Lreeienic y en los que 
es (leeieuenie Apoye |js respucsi.is fnifitanicnie

Solución Ai dilerenciur/se llene

/u) =
= ; + I)

Como l\\) no existe cuando t = 0. y /'(o = () tu.mdo .r = -I. enlonces 
los números críticos de/son -1 y 0 Se .iplic.i el criierio de l.i primer.i den- 
\ ad.i y se resumen los resultados en la labia 2 Hn la labia, la .ibres laeion n e 
signillca no existí'

rabia 2

/'U /'O í tmíluuim

t ■' -I j es detreucnie
1 1 1 (1 !tisne uii valor mimmo rJ itivo

1 í < 0 . f is tauenic
■ II n n c /(Kilicneiincvlreiniiielaiiviiiii t li

II ■ 1 > f cs ircuenie

La inloniiauón de la tabla se apoya al trazar l.i gráfica de / en el rec­
tángulo de inspección de |-7 5. 7 por |-5. 5). como se muestra en la 
figur.i K

► EJEMPLO 3 nada

lUi I • • 4j' '

I K;1 KA 8

fui I' t SI I ^ 
I H - 1 -I t •' I

/IV)
J - 4 SI t £ T 
I X - r SI 3 < V

determine los extremos relativos de f y los valores de x en los i¡ue ellos ocu­
rren También detemiine analilieamenle los intervalos en los que f es crecien­
te y en los que} es decreciente. Dibuje la gráfica

Solución Al calcular f'ív) se obtiene

yd) =
\l^
l-i

SI r < 3 
SI 3 < V

Observe que / es continua en 3 Como f (3) = 6 y y'.(3) - 1. /13) no
existe Por lauto. 3 cs un iiúmem crítico de y Otro número crítico de y es 0 
porque y di = 0 cuando » = 0. En la tabla 3 se resumen los resultados 
obtenidos .il aplicar el criterio de l.i primera derivada La gralie.i de y se 

nuiestrac-n la figura 9
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rahla.?
/lo /'O Cimi ¡u\um

l < 11 /oactíctienlc
i 1) 4 11 /ticni; un valor iii(nimo rclaiivn
0 < í < 1 ♦ /cVLtCCICMiC
\ ^ X n e /iiciiu un Valor máximo rcl.iiivii
» < l f es UcLicucnle

Cttmo se lu/oen los cjcmpUts «lustraiivos 1 y 2. ahora se mostrará en t 
d«)s ejempltis siguientes cómo puede obtenerse el eomportainiento de 
luneión a partir de la gráfica de su derivada.

Á

IK.l U\ 10

^ EJEMPLO 4 La Ugura 10 muestra la gráfica de la demada. 

una luneión/cuyo dominio es el conjunto de los números reales A partird;, 
gráfica determine los números críticos de/, los intervalos en los que/e> es 
cíente y en los que/es decreciente, y los extremos relativos de f

Solución De la gráfica, se observa que/'(t) existe en cualquier núrt 
rea! y que /'(-2),/'í I) y J'(5) son iguales a cero. Por tanto. -2. 1 y 5 snn* 
meros críticos dey. Corno//») < Ocuandor < -2 o 1 < .v < .‘i./esdai 
cíente en Uis intervalos l-oo, -2| y |1. 5). Debido a que f'(.x) > (I cuiu 

-2 < .r < I o.» > /es creciente en los intervalos (-2. l|y|5.+c«iL 
tabla 4 resume estos hechos, además de que / tiene valores míninvu rcL 
vos en .r = -2 y .» = S.y/"tiene un valor máximo relativo en t = l.i\ 
nidos al aplicar el criterio de la primera deriv ada.

rahia 4

rm

i < -2
■“t“

- 1 es JcvfeviL-nle

1 -2 II / nene un valor mínimo relalivo
2 < . < 1 4- /cstrecienic

1 1 1) f llene un valor máximo relalivo
1 < t < 5 / cs lUivrecicnie

« - 5 0 f llene un valor mínimo relativo

.X < » /es precíenle

^ EJEMPLO 5 Siga las instrucciones del ejemplo 4 para lai- 

ción g. continua en su dominio el cual es el conjunto de los números 
para la cual la figura 11 muestra la gráfica de su derivada.

Solución De la gráfica, como ^*'(-1) = 0. -I e.s un númem criticntk’ 
Debido a que el eje v es una asíntota vertical de gráfica de .i;’, g’(Hi 
auiu|iie 0 esté en el dominio de ^ En consecuencia, también 0 ex 
crítico de g. Como t>'(x) > Ocuando.r < -1 o.» > 0. g es creciente íit'* 

intervalos (-co. -I | v |(). +oo) Ya que g'Í.T) < 0 cuando -I < ,t < 
decreciente en el intervalo |-1. (t). Estos hechos se resumen en la tabla?-*' 
niciulo en cuenta que se aplicó el criieriti de la primera derivada paraik'^ 

mmai los extre^^os relativos.
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l ahla S
\ <'U) ( om

1 < 1 1 4 K es ucuenlc
1 ) 1 II K llene un s alor inJsimn relaiivo
•1 < 1 < 0 1 Acs ücuccicnle
« () n e « llene un valirr mínimo rclulivn
(1 < 1 1 ♦

Aescrcueme

I:n la sección 3.6. se oblcndrán algunas propiedades adicionales de la 
función f dcl ejemplo 4 y de la función r del ejemplo 5 a partir de las gráficas 
de sus derisadas; después, a partir de estas propiedades, así como de las obte­
nidas en esta sección, se dibujarán ptisibles gráficu-s de/y

ÜERCICIOS 3.4
l ii /^. tu) traer Ui ^rtifua. y Jeteniiiiie a par­

tir Jr rila iht ¡of rurrrtun rrlathos ilr f, (r) lu( iulore\ tir x 
,n /.I» ijur iHurrrn lot rurrrtius rrlaliuif. ((/) ht inirr\afu\ en 
l'\ qurfr^ tr../r«re te» hn ¡nttr\ahn en hi que f es detre­
unte (imfírmr unnUtnameníe la infnrrmuión ahteniJa gn¡- 

fii Kvnenie

l. fui = 1- - 4« 1

2 lis} = 3t- - + 2

.1, /m - 1- - r

4. fix) = i' - y«- + 15-5

5. /(O = \ - (i. flx) = a:"* - 4t

7. ru) = 4scn \x:x e \-2k2k\ 

H. yi») = 2cos3i. r G I“fr. fr)

29. f(x) = ^-scc4r. r € |- i \n]

3». /(x) = 3csc2r..i €
31. ftxi = x'f\x + 4)-^’
32. flx} = ir + - 2\'‘'

En lux cjerriaos 3J a 3K. /me« h sinuienle «/Kí/íi/ctifm'/i/e; (al 
íleternune Itn exireiitny relativox de la fiweiiin: (h} delerininr 
hs xulores de x en lo\ tpic oairren lo\ extremox relafiun; fi ) 
determine Im inlenalax en los tpie la yii;>i'ii»i es creiienle, 
(dldciernune lox interxalox rit lux que la fiiiteión es det relíen­
le (el Dihnje la firajha de la fiauión a partir de lux rexpueslas 
de lox tncixox Uihidl

33. /(t) ir + 9 
.r* + 1

SI .t £ -2
SI *2 < r

9. fix) = -Jx - 4- 10. /ir) =

11. /ID - II - r)-(l + d'
12. fu) = ir + 2)’(r - I)’

13. /(ti Y s - 3r'^' 14. /(I) = 4r -

15. /U) = t^’ - t'^-* 16. flx) = .r^’ir - I)’

17. /u) = .x^‘* * lOt'/-* 18. flx) - x-l^ - IQr^'

£n los rjerciciax /V a 32. luii’a lo xigtiienle wuilíliramenie: (a)
tletrrmme hs exirenuis relaliiiix de f; (h) deiemuite Inx valo­
res dexen los que inurrcn los exiremox relaiixtis; (c) dclenitine 
las inienalos ni lox que/ex i reaenie, (d) delennine lox intcnalox 
rn los que Jes decrei teme. Apoye las rexpiiextas grüjhamenle 

19- flx) = ir’ - «It- + 2 

/Ir) = r’ - 3t- - 9t
21. flx) = -* t' - + 4r + 1

22. /ui s - S.t’ - 20.r - 2

23. /U| = r * -L 24. /ir) = 2.t +

2^* /it) = 2x^[^ "~ X 26. f(x) - aVT- X-

2’- Jix) = 2 t(t - 4)^’
/H) = 2 - (t - I)'/'

34. flx)
15 - li SI r < 3 
[ 3t - MI SI 3 á V

35. flx)
3r + 5 si r < -1 
r= + I SI -I á A < 2 
7 - A SI 2 S T

36. flx)
12 - ir + 5)-
5 - t_________
^100 - (A - 7)=

SI A -3 
SI -3 < A S -I 
si -l < r S 17

37. f(.x) =
ir 91- - X 
-s¡25 - (A + 4)- 
(r - 2)- - 7

si A < -7 
SI -7 S A <: o 
si 0 < A

38. flx)
(4 - (r + 5)* SI A < -4 
I 12 - (t + ll* SI -4 S A

En los ejercicios JV a 44. la figura adjunta niiiestra la gráfica 
de la derivada de una fiineuín f eonfiniia en tu dominio, el cual 
es el i «nyiínn» de lox mimervs reales. 4 partir de la gráfica, 
determine (u) hx numerox eritteos de f (6) hx inii-rvij/íM en 
lox que (ex crerienle. <rl los intcrxalox en lox que f ex deere- 
t lente, x Id) los númerox donde iHiirren lo.x extremos relativos 

def
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41.

42.

43.
X

45. D.iüi) ijiio 1.1 liinuiun / es biinliriu.) p.iM luJo. |us
.le ../((I) - 0,/(4| =• 2.HH) 0 /(O ().|, ...
/(I) < 0 SI t >4. diluije uiij (¡r.irieu po’ihli il* 
i.kIj uno (le lo, siguientes c.isos .lomle Ij uindii.i<‘, 
..Kin.i) se s.ilisl.iee (iil/'es kimtmu.i cii 
SI X < l > l¡\) - ^ SI « > 4. (c) lini /iii

- 1 .4
tim / í\» = t y i/>) SI o jt /»

■ • >•
46. D.itlo i|ue l.i limuon /es Lonlinu.i p.jM lo, .j 

(Je X. /íí) = 2./(t» < 0 SI X < .3. y/( t) > I) su , 
dibuje uiu grallcj posible de / en l.uIj uno de lo,. 
les Ljsos donde Ij (.(mdiuon jdicionjl s¿ sjiid,. 
(ui/ cseonlinu.i en 3. (l»/( t) = -I si r < .3 >/m
SI i > 3. (c) lim f'(x) = -I. lim /'lt| = [

1 • X j -»X*

) (a) * J lh¡ SI II xt h
47. I'.ncuentre a > h Ules que Ij función definidj por

/U) = x' + «X* + h 

tengj un exifemo rcljtivo en el punto (2. 3)

48. Iineuenire a. h > t ules que U funuon definids por

ftrj = tjT' + hx + i

tenga un\a1or mjximo reinlixode 7 en r = lyljgrJa 
de X = /(r) pjse purel punto (2.-2>

49. F'.ncuenlre u. h. i > ¡¡ tales que Ij función delniida pn

/(X) = 4ix' + />X“ + < l + t/

tenga un extremo relativo en los puntos 11.2) \ (2.3i

50. .Sea /‘ixj = x'’i I - ri'. donde /> > ./ son números cri: 
positivos mayores que I. demuesiie cada una de L 
guientes proposiciones
la) .Si /i es par./iiene un valor mínimo relativo cnb
lb) Sil/es par ftiene un valor mínimo relativocn I. 
lc> f tiene un valor máximo relativo en />/(/> -i- i/ii:á

pendientemente de que p > i/ sean impares o pare'

51. Demuestre el teorema .3 4 .3tiii

52. Demuestre el teorema 3 4 4titl

53. Si/(xi = x‘. donde L es un numero entero posiiivoiirpr 
demuestre que j no tiene extremos relativos

54. Demuestre que si/es creciente en |i;. /i] > si g es crevic- 
cn |/(u). y(/»)|. entonces si j; - /existe en [«, ft|. < • ' 
creciente en [«. /j|

55. l-i tuneion (es creciente en el intervalo / Denuicsireiír 
<a) SI i'tx) = -/(T). entonces g es decTceienie en / ib' 
/í(t) = l/yui > /tt) > I) en /. entonces h es decrc.«^- 
en /

56. I a luneiiín (es difereneiable en cada numero dcl inun- 
cerrado |<i. />] Demuestre que si fuñ • f (/»> < 6 .ni* 
ecs existe un numero t en el intervalo abierto t(j.ftila¡í^ 
yti) = 0

57. Sifl xi existe en cada numero del mten alo .ibierto 
contiene al numero ('y/u I = 0., puede eonduiisí'f' 
nene un extremo reintn o en i' Iixplique su respuesta

58. Describa como se aplica el cnleno de la pnmera dít"^ 
da para dciemiinar los exiremos relativos de una fuiv>'^
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Vs CONCAVIDAD, PUNTOS DE INFLEXIÓN Y CRITERIO
de la segunda derivada

I K.l U\ i

I >1 i^dal (|Ui.' I.i |>rimcr.i (ÍLrn.ul.t. prnpiir(.iiin.i >iiliiriii.iutin
.iLiiL.i ik’l «.imipnrl.innuKi» tk iiii.i runi.mii ) sii Lomn se vlt.i oii csU
SLILIOII

C oiiMillc la ligura I la uial imicslra la t'ralua de una luiiLion / tuyas 
ikiiN.ii! is priinera j segunda txisltn ui ti tnlervali) terrado [V|. \7l Dthido a 
t|ue / j / son ililertiitiahies tn ditlm iiiitr\alo eiKontes / j / son tiintmuas 
Lll|«| »7|

Si se tinisidcrj i|ue ti punió /’ se inuevt a lo largo de la grallta de la llgura 
I desde \ hasia í». entontes la position dt /' sana tuando rtrete de a x^ 
ConloniK se imitse a lo largo de A a !í la pendiente dt la retía langtnte a 
la grallta es positiva y dttretiente, esto es. la retta tangente a la gratita gira 
lH el sentido de las maiictillas del reloj, y la gradea se entuentra debajo dt su 
retta tangenle C uamio ti piinti> l‘ esta en li la pendiente de la retía tangente 
es tero V sigue detrctitiido Conlorme /■' se desplaza de H aC. la pendiente de 
la retía tangente es negalua y sigue dttretitndo la retía tangenle tonlinua 
girando en el sentido de las manttillas del reloj, j la grarita está debajo de su 
retía tangenle .Se díte tjue la grallta es iímo/«n lo tí/xyo de \aC A me­
dida que se mueve a lo largo de la gradea de C a ¡J. la pendiente de la retta 
tangente es negativa y eretienle tslo es la retía tangente gira en sentido 
tonlrano al giro de las manttillas del reloj, y la grallta esta por arriba de su 
retta tangente í n ti punto I) la pendiente de la retta t ingenie es posiiiva y 
ereeiente, la retía tangente sigue girando en sentido tonlrano al giro de las 
maiietillas dtl reloj, y l.i gradea esta por arriba de su retía t.ingenle Se díte 
ijue la grallta es (i'niií¡\a luuui ornlni de í a /. Ln el pumo C la grallta 
eainbia de tontav.i hatia ahajo a tontava batía arrib.i í I punto L se denomi­
na punió dt mjli \ioii I nseguuia se presentan estas dellnitnmes tornialintnle

I .3;5y1j{l3léjRpkíóp de concavidad [jigc^ÍGg^a^^7
Se díte que la gradea de una luntion es tontava hacia arriba en el 
punto (í /(<)) SI evisten / (<) y un intervalo abierto / que tontiene a t 
tal que para todos los valores de t t en/ el punto (x./(ut de la gra­
dea esta arriba de la retía tangenle a la gradea en ti /(<)»

Í((.ll{\2

IH.I IU3

: -3.5Í.2 Definición de concQyiddS'^ciSS^i

Se díte que la gr-íde i ile una tiinemn es túiitava liati.i nhajti en el 
punto ((. /(i d SI existen J U \ s un intervalo abierto / ijue tonlienc a < 
la! x]ue para lodos los valores de X ^ t en/ el punto (M xll de l.i gra­
dea esta ileb.ijo de la retta tangente a la gradea en ií.Jit ))

EJEMPLO ILUSTRATIVO 1 l a hgura 2 presenta una
portion de l.i gr.íllta de una luiition J tontava batía arriba en el punto 
(i. /(()i. y la figura 1 imitsira una portion de la grallta de una luntion que 
es tontava batía aliajo en el punto (í /ii»» ^

I a gialit.i de la llgura l ts tontava liatia ab.ijti tii lodos los puntos 
íx. /( O) para los tuaks i esta en .lignno ile los tíos intervalos abiertos siguien-
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I K>1 K\ 4

les U, r,,i De m incr.1 semej.intc. 11 pr.ilk.1 (Je la lifurj 1
Lasa liJLia arrib.i eti iniins las puntos í\ para los cualci ^ c%ij

o LI1 (V, '7f

EJEMPLO ILUSTRATIVO 2 S. / es la funeion
por /(»( = enloriLCs f ~ 2\ y f (\) = 2 Por lo que / (xi 
para toda x Ailemas Lomo la jiraílta de f, mosirada en la fijiura 4 lsIj „- 
de todas sus rcLlas laniícnlLs la grafiLa es edneava haua arnhaeniy 
sus puntos

Si es la lunaon dellnida por fi(x) = -r-, entonces =-2, 
i; (i) = -2 Ln LonscLuenLia, «'(r) < 0 para toda r También, dcbuloi 
la |irafÍLa dt c*. presentada en la llgura 5. esta debajo de sus rectas lanür 
V es cóncava hacia abajo en lodos sus puntos \

La función /del ejemplo ilustrativo 2 es tal que/ ir) > 0 para loJi 
y la gráfica de /es cóncava hacia arriba en todo numero Para la furii. 
del ejemplo ilustrativo 2. g'(r) < 0 para toda r y la gráfica de g es có-- 
hacia abajo en todo numero Estas dos situaciones son casos especia!ei_ 
teorema siguiente

3.5.3 T«or*ma
Sea /una función que es diferenciable en algún intervalo abierto qu 
contiene a t Entonces

<l) si/(f) > 0. la gráfica dey es cóncava hacia arriba en Íí./(i)j 
(ii) si/'(í) < 0, la gráfica de/es cóncava hacia abajo en tt./(i))

lILURAfi

Demostración de (i)

l,n,nV,rr|.)

Como/'(c) > Ü.

Entonces, por el teorema 1 ! b(i) enste un intervalo abierto / que contierfi 
tal que

> 0 i!
r - L

para cada v t* c en /
Ahora considere la recta tangente a la gráfica de /en el punto (c./it 

Una ecuación de esta recta tangente es

\ = /(O + /(()(r - <) '•

Sea V un numerodel intervalo / tal que r * c y sea Q el punto déla gt^ 
de/cuya abscisa es r A través de Q dibuje una recta paralela al eje v.y 
el punto de intersección de esta recta con la recta tangente (vea la figura 61 

Para demostrar que la gráfica de/es cóncava hacia arriba en (c./lf*'' 
debe mostrar que c! punto Q esta arriba del punto To. equivalentemente (p 
la distancia dirigida ¡Q > 0 para lodos los valores r ^ cení T^esiguJ
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I K,l IU7

IIGIR\K

riGL’R \ •)

nGL'RAK)

1.1 urck-ii.iil.i de (J menns l.i unlen.id.i de / [,a nrden.idíi de Q es /(i) y la orde- 
ii.id.i de / se obtiene de \2). así

¡Q = /!') - 1/(0 ^ /'(OU - ol
KJ - I /(') - tu )| - y'(0(i - O (3)

Por el leorem.1 del s.ilor medio, eusie algún núnieroJ entre x y < tal que 

yi,í, = ÍUJ_ÜI1

listo es

lí\) - /(O = /'(</)( I - O para algun.i d entre \ y e 

Al sustituir de esl.i ecuación en (3) se tiene

'¿Q = f'uh(\ - o - fk¡(\ - L)
!<J ^ - i)\fU) - f(i)] (4)

Puesto que ü está entre x y i. d está en el intersalo I. de modo que conside­
rando X = den la ecuación (I l se obtiene

í'(d) - /'«•) 
d - t

> O (5)

Para demostrar que ¡Q > 0. se probará que los dos tactores del miem­
bro derecho de (4) tienen el mismo signo Si v - e > 0. entonces a > c. 
Además, como d está entre i y í . entonces d > < \ por tanto, de la desigual­
dad (5),/'(t/t -/'(l) > 0. Si i - (' < 0. entonces A < c. por lo que i/ < c. 
por tanto, de i5), J'(d) - ^'(í) < 0. En consecuencia, a - i \ l\d) - /'(el 
tienen el mismo signo, por tanto, ¡Q es un número po^ltlU). Así. la gráfica 
de/es cóncava liacia arriba en el punto <(./(<))

La demostración del inciso (ii) es semejante a la del inciso (i) por lo 

que se omite. ■

El recíproco del teorema 3 5.3 no es valido Por ejemplo, si J es la fun­
ción definida por /(a) = i’’. entonces la gráfica de / es cóncava hacia amba 
en el punto (0. 0) pero como/"U) = llv-,./"(0t = 0 (vea la figura 7) En 
efecto, una condición suficiente para la que la gráfica de una lunción / sea 
cóncava hacia amba en el punto (r.y(ci) es que fu-) > 0. pero ésta no es 
una condición necesaria De la misma forma, una condición suficiente -pero 
no necesaria- para que la gráfica de una función / sea cóncava hacia abajo 
en el punto (í'./(f j) es que/"(i) < 0

Si existe un punto en la gráfica de una función en que e! sentido de la 
concavidad cambia, y la gráfica tiene un.i recta tangente en este punto, enton­
ces la gráfica cru/a su recta tangente en ese punto, como se muestra en las 
figuras R. 9 y 10. A dicho punto se le llama pimío de mlhwitm.

3,5.4 Definición de punto de inflexión
El punto (f,/(t)) es un punto de inflexión de la gráfica de la función 
f SI la gráfica tiene una recta tangente en ese punto, y si existe un in­
tervalo abierto / que condene a c tal que si \ está en /. entonces

(i) fix) < Osi.r < cyjl\) > 0 si t > r. o
(ii) f"í\) > O si V < ry/’U; < 0 si ,r > c.
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E K>l K\ II

EJEMPLO ILUSTRATIVO 3 l., r.guru 8 nm.s.r. unf,
lii di' inncM<in Lii d (]iio l.i cotuliunii (i| de I.i definiuoii ^ 5 4 se cump'-. 
e'-le vaMí 11 j.'r,i(iui cs u<ni.i\j liau.i .ib.ijn tn Ins punios iniiiLduiio. llblu<|(^J 
i/qim-iiiii dvl punió de mllcsion j es toiKasa Iuilu .imlia en lo> pumo-, lueali/^ 
mmedi.itamenie a I.i «lercdia dd punto de inflexión Í.a eondiLión iiij so^ 
se-nM en la fieiir.i'). iii donde d senlido de l.i eoni.ivid.id L.imhij de tóiKavj^ 
aiTih.i .1 Lonv.iv.i h.ieu abajo en d punto de inllexioii I^i lljjuni 1(1 propr^ . 
Hito eieniplo ile 11 eoiidiLion íii. donde el sentido de l.i eoilL.ividad e.imf)u dcef 
e.iv.i hasia .ih.ijo a toiieava liaeia arrib.i en el punto de inllexiim Observe cjuer, 
tipiir.i Hi la ¡:ratÍL.i tiene una rceta t.miente fuin/ontiil end punto de intlai, \

1.1 jirarieJ de l.i llj^ura I tiene puntos de mllexion en C. L\l 
l’na parte eriieial de l.i definieion de punto de inllexión es que la ¡;ra',| 

debe tener una recta laneenle en ese punto Considere, por ejemplo, laf 
Clon del ejemplo 2 de la sceuon 1 b ddlnida por

lUu
- i- SI V < 1

l2 V- SI I < V

1.a grállea de It se muestra en la fíjiura ! 1 Observe que h'i\) = -2 m r 
> /;'(\ ) = 2 SI I > 1 De este modo en d punto í I. .1) de la >!rat'iea el >. 
liJo de concavidad cambia de lucia ¡ilujo a lucia arriba Sin enibarj:« i] 
no es un punto de mllexion porque la gráfica no tiene una recta laneen'er 
ese punto

LIM KA 12

EJEMPLO ILUSTRATIVO 4 Suponga que ¡ llora. ¿:-
pues de iniciar un irabaio a las 7 a m un obrero, en una linca de ensamhL 
reali/aJo una tarea particular de fU) unidades donde

un = 2lí + y/- - O £ r 5
1 a lalil.i I presenta los valores de lunuon para valores enteros de /. de I a' ■ 
].i figura 12 imiesira la gráfica de / en |(). ‘I]

rnhUí /
í I ’ V 4 X
/1/j l‘> til 117 li.l MS

Al diíerenuar dos veces / se tiene

nií = 2\ ISf - 1/' nn = IS - (>;
= fx ^ - f|

Observe ipie /"(fi > O si (I < r < í \ /'(/) < O si í < r < 5 IX • 
definición 3 5 4(u). I.i gráfica de f tiene un punto de infiesion en 1 = 
Del teorema ^4 1. como l'Ui > O cuando O < / < ^. / (/) es crv'oe'- 
en |0. 4) ) debido a que /"i/i < ü cuando s < r < ,S. /'(o es decreuen'.s 
|X 51 Por tanto. >a rpie /‘in es la lasa de variación de fin con respecto J* 
concliive t|ue en l.is tres primeras hoias (de 7 .i m a 10 a m » el trabajadorK- 
li/.i l.i t.ire.i .1 mu lasa creciente > iliiianie las siguientes dos bor.is biv’*-’ 
10 a m .il medio día) el irabajadm electu.i la lare.i a una tas.i deerccinn'' 
I n / = 1110 a m ) el trabajador es mas eficiente. \ cuando ^ < r < 5(Jf' 
pues de las 10 .i m t hav una reüueeion en l.i tas.i de producción del 
jiidoi 1 I punto en el que e! ir.ibaiadur produce con inavor cficieiuiJ
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ili-tiiitniiM luiiitii ilf tlft ict ifitir. cslc fs iin pitnln üc in-
Ik’Mnti lie 1.1 pi.ilk.i lio / ^

I..I ilolliiioiiMi í 5 4 i:\pros.i i|no l.i scpiiiul.i (loriv.ul.i L.iinhi.i ilo M-.'im en 
lili pimlii lio inlloMi'ii. porii im iiiilio.i ii.iii.i .i(.cri..i dol \ .ilor do l.i '•ojiuikI.i ilori- 
N.itl.i 011 eso punlii Sin onih.irpii. el lenrenu siyuionlo osubleto (|uo si l.i se- 

t'iiiul.i den\.iil.i existe en un piiniii de intlexiñn, delie ser cení

»3i3«5 .T«oraino
Supuni;.! ijuo l.i linieion f es dileroiioKible en .ilgun inlorv.ilo abienu 
ipio onnlieno a i. > «i. /(i i) e-. un punió de inflcxirm de la ¡jr.Uiea de/ 
l.nlonoes, si/'(i ) existe./"(< ) = I)

Demostración Se;i í; la función tal i|ue .eli) = /'m. entonces 
e'lx) = J '(O. Como (< ,yi( )| es un punto de inHexion do la gr.ifie.1 doy. enlon- 
ces y’'lv) uambi.i do siyno en r. por lo ijiie L.inilii.i do sijiiio en < Por 
lanío, por el criterio do la primera dcrivad.i, .i* tiene un eureino relalixo en <•. 
\ c es un numero critico de f; Pucsui (pie e'lc) = ./ '<(». > como por hipótesis 
/■(() existe, se deduce (pie existe Por tanto, por el leorema 3.1 3. 
!,’(() = 0\/"i<) = 0, ipie es lo (pie se desealia doinosir.ir. ■

(:l reciproco del teorema 3 5..“í no es v.ilido fisto es. si la segunda den- 
x.ida de una runción es cero en un número i. la grállca de l.i función no 
nooos.iriamenle Heno un punto de mnexn'iii donde t = c liste hecho se de­
muestra en el ejemplo iliislralivo siguiente

EJEMPLO ILUSTRATIVO 5 Considere 1.1 tuncn'm / cuya
grálka se muestra en la figur.i 7. para la nial

yiii = f* /'(u = 4v’ / lu = lli-
Obserxo (jue/"|0( = 0. pero como/”(11 > (Isi i < ()\/'lU > Osi r > 0. 
el origen no es un punto de inllexión. Ademas, la gr.ítlca es cóncaxa hacia 
arrib.i en eu.ikjuier número ^

^ BJEMPL0 1 l.a función del ejemplo I de la sección 3 4 est.i 
dennidj por

ytv) = .i' - fu- + ‘>t + 1

lincuenlrc el punto de inflexión de la gr.irica de y \ delermine dónde la grátlca 
es cóncava liaci.i .irnba \ donde lo es hacia ab.ijo Apoye la respucst.i tra­
zando en el misino recl.ingiilo de inspección la gráfica de./ y la tangente de 
mllexión (la recia tángeme en el punto de'mllexión).

Solución L.is denxad.is primera y segunda de / son

/'(O = 3(- - 12t M y /"lU = (n - 12

Como /"(i) existe pjra lodos los valores de i. el único pinito de inflexión 
posible de / ocurre donde / ’(tl - 11. el eiul ocurre en i = 2. P.ira determinar 
si se llene un punió de mnexióii en x = 2. debe \ criticarse si / "< \) cambia de
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sij:nn. al misinu iicmpo se iklcrmina la UHK-.ividad de i.i ^ráflta pjfj 
iiilcrsalns respeelnus 1 os resiiliados se resumen en la laida 2

nihlii 2
/I I I / I >t / ll i f l"ltlliui‘tl

' 2 Li ¡ ri(iL I Jl’/cs LipriLjvj li_ti 1 Jij >

I 2 1 1 li I a (r.iliv.iücy liirni. un pjntddt. ir,n.íi T
2*1 •- Li trjIiLj dt/cMunids j iiJiu 4inl a

Ln el ejem]do 1 de l.i seeuon 1 4, se tnoslro tjue J nene un s jlnr ¡r • 
mo relaliso en I > un\alor míimno relalivo en 3 [.a fijiurj |3muesird!j, 
Hca de / y la l.inj:ente de mllexinn en el rectángulo de inspección de ¡-1 
por |-1, ^ 2|. lo cual apoya la información de la labia 2 <

La gráUca de un:i lunción puede lener un punió de inllcMon en J (■ 
donde la segunda derivada no exisie. eslo se iluslra en el ejemplo siguier';

ik;ir.\13 .
► EJEMPLO 2 Dada

Jl\) =

encuentre el pumo de intlexion de la grállca dey y determine donde Ijjtrj 
es concasa hacia arriba y dónde lo es hacia abajo Apoye las respe, 
gráficamenle

Solución Las derivadas primera y segunda de / son 

j(xi = y rU) =

De las ecuaciones anteriores se observa i)ue J (0) y / (0) no cnisien E: 
ejemplo ilustrativo 3 de la sección 2 2. se mostró que el eje y es la fccU'- 
genie de la gráfica de esta lunción en el origen Además.

J-{\) > 0 SI i < 0 y j '(VI <0 SI t > 0

Por lanío, de la definición 3 5 4 (ii). / tiene un punto de inlleMon enelon.. 
La concav idad de la gráfica se dclerniina a partir del signo de / (\). lo' r>. 
lados se resumen en la tabla 3

Tabla 3
/"! no J lO Ciinclu\wn

t < 0 •f /es crcLicnle, la prafica de J e* 
utncava luua arnha

t = b

0 -1 (
1

11 n c

♦

n c l_i pr idea de j liciie un punía d; 
inllcMiin

/es crccicmc la piallta de fs* 
cuncava liJ>.i 1 ahaji)

1.a figura 14. que muestra la gráfica de f trazada en el recláiiy*’ 
inspección de [-3. 3| por [-2. 2). apoya la información de la tabla 3

► EJEMPLO 3 Sea

i KU'K\ 14 J(\í = (1 - 2.V)'
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I r.itc l.i ) .1 p.irlrr lic c .l.i tsMtiu; el pimln de inllexion y dónde l.i ¡jra-
lit.i es LuiiL.n.i li.iu.i arriba y dunde lo es liaeia abaio Contlrme las esli- 
mat iones aiialilie.imenie

Solución I a ligiira I “í muesira la gr.dlca de / ira/ada en el reLlanjiulo de 
mspeeuon de |-1. por |-2. 2| De l.i t'radea se estima (pie el punto de in- 
llevion esta en (0 0), la praliea es eoneas.t batía arrib.i p.ira \ < 0 5. y la
j^ralita es toiitava lutia abajo para t > 0 fi Ahora se confirmaran eaas 
estim itiones aiialilitamente L.is derivadas primera y sepunila de/son

oo ii ->i‘ Jt\) = -(.(I - l\i- y /'(i) = 2411 - lu

I? Como/ tí) existe para todos los valores de r, el unito punto de infleMon
po-ible es donde / (í) = 0. esto es, en x = 0 De los resultados resumidos 
en la tabla 4. /"{x) tambia de sijino. de + a en x =05. de modo que la 
jeratka tiene un punto de inllexion ahí Observe también que debido a que 
/t0‘s) = 0, la grufiea tiene una recta tangente horizontal en el punto de 
itillevion

iit II

I U.l lU Iti

h

IH;i U\ 17

Tabla 4

/'XI /'o 1 II) C¡ 11 lii\;on

1 ns * 1 1 fUllcJ dd C'L 111. JC4 h_^ij rrihj
1 os II II 11 I 4 prjhc 1 de 1 iiuic- un punlu d4

iiilk-vnm

os . , - t 4 ¡.f ili.. 1 d. 1n.j\ j li__14 ‘ 1

Ln la sección 4 se indicó como determinar si una tuncion tiene 
un extremo relativo en un numero critico < .d venlkar el cambio de signo 
algebraico de la primera derivada en numenK de algún intervalo adecuado 
que tenga a < tomo extremo derecho y mimi.ros de algún intervalo conve­
niente t[ue tenga a i como extremo izquierdo al pasar pon conforme v trece 
Otro criterio para extremos rel.itivos. denominado (nUTto Je la v« gn/n/t/ Ji ■ 
nuida. mvoliicr.i solo al numero critico < y a l.i segunda deriv.ida Antes de 
establecer el criterio, se preséntala una discusión geoinarica miornial la oial 
recurrir.i a su intuición

Suponga que / es una tuncion que l.d que / existe en algún intervalo 
.ibierlolo />) que contiene a i yiiue/ii) = tj Suponga también que / (x) < 0 
SI X esta en (a. h) nnlonces. del teorema ^ ^ ''(iii l.i gráfica de t es cóncava 
hacia abajo en todos los punto de ui. I>\ y del teorema ^ 4 7(n) / es decreciente 
en [o. /i| La figura Ib muesiia la gralka de una limcion que tiene estas 
propiedades, y también se inuestr.i en algunos puntos un segmento de la recta 
tangente L.i pendiente de la reda tangente es decreciente en |<;. h] lo cual es 
consistente con el hecho de i]ue / es decieuenle en [t;. /'| Obsenc que / tie­
ne un valor máximo lel ilivo en i

Ahora suponga ijue / es una luncion que nene l.is propiedades de la lun- 
enm del párrafo .interior excepto que / t vi > <) si x esta en tu. h) Entonces, 
por el teorema ^ 5 t(i) l.i gralka de / es concav.i hacia arriba en todos los 
puntos de <</. h) y dcl teorema 1 4 Suj. / es creciente en [a. b) La gralka de 
im.i luncion que tiene estas propiedades se tiene en l.i tlgur.i 17 Las pendien­
tes de la redas tangentes. i|ue se muestran en algunos puntos en la llgura. 
son crecientes en |(». />!, y / tiene un v.ilor mínimo lel.iiivoen <

Ahora se establecerá y demosir.ir.i el iiihiin ih la vtgiim/íi íkn\ada 
¡tnhi i-Mniiun iilainos. el cual confirma las observaciones geonidncas dé­
los dos p.iii.itos piecedeiiles
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3»5.6 Taorama Criterio de la segunda derivada parg 
extremos relativos

Sc.i < un luiiiicro crítico de iiiki liinción / en el que J'it t = 0. y supem. 
¡íu tille í"e\isie par.i lodo'» lo'. valores de i en un intervalo abierto c|uc 
contiene a t

<h < 0 . enlonccsy tiene un valor máximo relativo eiu
(ií) Si/"líl > 0 . entonces / llene un valor mínimo relativo en (-

Demostración del inciso (i) Por liipóiesis.y'Yi) existe y es ne¡íaii,, 
de modo que

/•«•I = lim /'to - f{c)
K - f

< 0

Por tamo, por el teorema 3. l.Xtii). existe un intervalo abierto / que eoniicr;. 
I tal que

/'(•t)- í'(i) < „

A - í li

para toda i <■ en el intervalo
Sea /] el intervalo ahieno que contiene todos los valores de r en /p.'. 

los que r < r. por tanto, t es el extremo derecho del intervalo abienoi 
Sea /s el intervalo abierto que contiene lodos los valores de i en / para! 
que i > c. de modo que c es el extremo izquierdo del intervalo abierto /;

Hnlonees, si i está en /]. i - c < 0. y de la desigualdad I6' 
/'(.r) > I) o. equivalentemente, f'í.r) > /’(n Si .i esij r:
/;. r - í‘ > 0. y de (6)./■( r) -/'(el < 0 o. equivalcnlemente./'ui < /lo

Pero como/■(() = 0. se concluye i]ue si \ está en/j.y'tí) >().\ii: 
está en < 0. Por tanto. /'(\) cambia de signo algebraico de poMiiv,^
negativo al pasar por i. conforme v crece, de modo que. por el criterio i!c p 
mera derivada.y tiene un valor máximo relativo en <*.

La demostración del inciso (li) es semejante a la del inciso (i) y sed;, 
como ejercicio (refiérase el ejercicio 5ó». '

► EJBMPIO 4 Sea

J(y) = .V* + - 4.v=

determine los extremos relativos de j aplicando el criterio de la segundji 
rivada. Utilice esta mfomueión puní dibujar la gráfica de/ Apoye los ri­
lados en una grufieadora

Solución Se calculan las derivadas primera > segundado/:

j'(x) = 4v’ + 4i- - «V /"lu = I2v- + 8i - S

Al considerary'(V) = Ose obtiene

4\U + 2l(i - I) = 0 
A ^ I) V = -2 V = 1

Por tanto, los números críticos de /"son -2. (I y 1 Para deienninar si 
o no lili extremo relativo en alguno de estos números críticos, se con'id»^*
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fin = i' • *«'

H(iriu ík

el Myim lie lii se^’iirul.1 iletiv.iila en olios I,os resull.Klos so resumen en Li 
Mhl.i 5

IdMii í

Mu /1n / I ti í (ifi.hixh-ii

' - , M ' / iKiu-(in s.iliir mliiiino ii;l..ii\ii

' " M M Micfi.; un v.iliT m.ininii ii'l.ilini
‘ I ^ " ' / liciiL'Mil v.iInniimiiiiK (tl.iiiMi

A p.irlii lio l.i inlnrmaeK'ni de esta tabla y Ineah/ando ¡ilgunos punitis 
mas, so dibuja la ^r.ílka de j. miisirada en la Hjjura Ib I.a tlyura l‘>. t|Uo pre­
senta la gr.ilioa do} ira/ada en ol roetányulo de inspeeciún de |-I5. 15! por 
j-l I. 'M. apoya los resultados ^

Si r’l< ) = 0 y )'{f) = 0. nada puede ooneluirse acerca de un ourenm 
relativo de } on r Los tres ejomphis ilustrativos sijjuienles justifican esta 
afiniucion.

EJEMPLO ILUSTRATIVO 6 Si /tw = 1 entonces
/U) - 4r-' yy'lO = 12»- De modo i|ue,/(0l, /'(O) y / 'tOi son lyuales a 
cero Al aplicar ol entono do la primera domada se aprecia que I tiene un va­
lor mínimo relamo on 0. L.i jiráUca do/so muestra on la figura 2(1 M

EJEMPLO ILUSTRATIVO 7 Si «tv) = entonces
[«■(V) = -4i'y i>"|»| = -12»- Por tanto. glO). ii'tl)) y t;'Mil son iguales a 
cero. En este caso }< tiene un valor mávimo relamo en 0. como puede verse 
al aplicar el entono ile la primera donvada l.a figura 21 muestra la gráfica 
de g

Mt> i' • 't‘ 4i-

ii(;iK\ V)

EJEMPLO ILUSTRATIVO 8 Si />m = »^ entonces
/iL») = .T»- y /;'■(») = ín. por lo que /n0). /i'(0) y It'W} son iguales a cero 
La liinciiín li no nene evtremo relativo en II porque si.» < 0. h{.\] < /nOi. y 
si X > 0, lií r) > /j(0). La gráfica de li so présenla en la figura 22. ^

MU

Los ejemplos ilustrativos (i-S propoicmnan ejemplos de tres riiiiciones 
para las cuales su segunda doriv.ida tiene un valor de cero en un punto cuy.i 
primera derivada es coro: on ose número, una funcii'm tiene un valor míni­
mo relativo, otra lunción tiene un valor mávimo relativo, y la tercera función 
no tiene valor extremo rcbiiivo

^ EJEMPLO 5 Para la funcii'ii seno, determine los oviromos re­
lativos aplic.itulo el criteno de la segunda domada, y encuentro los puntos 
de mnevn'm de su grallea También delemune las pendientes de las tangen­
tes de mncvión Trace la gr.tllcade la lunción seno en un intervalo de bmgitud 
2/Ti|ue contenga el punto de inllevión que posea la menor abscisa positiva 
En el niismi» rectángulo de inspección, trace la tangente de mllexión

Solución .Se.in

I ua H.\ 20 /(VI - sen » /(V) . eos » /'■(.vi = -sen V
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ifii = I

/mi I

22

1 as tuiiLioncs I. f y f csl.ni dcllniilas p.ir.i toda r Los números tríiict^^ 
ohlicnc.ikoiisidcr.ir/ír) = 0

u»s t = o
X = kn /.es eualcjuier numero enicro

A fin de delerminar si e>iisle o no un cKtreino relativo en alguno de est(j\r 
meros Lmicos se obtiene c! signo de la segunda derivada en cada unodeelN

f'(\n + kni = -senf kn}

= -eos kn

_ l-l SI/. es un enlero par 
I ] SI A es un entero impar

Los resultados obtenidos al aplicar el criterio de la segunda derivada H;r; 
sumen en la tabla 6

ralila 6

l‘ri //«» / ío 0'nr/iiii«rt
i - J ir ♦ A.tUcsuncmcmpjíj 1 0 /lancun'jlDrnijiinvir'
1= ^.T'T/tffULsun snisM impjf) -1 II / llene un vjJor mmimir _

Par.i determinar los puntos de intleiion se considera/'(t) = 0 

- sen T = I)
X = kn A es cualquier entero

I K.l KA 2A

Como /” (i) cambia de signo en cada uno de estos valores de x. la grafivai 
ne un punto de infle\ión en cada punto que nene alguna de estas absusa> L 
cada punto de inlIcMón.

J ikn¡ = cosA;r A es cualquier entero

_ j 1 SI A es un entero p.ir 
1-1 SI A es un entero impar

I’or i.inlo las pendientes de las tangentes de intleMon son +1 o -1
La Ugura 2'^ muestra la graftea de la lunuon seno > la ttangenie d.’ 

flevion en el punto <;r. Oj trazadas en el rectángulo de inspección de H' 
por[-2.21 " *

EJERCICIOS 3.5
/ /) lii\ <)i n i( lii\ J ii M, I iií iii iilti los ¡millos th iiljlt ^lllll ih lil 
liiniion ( iltlt niiiiu üoiult lii s;nijii a i v i ('luma luu ui urnlui 
\ íloiuli lo IV luu iii iilui/o Sjiosf las re \¡uu shis íro'oiii/o cii il 
wiviio n I iiiiii;iilo ili iiisf’i 11 ion In c'm/ic ii ih lo fiiiu ion \ los 
liiiivi nti s il¡ lililí Molí

1. hxi - k- 12» + 1

2. C’tll » ' (h • ♦ 20

3. vi») S.' 4. líx) »‘ 2s'

liu
-»

(>. rao
1

»- f 1 ♦ 4

7. fix) = 2 sen 'ív. i € [- ' n’ ^

H. /"(v) .= t tos I», V e |-ff .Ti

/.II los tjen ii IOS U a 10 irtii i lo ^rofn a ile lii ftiiu ion' op-' 
lU lo nnil'iiii estnm ilpiiuimh infh\iih¡ \ e/aiii/i*/<; v’r..' - 
iiiiuoso luuio orriho » iiiilonJt lo es luu lo ohojo 
los I Miiiioi loiii \ oitoliiiiiiiiu lile

•>. /u) - I ’ ♦ '/» 1(1. i-io s= 2v I

n. (itu u l)' 12. h\) = tr s- 2i'

13. K\) ix ■’i'/' 14. etv) - (» *- ‘
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l«. .1'' 

Ift. l<"

uti « <= I 
vOi:<. « G (0 1 .T)

I. KIII» ‘ "f" I I tU lllllt Ullll llf

‘ ' 'I ■! '* ' </> IflIllllW lliitlili- lll

" . J,1 ' tli'iull li< <t /k|<(1í Ilh(ll<l

¡I, I í la ■'
^ ' 1 S| t <

1* iiO
7 ' V SI 2 •

■. . » si 1 •
lili

- 1 ' si I <

X • Si i < 0
I-» ' ’

- X ' SI O < \

-1 ' s| l < 0
:n. s '> ■ \

\ SI ij \

. X S| \ < (1
:i. /Mi ^

x^ SI 0 rt X

\ • s| 1 í" 0
;i (ÓM '

1^ SI (I '' l

f'ti ■ «it'i.. I''' ti Jili.ijt- lllUl pnrciiilt ele til K'i‘fíolile't‘1- 
;; - . I f 1/Hi- por (I punto ehaulf t = c W «f uiH5- 

•. ,•! L’i el 'Tul. ifWi’í i¡(¡Ji¡e Supoitifa ipil- ( es loiitmiin en 
u\jn !• ■iniilo.ihu rtii e¡ue innrunfti <

Ijl ? lll ■ 0 M \ < I .J IX) < 0 si i > t,

I I < I < (I M i < I. r Ix) < 0 SI t > <
ll)l 'MI > M SI t < t . / I l» < I) SI T > 1.

I MI > 0 s| t < <./■'( TI > 0 SI t > C

U, (Jl I MI > 0 S] r < t./ ( T| > 0 SI .1 Pe,
/ MI > Osi t < e:/'lx) < Osi T > I 

ihi MU < O SI » < < .J (T) > (t SI r > í;

I MI > Usl » < (./"(ti < Osi T > l

1\ lal M( I - U. n« I = l)./'(T) > Osi T < (.
/'(\| < 0 si .r > (

ibi t •( i = 0. í M> = 0;/ M) > 0. SI I < r.
y I TI > (i sM < (

2ft. lal fui = 0; fix, > n SI.» <4:/'ÍT> > o SI T > <•

lili ((,1 = 0./M) < 0 SI.» < t:/"(TI > o SI T > (

'ai / 1(1 = = -|J"(.T) < Osit < t.
y (u > íiSI T > c

'!>•/ii I no iMisic /'(ti > UsiT < f.
/ m > Osi» > (

lai/(,, = > Osít < r:
/ 'u < ')sn > <■*

/'( Mil) uTislc,/ U) < Osi.x < i;

J '>1 > Osi i > «•

*’• (MI = +oo; liin /(T> = 0; 

y '> o SI T < (•; / 'MI < 0 SI i > c 
lim (M) - hm f‘(x) =

i- <Jsl T < t.J'lX) > Osi.l > «■

III lo\ iji'ii II IOS IIII l'i. i'iii iii’iilir lii\ I xlii iiii'\ ri’liiliui'i lll 1(1 
liiiiiii'ii npUi iiihlii el iiihnii lie hi u viiiiihi ilenuiilii Vlilue 
i'Uií m(r»/iiKíi um fililí ilihiijiir lii i,’r.i//( ii ele hi linii ion Apou 
los 11 Milhiilin en lll i;riilii iiilorn

M. Hx) - -4»' + .4»- 1 1K«

.'2. /iMi 1>‘ - <M- ( 27

3.1. V'U i' - I' ‘ i’ .14. /(ti = 11' - ■ i ’

35. /MI ios 1t. V e |- j ff. ' r]

3fi. i.'(t| = 3si;ii4i.t (3 |0. 1 iT]

.17. (iM) = 4t’^- + 4| 3H. (M| S rvi * 1

3‘). lJilni|c la iir.illc.i dt: aljiun.i funuiin / para la uj.il fl\), 
/ (O j / M) CM'Lin y sean lu| posiiisiis para loda t. Ilil 
negamos para IihJj r

40. F'ara la lunLiim enseno, encuenire (al los e\(remo> relali- 
uis aplieanJo el Lrileno de la seyuiula dens.ida. (h) los 
punios de inlleMon de su yratlca. (c) las pendieiilcs de 
las lanijenlcs de inlleMon. (d) Traee la gráfiea de la fiiii- 
eiiiii enseno en un inlervalo de Innpilud 2.Tque eontenua 
el pumo de inflexión i|ue posea la menor ahsei >a positiva 
I.n el mismo reciani:ulo de inspeLeinn, (race la laneenie 
de inflexión

Di los ijii(iiii)\ 4/ \ 42, (lll iitnire un los piiitlin ih iitlh xioii 
lie lll eriijleii ile liiJiiiitinn. x (/>) lii\ piniliiiiles ele lux Wm,'i7i- 
(« I lie inllexiiin l< l rnie r la viiiüai ele la Jinn ini en lai ini' r 
uilii lie tiiiií’iiiiJ ~ ipie el piinln ile inllexion ipie
pineii lll nunur eilueiui (lowími. I.n il inieiwi rn ii¡ní;iilii de 
iinpiii i(!/i tnue la fimi;» ;i(e de in)lexioii

41. [..I luneuin (anuente 42. 1.a luneión eo(an;:enie

Di los ejen leun 4.Í i -I-I Ui) enciienire lin exireiiun relaliiox 
de la fiint ion iiplit ando 111 nierio de la ii i;iinda deinadii. Un 
Trine la iirdCua de la Jiineion en wi míen alo de liint;iuid 2/T 

43. I_i funeion eoseeanie 44. L.i luneion seeanie

En lin ejeri uun 4.1 a 50 dil’iije una ponión de la i,'f((77(</ de 
ana y»«i kúi f ipic pase por lo\ /»;oi/«\ i< lieU. hl. fult) i 

u\e\atix}aiinla\ioiidii loinxdodin raiiihiiiuidnijeiai 
5í enuiilo dt la ruta taii\;eati ui unía uno de e\to\ puntos, si 
existe la retía laiivtiite Siipone;a í/iíc < < d < c \ ipie I es 
omrimni en aliuin intenala alnerio i/«í' «wií«'«c o i. </1 e.

45. (al fu I = 0. I'tdi = \.J"ul) = (I. /'l. l = O;
C'lTl > n si » < d. J' ixi < o SI t > d

(1)1 fU) = 1). luli = -1. ful) - 0; (U’I = f).
j '(<•) = 0.; IT) < Osit < ii. riu > ')
SI (/ < r < I'. / 11) < U si T > «■

46. (al /((I = O./'u/i = -l./■'(<y| = (l: /'(el = •»:
( (\) < 0s| t < d: /"<ti > Osl T > d

ii» r(ii = yi</) = 1. y «/i = n. yio = o.
I '(t'i = i). ru) > OsM < (/, y MI < o
xid < X < e-.rix) > Osi.T > e

47. luí /'ui = 0: ("(«•) = O./’u/l = -l./'w/l = 0.
riel = ü. no > (iMi < e.J ITI < Osl 
( < T < (/: /"(l) > Osl T > (/

(lll no = 0. Jim yii) = +w. =

/'lel = 0: /■ M) > Osi T < iT./'ix) < 0 si
.X > d

+«;
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(11) Mi) 0. / (M =< (I, / OÍ) = 1. y ((/) » (1
Mr) (1 y (\) < 0si t < ( .y (t) > n
si < < l < l/, / (l) < (1 SI \ > d

Itll lU) 0 Imi /(il -00 iim / tu - -oo.

1 ui 0 / (i 1 < 1) SI t < iJ' / lU > Osi i >

<u) 1 (< Iiiocxisle./(di a -l, 1 { ./) = 11.
1 tr) 1). / (ll > (1 s| 1 < ( ,y tu < (1
su < i < ./ y m > Osi t > d

(bi fU) (1 y (i/l nocxisie. y (f) 0
t (f) II. y tu < (isi 1 < d. f (V) < 0
SI d < » < r. / (t) > Osi i > 1

tul / If » = 0 M./I = ~i.f(di »=■■ 0 /(<•)míeosle
y 31) < osi t < (/ y u) > 0
SI d < t < € / ( V) < (1 SI I > I-

(l)í jii) - (I / (<) = (I./lí/l no existe.
/ f. 1 - y («) < OsM < (./ (t) > 0 
si < < t < j / u) > 0 M X >

51. St /(i) = íit’ * hx' detennine a. y h de iihkIo que Ij 
gnifita de / tinga un punlu de inflexión en el punto (1.2) 
Apoj c la respuesta grancamente

52. Si/(il = in' + + < t, determine fi,/). y t de hukIo

que la grafita de I tenga un punto de intlexion en el 
punto 11. 2) y de m«*do que la pendiente de la tangente de 
inflexión sea igual a -2 Apoye la respuesta grafiLaincnle

53. Si /tu = tíí’ + hx‘ + + (/, delirinme u, h, i y ü
de modo que / tenga un extremo relaitso ui el punto 
tO. 3) y que la griliea de J tenga un punto de inflexión en 
el punto II -Jl Apoye la respuesta grafieaniente

54. Si y(r| = ar'* + f>r’ + rr + dx + r, dciemime ii, h, 
(. d y e de modo que la gratlea de/tenga un pumo de in­
flexión en el punto (1. -1), que contenga al ungen y sea 
simetnca con respecto al eje x Apoye la respuesta gra 
Iicamente

55. Siipongii que \ ^2 y - i V.3 son números críin. 
de una liinuon/y que/(i) = r [| j + 11| Inc*^ 
uno de estos números, determine si / tiene un cxueti 
retalixo y, en caso di ser así. si es un miiimo rclaii.f, 
un mínimo relatiso

56. Dtinueslre el muso íii) del trueno de la segunda Jer, 
vad 1 para exiremos relativos

57. Suponga que la gr.ifiea de una función llene 
punto de inflexión en el punto ít,/(0) «Que puedeut 
cluirse aeerta de íii) la continuidad de / en 
(1)1 la coiiiinuidad de /' en i. (cj la continuidad ¿ 
/ ciu '

58. Suponga que /es una luncion pira la cual / (t)eti* 
para toda i de algún intervalo abierto / y que en un v 
mero r de / / (r) = 0 y / í<) envíe y es difererici 
cero Demuestre que el punto (r. f(c)¡ es un punto d¿ c 
nexion de la graliea de / SiiKimuui la dcmosirjuiflo 
semejante a la de'l eriterio de la seguntLi denvaJa

5‘>. fu) Lxplique por que un punto de inflexión dt la gnfo 
de una luneion que representa la productividad de unto- 
haj.idor puede inicrprelarse como un punto de rerd 
miento deereeiente (b) Suponga que un Irabajadir Je 
una labriea que elabora mareos para pinturas puede kee 
V mareos en t horas después de haber iniciado a b 
K .1 m . y

l = 3i + - r’ 0 S r <: 4

Dclemiine en que tiempo el trabajador se destiiipenací 
mayor clieieiieia. esto es ^euando el trabajador aicsiui 
el punlu de rendimiento deereeiente ’

60. Explique cuando se* uiiii/ana e*i erileno de la yrpdi 
denvada para deiennm.ir extremos relativos y eiuni 
emplearía el enleno de la pnmera denvada Cn vu eif 
eaeion. indique las ventajas y desventajas de cada cnler

3.6 TRAZO DE LAS GRAFICAS DE FUNCIONES 
Y DE SUS DERIVADAS

>

ku;lir/\ 1

En los secciones 3 4 y 3 5 se indicó eoino pueden determinarse propledil¡^ 
de las gráficas de lunuones a partir de sus derivadas Ahora se mostraracunv 
estas propiedades pueden delermmarse a partir de la gráfica de la denvaii' 
después emplearse para dibujar una posible gráfica de la función onginal

^ EJEMPLO 1 La gráfica de la derivada de ia función del cj¿n- 

plo 4 de la sección .3 4 se muestra cn la figura 1 A partir do esta gráfie'a ikw 
mine las abscisas de los punios de inflexión de la gráfica de / > dóml¿ ^ 
gráfica es cóncava hacia arriba y dónde lo es hacia abajo Dibuje una pí^ 
ble gráfica de/que tenga esuis propiedades así como lus pnipiedades obicmií* 
cn el ejemplo 4 de la sección 3 4 .Suponga que los únicos ceros de/son .3 5)^

Solución La segunda derivada f" evaluada en el número c es la 
diente de la recta tangente en el punto donde x = c de la gráfica de y ^
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i.<mscuu.'in.M. cornil l.i jii.ilita ilc /’ tiene icci.i'. l.iii>’enles liori/ont.iles en 
‘ I > en I <./''( I) 0y/"(3) 0 l-.n l.i litiur.i I se nliserv.i cjue
/'es ereeieiile, es ilceir./'Vu Oui.iiuIim I > ciumln \ > .1, por l.inti). 
por el leoieiiu I 5 l(i). I.i ¿¡r.ilii.i ile / es conc.is.i h.iu.i .irnli.i p.ir.i estos \.i)o- 
lesde» Adem.is./'esilecreciente. esto es./"tu < llcu;»iido-i < i < 3. 
por Unto. ()oi el tcorei»,i .< 5 la yr.iriui de / es cónca\:i h.ici.i ahajo par.i 
estos calores i!e » Mas aun, de la delinieu'in 1.5.4. se puede concluir (jiie la 
jiralica de / llene [iiinlos de innesnín diiiule I - |y \ - 1 Hslos hechos se 
lesunien en la lahl.i I

hthla I
1 III ( ti'H

1 1 1 1 ^'r.ilii.i ti.' / Ls u'iivai.i li.al.i .aril' i
t 1 n 1.11 i.aiL.i il. rii^ii. lili piiiiiii (Ib jnllciiiiii
l l

, 1
. 1

(1

1.1 ^ rali. 1 iIl / es som.as.1 lu.i.i a1> ijo
1.1 pr ai.,1 di 1 lii-iiv- un pimío di- inl!e\i'>n

I I l.j i’r,ili..i di- f 0. uniiai j li.i.i.i arriba

Ahora rellérase a la lahia 2. I.i cual contiene los hechos de la tabla I an­
terior N de la lahl.i 4 de la seccii'm 1 4

I Ka K \ 2

IH.l K\3

/ahia 2

; lo / m ( oi:, lu tiiti

1 < 2 • » o.di.r..i.'nK' Ij eralii-id.'/e o'ti.js.i
li.i.M .iird' 1

‘ - 41 • r iiciii- un i.ili r iiiuiimn iil.iiiio l.i ¡'rulua 
d.' 1 f. 11 ni.isa liaiij .imh i

: 1 *' -1 • f J C'sirLillIlll' l.l ^T.llliJ d.'/ l lOlli.lV.l
liaii.i amb.i

1 -1 II 1 c'< iri.iLliIi’. I.i i'r.ilii.i de 1 tiene un piii lu 
de iiilleMoil ,

1 1 1 1 i< ue.ienle l,i erjlii.i de 1 es eoiuas.i
h ..i.i .ib ijii

. 1

1 ■ 1 '' '

n 1 nene un s.ilur iii.ismm iiljino, 11 ¡tjIi. i
de/e. iiuii.ii.i li lu 1 at'.iici 

/1 • d.iriiiiTie. !j f.d'iia de / es i.m.jia 
ila. U .ll>J]il

1 I 0 lí il.iiiiienl. 11 pr.itna de r nene un 
pnniii de iiilteMÓn

1 < t < 5 ! 1 ■ d.iii.ieiiie Ij íir iliu d. i es luiiiav.i 
li '.i.i ..iTib 1

1 s II • 1 nene lili s.itnr iniiiimi' iil.imu 11 er.ilii.i 
de r es iiiii..u j b iiij .imb.i

S . 1 es ilviieiile. I.i pr.ilii.t de I es i<in..is.i
Ii.i.u .illiba

Puesto tjiie los únicos ceros ile / son 3 5 \ b. estos númeios son las únicas 
intercepciones t de la ¿¡rafica C’on esta inlormacion \ las propiciiades de la 
tabla 2. se dibuja una posible urálica de /. la cual se nmcsiia en la liuura 2 ^

^ EJEMPLO 2 I-a llyura 3 muestra la ^rállca de la derivada de la 
liincnhi j,’ del ejemplo 5 de la sección 3 4 A partir de esta »rJllca determine las 
.ihscisas de los puntos de mllcsión de la enirica de .c > di'mdc la yr-il'ica de e es 
cóncava hacia arriba y donde lo es hacia abajo Dilni|c una posible erallca de 
,t; tjiie Icnjia estas propied.ides así como i.is propicdailcs obtenidas en el ejem­
plo 5 de la sección 3.4 Siipoiiya tjne los únicos ceros de v son -2 \ 0
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Solución De la yrálica ilc ji>'. es decreciente, es decir. 
iiiandi' X < 0 y tiiandii \ > (I Pnr lanío, l.i yr/ifica de es c<íiK.iva h.*, 
ahajo para estos valores de v l.a jirátlc.i de nunca es cóncava liauj ams 
Como ^''(11) no c\isie. lampoco existe l’iiesU) ijue no camhia¿.
signo, la gráfica de g no lieiic puntos de inllcxión. lista información se in.i- 
pora a Li de la l.ihia 5 de la sección .1 4 para ohicner la tabla .1.

i

hihhi.?

i:io e o» ( mu liiui’ti
1 «- 1 *■ i; es LreLiriiie. ta t'ralicaOc ccs Litn.a'.j

h.ILM .ilujd
1 1 ü i; llene un \alnr nu^inm fclaliui. la {tJuj 

Ue 1,'cs ci'ineasa lueia ali.ijti
1 < « < 0 • C' es dcsreLienIc. la frafiea Je i; es súr.eava 

lucia jhjji)
i n n c n c e nene un salor mtnimo relaiiso
0 c t • V es ere,, lente la granea Je c eseúneasa 

lutia abajo

l.a figura 4 imiesira una posible gráfica de ,i> dibujada a partir de las [T' 
piedades de la tabla ^ > del hecho de i|ue los únicos ceros de i; son -2)0 i

l:n los dos ejemplos .interiores se obtuso la grátlca de una fuitción ap_- 
tir de la gráfica de su derivada fin el eiemplo siguiente, se dibujarán las lle­
vadas primera y segunda de una fuiieión a partir de la gráilea de la tuneión

^ EJEMPLO 3 lili I.i figura se muestran la gráfiea de unallv 
clon f y segmentos de las tangentes de inflexión A partir de la figura, delcrr. 
ne la información siguiente c incorpórela en una tabla semejante a las labial 
y y lii los intervalos en los que / es creeienie; tíil his intervalos en los qu' 
es decreeieiiie. lili) los extremos relativos de /. livi los intervalos donJsIi 
gráfica de7 es ei'ineava hacia arriba, (v i los intervalos donde la gráficad;' 
es eóneava hacia ahajo. (v 11 las abscisas de los puntos de inllcMÓn de la gral.- 
ea de f. A p.irtir de la información de la tabla, dibuje posibles grjíi:i-
tlcr>7"-

SoluciÓn De la figura se oblienc la información siguiente:

(ij /es creeienle en l •«. -í). [ 1. 3| y |.^. +oo>; 
hi) /'es decreciente en |-1, l|.
(iii) /tiene im valor máximo relamo de 4 cit v = > un valor mir

nio relativo de-2 en v 1.
(iv) ia gráfica de / es cóncava tiacia arrib.i pura t en los init’rvj!'''
' (-1. 2) y +001;
(v> la grállca de / es cóncava hacia ab.ijo para v en los inicrva' ' 

í-oo. -II > (2, 3);
(vil la gráfica de / tiene puntos de inllexión donde .t = -I. v = •'

V 1.

Itii la tabla 4. se incorpor.i esta mformacióit junto con h*s signos ¿ 

f'y f'cn los inlervalos especificados en til-tvii.
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1 K.l R \ 6

(ii ifl.j iL‘ t

ek;iu\7

hihlii 4

Mu / O) f iiiu liision

K t • 11. LiLULiilc la palita de/c. umeava 

ti ici 1 ali i|<i
1 1

1 < < • 1

0 ((iLiie un vdliir ni.ixiino rJalivu |j ,Taina 
el- / es cimtjva li lu.i ati ijii 

f es (Iccicutfile. la ¡Taina ile/es tiíncasa 
lucia alijjii

< 1 0 1 es dccauenie la ¡iiálica de /nene un 
jiuiilu da inlletuiii

I 1 « /es dccrccicnü:. la iTafiiadc/es ciincava 
hacia tiiriha

l - 1 u f 1 nene un valiir mínimu relainu 11 ¡Tanca 
dt /es cóncava hacia amha

1 < « < 2 ■ /es uccicnle. la ¡’rádej de/es cóncava 
liauj arnh l

1 2 t 1) /is crcuenlc la ¡granea «le/lienc un 
puniu de inllctión

2 < i < ^ ♦ ■ /es crccicnle la ¡jraficj de/es concava 
ha.ia ahajo

1 1 0 II 1-1 ¡Tatúa de/liene un pun'u de inriexiiin 

con una recia láncente hon/onial
1 1 +• /es creciente la ¡raflca de/es cóncava 

tusij arriba

A p.irtir üc 1.1 tabla se han dibujado en las lljiuras 6 y 7 posibles gráficas 
de f y /■', respeUivamenle

EJERCICIOS 3.6
Fn !¡n Ijí tí II iii\ I a (t. In aJjuiihi imit slrn la i;nijh ii de 
/a tiln\tula di wuiliinunn f i¡imi ihiiiimni es ti uinjiinii' di los 
r.umfros rudi ¡ \ Im mil i iniiiiiiui i ii i luUi iiiiiiu ni Csliis ¡;rii- 
fiiai MUI Un miuiiiis i¡m tus mininidiis en el tjtnuui indi- 
uuiii de Iii suiion 34 /t punir de Iti í•rílflill. dilennine las 
uf>t.iiüí di Un punios di in/h tioii de Iti ^nijhii deJ \ iliuide 
líi íinifiiiidi Jtst iinui\íi litii iii tirnhíi \ donde lo es lun luiiha- 
]« Imorpore t \iu injonniiiióii i Iti inlonniii Ion ohunidti mil 
‘jinuiii lorrespondume de hi sea ion 3 4 en lina liihlii sinii- 
Uir a Un luhUis 2 \ 3 dt < v/u set i ion Oihiije un posible s;n¡rii u 
di I que hiiiiu Un propudiidi s de lu Uihlii si los iinu os i eros de 
Istmios induüdos in uidii cjenuio

I Rdkrave ,i| Ljerusio ty Je la ‘■cci.uin 'í 4 Los ceros de I 
'"n-4, i.2>4

Rellerase al cjeruuo 4(1 de la sceuon 4 Los ceros de f 
son -1, 2 y 4

3. Retlerase al cjeruuo 41 de la sección 3 4. Los ceros de / 
son 0 j 4

i.
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H. 1:1 tero de / es 0

10. I ík ceriis ele I son 1) \ 4

Ln lii\ cjiTt II iin 7 ii ¡H. hi í¡í;iiiii luliiwtii iiiiicuiii tu jiriifu ii ilr 
hi ,h iiuiilii í/c unu fiiiu mil / < ii\n ilinnmm es t/1 inijiiiilo de lin 
íin/i(e;/M n ih \ \ tu i mil i \ i niiUiimi t ii luda iiiiiiii in \ inirlir 
de tu i¡inlh II. di h riiiiiie la iiiluniuii mu s/i;h/« iilr e iiit arpárchi 
I n lililí tidilii uiiiiliir a la\ lahitn 2 v .1 de t \hi \ii i mii (M lin iii- 
íen<x/i's < II ti>\ ifiw I c\ I iii II iilr, liil la\ iiili nata'- iii las í/ííc t 
es di I lei ifiili'. Uiil las l•\ll^■llms u lalii as de I. (ni tas inleisii 
las dandi la i;ii¡thii de J i" laiiinui luniii iinihii, h) tas 
míen Illas daiule In í;iiiIii ii de I es i mu ina liiii iii iilHija. Ixil las 
idisi isas de las imillas di mllesiaii de lii i;iiilit a de I Dihiije 
mili ¡lasihle i^ialh a ih / </i/e u iii;ii las luainediides de tu liihtii 
SI las iinit as I eias de / st<x» las iiidii iidas en i adii iji n ii la

*
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14. I os i.cr(K (le / MUI 0 y 1

I’. I Ksu-n's de / Mili-4 -2 l>S

15. I.oscero» de/^sim-2 \2

I'- liHeeri)sde/’s<m-.1.-I ) I
Ki. Los ecrosde/siin I > 3
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III li>\ I j( rt uim I'fu2<i «« miuslriiii m In fii;iirti mljuiiUi la 
í'ralii ü ih iiiui liouian f \ iih;wu'\ h\;iiuiiIo\ í/c /ím itiniíiiih \ 
ih mllixirii Xpartirdí la lh;iira (Uunmin la Ms;uu'iih inJar 
niaiiiiii < iiunriHircla iii una lal’la \iiiujaiilt a la luhlu -i 
lili \ iiiuniihn m lin i/iii J tí irtiiiiili Ui} Ioí iiiunuloí m 
lin i¡iii ftí iliirii mili (lili hn i xlniiiiií nliilnin ilt I UíiIuí 
iiiliiuiliií iliiiiíli la i'rullta ik f ts uiihiiui luuiti arrihii 
n I hn iiihniilin tli'iiilt la firafUa ili f is lom ai a litu iii ahaji> 
iMi ¡ai ahít lias ik hn piiiiias ik iii/k uiui lU la i;rarua di ( 
\ parar dt la infannaium di la lahla diluiji pmihk í ¡irafíiai 

di I \f

k

M 2)
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26.
I 2 4) 1

2". Si fii’ - ?r * > | rl tlcnmc'lro c|uc t nct cxislc. sin 
i.tnhjij.'n. la gráfica (Ja / es cóncava hacia arriba en loeJo 
ruinare) Api>\c este tc'ultado gráficamenic ir;i/anJn la 
gráfica de í” > la gráfica Je NDEF<2 (Jt r), v) en rectángulos 
de inspección separados

28. Uaila /Itl \' - r\ + k. donde r > (I y r / !. de- 
iiuic-slfe iiue (II) si II r ^ < i_ entonces/tiene un valor 
iiiáxinm fclalno en Mhjsir I. ennmees/'nene un va­
lor iiiíniiiio relativo en I

2'J. Üada/li) - v' 4 3rv r 5. deinueslfe que tul si r > 0 
eiiioiices / no iiene exlrumos relativos; (h) si r < 0, enion- 
ce. f nene un valor máximo relativo y un valor mínimo 
relativo

30. ÍJada /(u := a’ + m'*. demuestre ijue, independien­
temente del valor de r.f tiene un valor mínimo relamo y 
no nene ningún valor máximo relamo

31. Üihuje la gráfica de la ecuación r’^* a- = 1 La 
gráfica no es la de una lunción Sm enihargo, la piircnin de 
la gráfica del jirimer cuadrante es la gráfica de una lun­
ción Obtenga esta porción por medio de las propiedades 
de las gráficas que se han esiudiado en este capítulo. 
> después complete la gráfica mediante las propiedades 
de siiiieiría. Recuerde, la concavidad juega un papel im- 
porlanle Apoye los resuli.idos ira/ando las gráficas de las 
dos lunciones

/i(i) - (1 - r’'')'/’ y /sfM ^ -(I - 

en el mismo rectángulo de inspección

32. Explique cómo pueden detenninarsc las propiedades de la 
gráfica de una función a pamr de las gralieas de las den- 
Vddas primera y segunda de la lunción.

33. Exphiiue cómo puede emplear'C la gráfica de una lunción 
p.ira dibujar pinihles gráficas de las denvadas primera y 
segunda de la luneion

3.7 LIMITES AL INFINITO

Tabla I

1 /lO-
>• • 1

0 0

1 (}
i 1 h
4 1 882151
5 1 ‘OIO??

10 1 ‘WJI'JH
Imi 1 ‘Jwsno

Hexi 1 'm'm

En la sección 1 7 se estudiaron límites indnitos donde los valores de lunctón 
crecían o decrecían sm límite conforme ia variable independiente se aproxi­
maba a un número real Ahora se considerarán líniiles de funciones cuando la 
variable independiente crece o decrece sin límite. Se inicia con la función 
dellnida por

/(■M
1 r-

Considere que x loma los valores 0. I. 2. 3, 4, 5. 10. HKJ, 1 OÜÜ, y así suce­
sivamente. permitiendo que .v crezca sm límite Los valores de función co­
rrespondientes. exactos o aproximados mediante calculadora a seis cifras 
decimales, se muestran en la tabla 1 Observe en la tabla que conforme x 
crece, a través de valores positivos. los valores de función cada vez se acercan 
más a 2, Este hecho está apoyado por la figura i. la cual muestra la recta 
V = 2 y la gráfica de f trazadas en el rectángulo de inspección de (0.6| por 
(-1.31 Ahora se examinará cómo se apro.\ima/( x) a 2 para valores específicos 
de.i. En particular,

2 - /(4t = 2 - 1.K82.153 
= 0,117647
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I

IK.l K\ 1

l'ort.inio lj <lifcrciu.i.í cnirc 2 y/í \ j os 0 117647 LU.imI() t = 4 Adim *

2 - /(lOO) - 2 I W>K(K)
()(KH)20(I

1 II u)nsosiii.m.ia. I.i (lilcroiu.i.i cnlro 2 y/( \) os 0 (){){)200 tuando t = n^) 
Al umlimiar asi. inliiiIivamonlL so aprooia que los valores do ^ 

don liasorso (aii ooroamis a 2 loiiui so deseo (ornando r sufluonUir- 
[■raiulo l.n otras palaliMs. la dilorentia entre 2 y/(r| puede liaLor'.e lafjv 
ipioiia tomo so quiera lomando cualquier numero r m.iyor que algún 
mero positivo siifiuenleinenle ¡rrande O. avan/ando un paso mas f- 
tual(|Uter € > 0. sin importar (|ue tan pequeña sea, se puede deierr 
un numero N > i) (al que si r > iV. entontes |/( r) - 2 | < f

Cuando la variable independiente v órete sin limite a travts de va!- 
positivos, se estribe "í —* +co” Del ejemplo anterior se puede decifi.

Iini 2r-
i- + I

3.7.1 Defínicíón del límite de f(x) cuando x crece aln 
limíte

lahlii 2

t MU —=4 
i * 1

1 I
l 6

1 I H
4 1
5 l 92VI77

10 l ‘IH0I98

KMI I W>hOO
-MMI 1 ‘wris

« 2

H(.UUA2

Sea / una luntion que esta detlnida en lodo numero de algún inkr 
valo abierto (</. + oo) hl límite de fix) cuando x crece sin límite 
es L, lo que se estribe tomo

lim fíx) = I.

SI para cualquier € > 0. sin mipurlar que tan pequeña sea. existe un 
numero N > 0 tal que

SI V > /V cnltmtes ¡yttj ~ L \ < €

Nota Cuando se escribe \ —» +co. no tiene un significado simiL’. 
que se tiene cuando se estribe por ejemplo, t —* KKK) El simK 
X -» +DO indica sólo el tomptiriamienio de la variable V

Ahora considere l.i misma función de nmdo que r tome los valors' 
-2, -3. -4. -5. -10. -100. -1000. y asi sucesivamente, permitiendo ij.: 
detre/ta sm limite a través de valores negativos La tabla 2 proporuon-i 
valores de función de/<v) correspondientes

Observe que los valores de luntuin son los mismos para los nuir-' 
negatiNos (¡ue para los números positivos Vea la figura 2. la cual muii'tnli 
recta v = 2 y la grafitii de /" trazadas en el rectángulo de inspección i 

1-6. 01 por 1-1.3]
Iniuiiivámenle se observa que conlorme t decrete sin limite ji' 

se aproxima a 2. esto es. j_/(0 - 2| puede hacerse tan pequeña tomos 
desee tomando cualquier número \ menor que algún numero negauvos.* 
tenga valor absoluto suficientemente grande Formalmente se dice quep-* 
tu.ili|uier € > 0. sin importar que tan pequeña sea. se puede deunw'- 
un numero N < 0 tal que \ < N, entontes ] AO - 2| < f 
el símbolo v —> -oo para denotar que la variable t decrece sin limito o 
se expresa tomo

lini 2r-
t- + !
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Slm / una liinuón i|iic i-\l.i dcíinida en imlo miiiicro de alyiín in(cn.i)ii 
.ihicrtt» l-co. (i) I 1 limíte de f(t) ui.mdo v decrete sin líiiiile, 
es /., It> que se cscnhe toiiio

lim li\l = I.

SI para tiiak|Uicr C > 0. sin iiiipnrlar que tan pequeña sea. existe un 
mimerii A' < 0 tal i¡ue

SI I < A' eiilmites |/’(vi - /,| < f

AVi/<i Cuino en la nota posienor a l.i dellniuún 3 7 1. el símbolo 
\ — -co indita solo el tompiirlamienlo de la variable v

I.os leoreinas de limites 2. 4. S. f). 7 X 'J > lOde la sección I 5 v el teo­
rema 12 de límites de la setunn ) 7 son válidos cuando ‘ v ^ o ' se susiiiiije 
por "i —» +oo" o ”r —^ -co” Ademas se tienen los leoremas de limites 
sijjuientes

3«7«3 Teofma 13 de límifes ..... -'«iJfc'iVi-aifc
Si I es LuaU|uier lUiinero entero positivo, entonces

(i) iim -!- = n
• x'

(ii) liin -^ = 0

Demostración de (!) Para demostrar d muso m se debe probar que 
se cumple la dermicion 3 7 I para fix) = l/v'’ > /- = esto es. se debe 
demostrar i|ue para cualijuier € > 0 existe un numero A’ > Oialque

SI V > A' entonces -----0 < €
I I I

<=> SI V > A' cMloiices I V I'' > Y

o cquivalcmemenle. puesto que / > 0.

I I / ISI V > A' entonces |'| > I-^)

Para que lo anterior se cumpla, se loma A' = d/ei'^' Ast,

SI A' = [ ^ ) V > A' entonces j - il | < f

Hsio ilemucsiM el muso m ■

1.a deiiiosiracion del muso lili es analoya a la vlomosiracion del muso 
(I) y se deja ..oiiio e|creieio (véase el e|erueio (i2)
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> BJEfAPLO 1 Scu

f(x) 4t - 3
2t + 5

DiMcrniiiie liin /(t) y upoyc l.i rcspucsij gr.ifltamenlc

/¡u =
2i * $

y « 2

Solución A fin de aplicar el tcnrcnia 13 de Ifmilcs. se diude el nume 
radnr y el denominador entre r, obteniéndose

lint 4.r - 3
2r + 5

liin 4 - lim 3

lim 2 * lim S

lim

Iiin

I
_t_

I
X

4-30
2 + 5 0

Se apoya la respuesta al trazar la grafíea de/y la retía y = 2 en el 
rettángulu de mspcttidn de 10. I00| por 1-1 3|. tomo se muestra en la 
figura 3 ^

> EJEMPLO 2 Sea

MCL'IL\3 /U) 2x' - X *5
4^' - I

Determine lim fix) > apoye la respuesta grafitamenie

Solución Con el fin de aplicar el teorema 13 de limites se diside el 
numerador y el denominador entre la potencia mas grande de x que ocurra 
en el numerador o denominador, la cual es r'

H(¡UKA4

lim 2t- - t + 5
4x' - I

5

lim 2 lim - - lim + lim 5 Imi *, 
_ l«- ■-»-x i«-X-

liin 4 - liin

_ 2 <) - I) + 5 O
4-0

= 0

La figura 4 que muestra la grafito de/ en el rectángulo de inspección 
de 1-80.01 p<ir 1-0 25.0), apoya la respuesta ^

^ EJEMPLOS Sea

= N2r- -

Determine Km g(a:) y apoye la respuesta gráficamente
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/'•I

:2x - ",

ilfiLlUS

Solución C'nnin d in.ijnr cvpuncnti; de \ es 2 ) se nene hjjo el signo 
r.idieal, se tiisiile el niimcr.ulor y el denoniin.idor enire , x-. c|ue equivale 
a \ Al eleeiu.ir la división se tiene.

iim . |„„ xl:—si:
v2t- - .<5 s2v- - 5

V V*

= lim

V-

Debidi) a que T +oo. x > 0. por lanío, jvj = \ Así se tiene

lim ■ít * 4
•••“ •, 2t- - .S

. -i
lim ^ - X

\" t-

lini 3 1- lim 4 lini ( * j

^ Inn 2 - hm 5 lim ( ',J

1 + 4 II
^ 2 - U 

1

A lin de apoyar grátleaiiienie la respuesta, se ira/aii las erafieas de g y 
de la reda \ = 1/ . 2 en el reuangulo de inspeeeión de (2, I0l)| por |2. 3). 
eomo se imicstra en la figtir.! ^

^ EJEMPLO 4 Para la liineion del ejemplo 3. delerniine 
liin i*(ily apoye la respuesta grafieamente

Solución De nuevo se inieia dividiendo el mimerador y el denomina­
dor entre 111

3t

hm ^ = hm
v2i- - 5

Puesto que \ —t -co. \ < 0. por tanto. |v| = -v. Se tiene, entonces.

Inn 3v + 4
■V- .
-V= Inn 

• v2x- - • s -
V-

lim (-1) - liin 4 lini -

lim 2 - Inn 5 liin I
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i;(u

HOl'RAfp

-3 - 4 0
V2 - 5 • (I 

__3_
V2

L;i Hgura 6 nuiüslra la gráfica ele f; y la recia y = -3/\2 en el rec- 
lánjiulo de inspección de |-KK).-2j por |-'2 5.-l fi|. la cual aptiya la 
respuesta. ^

A continuación se considerarán límites ••infinilus" al inflniio medíame 
defimciones lorinalos para cada uno de los siguientes límites

liin f(\) = +CO lim /te) = +CO

IÍI11 f(.x) — -oo lim ytil - -00

Por ejemplo, lim /(r) = +oo si la función / está definida en algún m- 

lers'alo abierto (</.+eoj y si para cualquier número A' > O existe un nu­
mero M > O tal que si i > M. entonces/(i) > A' Las otras definicione- 
se dejan tomo ejercicio (consulte el ejercicio ()11.

^ EJEMPLO 5 Detennme

lmi —^— 
. r + I

Solución Si se di\ide el luimerador > el denominador entre se obuens

r "

Al e\aluar el limite del denominador se tiene

liin (~ + -^) = lim — + líin 
. \ r I 1 -• r I

=()•►()
= O

Por tanto, el limite del denoimn.idor es (I. \ el denominador se aproxima a 
l) a traxés de valores positivos.

i;l límite del numerador es 1. y así por el teorema 12(i) de limites 
(17 4). se tiene

iim —2—- = +00 <
... V + I

► EJEMPLO 6 Calcule

lim 2v - V- 
3v + ■>

Solución

llm
3v + 5
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iiti /i«i I'

!."i /til /'

IK.l K\K

I .,1 /I \ /'

IK.l l(

l.os líiimcs dd mimfr.idnr y dd dnmniin.idnr '-f cuiiMdLTati piir separado:

l) = lim ~ - Itin I lim [■“ + = lim - + lim

- II - I -- 0 + 0
• I =0

Por lanío, se nene el límite de nn eoeienle en el i|ue el línuie dd nume­
rador es -I y el líinile del denoniinadtir es 0. cuando d dcimmmador se 
aproxima u II a irasés de \ alores pusitivos Por el teorema 12 (iiil de límites

“* \ l •, liin ^----7- = -00 M

P.n la seccuni I 7 se estudiaron las asíntotas serticales de una jiranea 
como una aplicacnm de los límites mlinitos Las au'nioins hori:onliilcs pro­
porcionan una aplicación de los límiles al inllnilo

3«7¿4teefinM4olde osíjtotgíiio^<a5!5!jP*

La recta \ = h es una usíntiila hnri/onlal de la yr.íílca de la hincuni 
I SI al menos una de las proposiciones si«utentes es \crdadera’

(ii liin Mu -s //. \ para algún número ,V. si \ > .V. entoíiees
/i fí\í h.

Mi) Iim /{u = > para algún numero .V. si i < .\. enionces

; 1 u Ti h

lim ri II />

IK.IR\ 1(1

llí.l HUI

EJEMPLO ILUSTRATIVO 1 C'ada una de las figuras 7 a 10
muestra la gratica de una liincion para la cual la recta \ = l¡ es una asíniota 
lion/onlal Kn las figuras 7 \ S. se aplica d inciso (ii de la definición 3 7 4 s 
para las figuras ‘I \ 10. el inciso nn es \erdadero Los dos incisos tii \ tiii 'c 
cumplen para la funcn'in de la ilgiira 11

l.a tigura 12 muestra l.i grática de una luncion I para la cual 
iiin l(\] = />. pero no existe ningún numero .V tal i]iie si i > .V eiilon- 

ces/m h l:ii consccuencM. la leda \ = ímio es una asinlola lion/oiitai 
de la giáftca de / l'n eiemplo de este tipo de lunciones se présenla en el 
ejercicio fd de l.i seccuin “i 4 ^

EJEMPLO ILUSTRATIVO 2 W ¡rrinapio de esta sección se
moliMÍ la ilefiiucion de límites a! inllnilo con la luncion delinida por

\ se moslro i|iie Inu /tu \ lim /<u son igual a 2 Pi*r lauto. I.i recta 

\ 2 cs una asiniola hoii/onlal de la gialica de / La gralica trazada imito
con la iccia \ 2 en las llguras 1 s 2 aposan este lieclio ^

^ BJBMPLO 7 Obtenga las asíntotas luni/onlaics de la grática 

lie la Imicion detimda por
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y uhlftcKis pjra dibujar la gráficii de/ Apoye los resultados tra/andolajjj 
lisa de f y las asíntotas en el mismo retlánguln de inspcLcum

Solución Primero se considerara e! limite lim /itj

lini fíxf = lim —-4-----
• ‘ •**“ % i- + I

Al disidir el numerador y el denominador entre si- se nene

V

lim -
Nt- + 1

Iim

\T2

lim

Puesto que t —» +oo. t > 0. por tanto, l^cj = r Así.

lim ------- =—
— “ + I

liin
1 1- T

Iim I

lim I + lim -,
»■ ••• T-

I

> = I y > - -I 

FIGUIU 14

]_
s I ’-Tí)

= 1

En consecuenua. por la defimcum 3 7 4(i), la recta \ = 1 es una a«i - 
hon/nntal de la ¡trafica de J

Ahora se considerará el limite lim /(v). de nueso se disidirá clrru

rador y el denominador entre \ i-. que equisale a | x | Como x ' 
X < 0. por lo que [\¡ = -t Entonces se tiene

lim flx) = lim
l + _L

lim (-1)

, lim I + lim -Ir
\ •--- - T-

= d
n1 + ü 

= -1
De acuerdo con la deriniciún 3 7 4(ii). la recta v = -1 es una asintot^^ 

rizontal de la gráfica de J
Con las dos asíntotas honzontaics como guías, de dibuja la gráfi>-^ ^ 

obteniéndose la figura 13 Con el fin apoyar los resultados obtónhw»- 
traza la gráfica de/y Uls rectas y = lyy = -1 en el reetángulodcto-S*’^ 

ción de [-3. 3| por [-2.2|. como se muestra en la figura 14



3.7 LÍMITES ALINFINrrO 257

A tnfUinujcHin se definir.! el lérmino asfnUila //hliaui, .iquella que no 
es \ertic.il ni hnri/'cinl.il Obserse que la definición de asmiola hon/ontal es 
un caso especial

3*7,5 Definición de asíntota oblicua
La ^ráfita de la hinuon J tiene la reda \ = irn + h como una asín­
tota oblicua SI alguna de las proposiciones siguientes es \erdadera

(i> Imi |/(rl - (Hn + h)\ = 0. > para algún número A/ > 0.

f{x) * iu\ + h siempre que x > A/.

(II) ^lim [/(v) - (oit + h)\ = 0. j para algún numero A/ < 0.

Jtx) ^ un + h siempre que t < M

Bl muso (1) de la deUniuon indica que para cualquier € > 0, existe un 
numero,V > Ota! que

SI r > /V entonces 0 < |/(ii - (wit /»)j < €

esto es. se puede hacer que el \a!or de Iunción / (i) esté tan cerca del valor de 
un + b como se quiera lomando i sulicientemente grande Este enunciado es 
consistente con la noción miuitiva de asíntota de una gráfica Se tiene un 
enunciado similar al anterior parad inciso tul de la definición

La grallca de una lunuon racional de la lorma PixijQix). donde el 
grado del polinomio /^i u es niavor en I que el grado de (J( v) \ Qixi no es 
factor de Pi\), tiene una asíntota oblicua Para demostrar esto, se considera 
j(x) = P{\)/Q<x)\ se divide P( i) entre (J(r) a fin de c\presar/i M como la 
suma de una tuncion lineal \ una tuiicion racional esto es.

/(t) = »ii + /» + ¡ii V) 
rji 11

donde el grado del polinomio /íu i es menor que el gnido de Qt vi Entonces

/■(il - (mi -i- /;) = --— (ll
rji 11

Cuando el numerador \ el denonmi.idor de A’tii/Qiii se dividen entre la- 
potencia mas gr.inde de i que aparece ui í)(u. se tendrá un termi­
no coiist.mie en el denominador v todos los dem.is términos del denomm.idor. 
\ cada termino del numerador, sera de la lorma A/i*' donde k e- 
tinaconslanie V res un niinierocnieropositivo Portanlo conforme i —* -oo. 
el limite del numerador sera cero v el limite del denominador sera una 
conMaiile De este modo. Iiiii /Íiu/G’iu = <1 lú' consecuencia ile (li se 
tiene

lim I /t 11 - (mi + b*l - **

de donde se coiicline que por la dcllnicion ^ 7 .^. la reda v = mi + h es 
una asíntota oblicua de la gr.itica de t

► EJEMPLO 8 Sea
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DLicrininv lus .isinlotiis de I.i jzMfiLti de fi Apoje loi. rcsiiludos irj/jrnl, 
yr.ifÍL.1 de li > sus jsi'nloKis en el mismo rettangulo de inspecuón

Solución Como

lnn/i(0 = -00 y lim/j(r) = +oo

|j recta t = I es una asíntota vertical No existen asíntotas hori/nnU 
porque si el numerador y el denominador de li(x} se dividen entre i* y 
obtiene

T-
I _ I 
r

y conlorme x —» +oo o t —» -co. el limite del numerador es I y el l'tr- 
del denominador es í) Sin embargo, el grado del numerador de /iliip 
mayor en I que el grado del denominador, y cuando se divide el numerw' 
entre el denominador so obtiene

/i(r) = r -f- 1 + —

Por tanto, la recta V = r + I es una asíntota oblicua
La Hgura IS, que muestra la gráfica de h y las asíntotas trazadavcnc 

rectángulo de inspección de |-I0, 13 .*'] por [-6 9 7|. apoya los rcsuluJ' 
obtenidos i

EJERCICIOS 3.7
{■ti loi fjirtiiiin / <1 10 híii;a lo sii’iiuntv Cim lii iiMuht tic 
lii iiilt útil Jora laliiilf los uilort x tU f{\) partí los xalun-x in 
JuuJoi dt T ta! ,/t ipu xalor parné tpw se apnnima /It) 
tonfonne » irtie un Imite ’ {h) ,/t tpa salar parné ipie se 
aproxima /(%} lonfornte x deireie sin linnii ’ ft) Apuse las 
respiieslas de las ihimím (al x (hi iraziindo la f;rajlui di f 
Idl Con/imit la respiicsla dil iiiiixo la) dtleriiuiiaiido il

liiii f(x) le) Coiijinne la respiiesia dtl imiso (h) dehnm- 
/Hiri(/or/ lint /(t>

1. flx\ = -4. V es Igual a 1, 2.4 ft «. 10 HX) 1 (KM) y t

es Igual a -I. -2. -4, -6, -8. -10, (KM)

2. flx) - vcsiguala 1.2. 4, (», « 10. IIM), 1 (XM) > i

es Igual u -1 -2.-4. -10. -MH). -1 (XM)

3. /(«) -jV t r es Igual a I. 2. 4. 6. 8. 10. KM). I (KM) y r

es igii.ll a-1.-2, -4. -fi. -8. -II). KM) -l (KM)

4. /(») = resigu.ila I. 2.4.0 K. K) KK) I (XM) y r

esigual -I. 2.-4, í». 8.-K). KX)-l (XK)

5. fix) - —. ves Igual a 0 1.2.4.6.«. 10. KM) l (HHI
«* •• I

y V es igu.i! a -I. -2. -4. -(i. -8. -10. -KX). -I (MKI

(>. /tv) = —p---- , t es Igual a 2, 4. 6 8. 10. HX) í't ♦ 2
y tes Igual a-2.-4 -6.-8.-KI -KX).-l(XM)

4t I7. Hx\ -. r es Igual a 2. 6, 10. KX) 1 (KX). lOt»'

8. _/(t)

2t - I
KX)(X)0y resigu.ila-2.-6,-10 -KXI -HKK).-10I" 
-KXHXM)

Sf - 1
r. res Igual a 2.6, 10 KX) I (XX) I0("iOv I

IIX)Ü(X)> vcsigu.ila -2.-6.-lO.-KX) -KXKl.-IÜI" 
-KKIIXX)

9. /U) = . t es Igual a 2. 6. K) KH) l (KKi t0("
KXI(XK)y tes iguala-2.-6.-10.-KX).-I (XK) -lOÍ»' 
-KKXKX)

1(1. /tvi = . V es Igual a 2. 6. 10 KK). 1 (KM) KH"
KKHXK)> tesiguala-2,-6.-K).-KKI.-l (KK) -lOO 
-KKHKM)

Ln las ijert utos lia lOdeUnniiie el linuie \ apose la 
la vriiliuiiiunu

II.

13.

15.

17.

Imi

lim

lim

Imi

2i * I (11-4
S, - 2 
2» t 7
4 - Se 

7v- - 2v » I
- ^v* -f Hv + .S 

I ■» 4
- 3v* - .*!

l-lll S| p.ir l-r. ‘>7|

1 - I

V t > 1 - ( 4- I

I ICl'RA 15
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I1111
X' 2x f 3

IV. iim_ -77T~ 7x ' + t .♦ 1

Jx * 2i- - .3 liin It-' - 7i- + 2
21. -17TTTT 2x' 4 1

M' 1 Uní .3t' - I2x 4- 7
1’. 3) + 3 4x- 1

1«.
liin (3, + -4) 26. lim

t • •
& ■•')

21.
\ i‘ ^ 4 28. lini

1 '•
I - t 4
X + 4

M> - - 2» * X lim
+ 1

21. . . - u + 3 2v- - 3

fMluftjintaín J¡ II ruilm ln uniut'iik- fu) iraic lii nrn 
¡ua de 1(1 J“"ii"'i f' l‘“i!‘i lililí prij/uisiiiiiii incnti Jil iwii- 
p,iriiimuiil" iipiieenU'di J\\) umjonm' x irete ',iii ¡imHi' ih) 
Confimt iwdliiiitiiiiiiiif lii n-\imi’Uíi ihl iiuisn (n> uiluilimiln 
f¡ Iim fu)

31. )(i) = -. i- + I i 

31 fix} = >, t- + I - I 

33. fni = s Ti* * t - 21

34. flx, =
1

En los ejer. inm a 4fi t¡t tcniimt' los iníniouie de lo f;n¡f¡ui 
de lafunnim i ¡ililucliis fiiirii dihiijeir la [•rófuu Apuse los 
reMiliadin ira:iindi> lo arofua \ ¡as lismuiuis </i c¡ mtsmo ni- 
u.n<^uUide inspuuáo

35. fii) = .36.T - 3 /í(t} =
X-

37. xii) = 1 - - 38.
X

líx) = 4 - 2x

X + 1

37, /(„ = - 40 MU =w^-4 4 - X-

•II Mx) = 4’ Mu = -3 X
Vt- + 3

■I-I. Al) = 44 h(x) = l
f'x- - Ih - III s!x- - >)

•I3- Am -- 41 =
% - 2

1Uo =
\ ■ ♦ 5 X 4- (1

dettnmne las asinioias de la f;rajha 
'isiiiloi'"'''('tiltadas iraraiida la i;rafiia \ las 

i'i (I inniiiii n < lánt-ida de inspuiiaii

Mm

Uis

iLs 4t - Ü
» * 2

48. /(X) = J.Í - ^ ^
t f 4

50. f(x>

52. Mt» =
(r - 1)-

5.3. fis, - ‘ 54. fus . ±1^
r- X-

l.ii las ijen ii OIS 5^ s 56,tialiit las liinili s di las au lun la) llil 
a partir de la Kráfu a di la faiu láii f. alastrada tii la ln;iira ad 
junta s tusa damaiia es (-oo + oo)

55. (a) liiii /(x) (hi lim /(,j (c) lim Jlx)

(d) lim /(xj k) liiii /(X) (f) liiii /lii
■ • I I — I -

(r) litn/(xj (h) lim fi\)

na los ejinuios 57 x 5.V. dihuji la i;rafiia ¡h una liaiiiaii ¡ 
(/í/i 1“' prapii dudes dadas i iiixu da-
(-00. +00)

57. A-4) = (I. /(-2l = 0./(0) = .3. /12) = -3. f(4l = 0. 
/|S( = 0. Iiiii ll\) = -.3. Iini /lx( = 0. Iim /'(X) =

+ 00. hm Ji\) = 0, lili) flM = +00. Imi nxi =
i-.(i i--:-

-00. lili) fixt - 0. Iiin fl») “ +C0, liiii f(x) = O.
,-.4 I-.4- .

Iiin f(\) = ce

58. n-3) = fl-<i = 0. f{'2) = íl. AO) = 0. f{2) = .3. 
A.3) - 0. A-4) - 0. Iim /■(') = lini^/(Tl = 0.

Iim MU 1. I'"' /’lfl = 'I; I”» = "®®-
,-..i 2 . -Il
lim M'l = +CO, liiii /(xl = l). Iimyu) = -oo.

, .11- 1-: I
lim /(u = O
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59. DcmuL'sirc que

lim = 1
I t - I

aplicjnüiiljdcnnicirm3.7 l.esuics,pjruLUalquicr € > 0 
existe un mimcru ^ > 0 tal que si t > ^.entonces

60. Dcmuesia' que

.. 8x + 3 a

aplicando ladenniCKÍn 3.7 2;cstues, para cualquier £ > 0 
existe un número A/ < fJ tal que si r < /V. eniimLCs

61. Esenha una definición formal para cada uno de los. si> 
guíenles limites

(a) lim f(xi - -oo; Ihl liin Jixi = +oo.

(el liin /írj = -00

62. Demuestre el inciso (ii) del teorema 13 de límites (3 7 3).

63. Demuestre que lim Ir' - 4j = +oo probarido^

p.ira cualquier ^ > 0 existe una A/ > 0 tal 
X > Af. entonces X- - 4 > iV

64. Demuestre que Iim (6 - .i - x*) = -co aplicaixJnl, 

definiuon del ejercicio (illa).

En lii\ ejeracim 65 n 6S, nliihlezni en i>alnhnn Íoquíijj^ 
fita el Minhotiuiin mtliuuh sin emplear las pnlahrat lima j 
aprosinia. injinilo. ircce sin líniile o Jeerne sin limiiesu 
emplear símbolos tales como € . iW \ A/

65. Iim flxí = l. 66. hm /(x) = L

67. (a) liin /(r| = +oo.(h) lim /Ir) = +oo

68. (u) lim fix) = -00. Ib) liin /(r) = -oo

69. Si II’ es la medida del peso de un objeto a una dnotu 
de t unidades de la superficie de la Tierra, entonces

donde R unidades es la longitud del radio de la Tiai 
1V’„ es la medida del peso del objeto a niscl del rar Di 
termine lim U' c indique el sigmlleado de este mub:

en un Maje espacial.

3.8 RESUMEN PARA EL TRAZO DE LAS GRÁFICAS 
DE FUNCIONES

Aliora se resumirán los pasos que deben seguirse cuando se dibuje la gii'J 
de una runcion / En este resumen lambién se han incorporado las ptop; 
dades estudiadas en este capítulo.

1. Delerinine el dominio (le/*
2. Determine las tntercepcione.s x y y. Cuando determine las ínter- 

cepetones t. tal ve? necesite aproximar las rafees de laeciu- 
cidn/(r) = 0 en la graficadora.

3. Pruebe la simetría con respecto al eje y y al origen.
4. Verifique si la gráfica tiene asíntotas hori/.ontales. serticalo 

u oblicua.s.
5. Calcule/’! O y/"U).
6. Determine los números críticos de/. Estos son los valores de < 

del dominiti de/para los que/’(r) no existe o/'(.t) = 0.
7. Aplique el criterio de la primera derivada o el eriieno deU 

segunda derivada para determinar si en un número crítKst 
existe un valor máximo relativo, un valor mínimo relativo o 
no se tiene ningún extremo relativo,

8. Determine los intervalos en los que /es creciente obteniendo 
los valores de v para los que J'(\) es positiva, determine 1« 
intervalos en los que / es decreciente obteniendo los valore' 
de X para los que /'(.v) es negativa. Al localizar los inteo»- 
los donde / es monótona, lambién verifique los números cn- 
licos en los que J no tiene un extremo relativo.
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y. Uclcrtmm; Ins miiiiL-nis (.r/iicos de cslo es. Icis valores de x 
par.i los c|ue f"<\t no existe o f"(x) = 0. para obtener los pun­
to-. de inflexión posibles hn cada uno de estos valores de .t 
\eritu|ue c) uainliia de sijjno y si la grállca tiene una recta 
tangente allí a tin de determinar si en realidad se tiene un punto 
de milexión.

10. Verifiiiiie l.i concavidad de la gráfica Obtenga los valores de 
.1 para los (|ue J"ixt es positiva a fin de obtener puntos en los 
cuales la gratica es cóncava hacia arriba: para deterniinar 
los puntos en los cjuc la gráfica es cóncava hacia abajo obten­
ga los \ alores de \ en los que f( tj es negativa.

11. Calcule la pendiente de cada una de las langenies de inlle.xión. 
esto le será de gran .isuda.

Se sugiere que incorpore toda la mfonnación obtenida en los pasos an­
teriores en una tabla como se mostró en las secetones 3.4-3 6 y en los ejem­
plos siguientes.

► EJEMPLO 1
definida por

/■(.U V - I

La función del ejemplo 8 de la sección 3 7 está

Dibuje la gráfica de / siguiendo el procedimiento sugerido amenormenle. 
Apoye los resultados en la gratlc.idora

Solución ni dominio de t es el conjunto de lodos los números reales 
excepto I La intercepción i es -3 y no se tienen intercepciones \ No hay 
simetría con respecto al eje i ni con respecto al origen.

En el ejemplo 8 de la sección 3 7. se determinó que las rectas x = I 
y y = .X + I son asíntotas de la gráfica 

Ahora se calcularán/'tt» y / "(i).

... . 2iU - I) - U- + 3)
/ (U = -------------------T----------

(t - !)•

X- - 2\ - 3

(2\ - 2lU - Ir - 2(.í - iKr* - 2i - 3)
^-------------------- n-TT?------------------

H
( V - 11 *

Al considerar/ í.t» = 0. se obtiene

- Ir - 3 = 0 
U 1 )t i - 31 = 0 

.1 = -I .r = 3

í"*\} nunca es coro Aíior.i se construye la laida 1 considerando los puntos 
en los que .\ = -1. \ = 1 y i = 3. y los intervalos que e.xcluyen estos xa- 

lores de r.

.r < -1 -l < t < ! I < r < 3 3 < X
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rabia 1
J /(t) /’ltl /'(t) Oinilimóri -

+ - /cscrcLicnli:, lj (.+jlUadc/e-, .
1 , 1 -2 0 - / nene un valor mj»iino rcLtr.u, |j ^
\ L.'incavj lukij abajo

1) 1 ■' t ^ 1 /csdetrcticnie, la .
.. - 1 n e n c n c
1 < 1 < .1 ♦ /es dccfcucnic. la prafita de fe cVk_M Ki.a ^
t - t 6 (j * f nene un valor mínimo retaiivn Ij rrdlj'.

(.óneav a lucia arriba
.t < \ ♦ /es crcucnle. la pralka de/o'u;naj-.4t.i.uv..

/ni

Si sc indican las asíntotas, las rectas tangentes hori/(mta!es. 
li/an algunos puntos, y considerando la intormación de la tabla !. J 

la gráfica de/mostrada en la figura I
La figura 2 (la misma que la figura 15 de la sección 3.7j 

gráfica de / y las asíntotas trazadas en el rectángulo de inspca:-.. 
|-I0. 13.5) por [-6. 9.71. la cual apoya los resultados ('

FKiliRA 1
^ EJEMPLO 2 Sea

1
1r

1-1(1 n.S] por 1 (1 ‘17)

. I > ^ - I

fk;lra2

(u) Determine las asíntotas de la gráfica de/. (b) Trace la gráficadí/}'.' 

asíntotas en el mismo rectángulo de inspección. Estime a partir de Ij r. ’ 

ca lo siguiente, los extremos relativos de/; los puntos de innevión delip' 
rica de f: los intersalos en los que la gráfica es creciente j en 
decreciente; los intersalos donde la gráfica es cóncava hacia amh 
iniersalos donde es cóncava hacia abajo, (c) Confirme las cslinuvu'r:-- 
inciso tb) analíticamente.

Solución
(a) El dominio de f es el uinjiinlo de los números reates excepto 

-2 y 2 se excluyeron del dominio, .se calculan los límites siguiente'

.'‘IV

lim ----- = +00
—: t- - 4

mi . .•*' ■
. a

\ - I

' - > 1-2

fk;lu.l .t

Por tanto, las rectas verticales V = 2y.r = -2 son usinloULs de la 
Como

lím —- = lim —lim — = lim
. I* - 4 - ••• 1 - --------- - -1 •—-)--

entonces la recta y = 1 es una asíntota hon/onlal. La uráfiea 
asíntotas oblicuas.

ib) La figura 3 muestra la gráfica de/y las asíntotas trazada'e" 
tángulo de inspección de ¡-4.7. 4.7) por [-3.1, 3 1] A partir de hP 
ca se pueden hacer las estimaciones siguientes-/tiene un valortr4^^ 
relativo en el origen, la gráfica no tiene puntos de inflexión. / 
cíente en (-co.-2j y (-2.01, >'/es decreciente en |0.2) > 
gráfica es cóncava hacia arriba cuando ,t esta en {-oo. -2) oen<-" 
y la gráfica es cóncava hacia abajo cuando.v está en (-2.2).
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(el latirá conliim ir .in.ililiL irm dil l.is lsiiiiuliones (!c¡ iikiso (hj pmnerí) se 
c.iluila I (\l \ l"i\)

; - -Tí t) - 2u>-> ^ 1,^ + St[2(x- -
(í ’ - 4|- (i- - 4)'

= ^ 24i- t 12
(»'»)' ( > ’ - 4)'

Al Lonsidurar / ( u = 0 se ohlienc \ = 0 / (i) nuiKa es tero La labia 2 
se uiiisiriiye leiiieiido en cutnla los punios en los que v = 0 ) i = ±2. 
\ los inier\alos que excluyen esios pumos

i < -2 -2 < i < U 0 < r < 2 2 < \

La mformauon de la Libia 2 confirma las esiimaciones

¡uhia 2

/lO liu 1 'O f "'ilIh'u II

\ < 2 ♦ 1 Ls tri.--Utili. 11 i rilii.j d- rL \ uiiu.ivj luLij
jrrilt i

\ 2 n c n c n t
-2 ■" 1 < u • / is (.fi.ui.iili. 11 ¡.rjlii. i ili. 1 í. u iii Hd )iji.ij

il> ij 1
1 0 11 11 1 iiuK un V il r nijMtiiii kIjUv i
0 < 1 ■- 2 / es dLi.ri.i.ii.nii. 11 1 r iliL 1 di. 1 is umi.jvj

lUkU lt’l|n
\ 2 ri c II i. II L
2 < i . 1 ts ilsi.r..ULni.. !d rd!ii.j d. i cs uitii.d\d

li . 1 mibd

◄

EJEMPLO 3 Dibuje la yrallca de la luiicion delinida por

/(i) = i- ' -

c* indique los punios de mnexioii Dibu[e un segmciilo de cad.i langenle de 
inllexiún

Solución \l calcular /'ui \ /” (U se oblicué 

/(u = .11'’- i / (II =

Como / (0) no existe 0 es un numero cniao de / Los oíros mimcios cniicos 
de / se determinan al considerar f ( u --- <•

1x-/'

2i- 2 - 0

Ue este modo 1 también es un numero critico Se puede determinar si exis­
te un extremo relamo cii I aplicando el crilciio de l.i segunda demada No 
se puede ulili/ar esle criterio en el mimeio critico 0 porque I lO) no exisie 
Sm embargo se aplica el criterio de la primera deruada cii i = (1 La tabla 3 
miieslra los resultados obtenidos al empleai estos crilenos
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Ütbiili) a C]UL / l(ll mi existe, entnru.es (0 0) puede ser un p, 
de inflexión Para obtener otros puntos de inflexión posibles se con i-, 

= 0

-------=— + —i— = 0
y,4/1 y//l

-Ifl/T + 4 = 0 
^1/1 = 2 

r = 8

i

Para determinar si existen puntos de inflexión donde r = (J \ i s 
se \enflea si/'(r) cambia de signo, y al mismo tiempo se res isa Ijcc^ 
vidad de la grafiea en los mtersalos respectivos La grafiea debe tersf^ 
roela tangente en cada punto de inllexion En el origen existe una rcctaL 
gente scrtieal porque

s , 1/1 _ 1 
lim/’ír) = liin—-jz—~■ i-o) - 2/1sr

= -00

La tabla 1 resume los resultados y a partir de ellos se obtiene la gn.j 
de t dibujada en la figura 4 la eual muestra también un segmento de la t 
gente de inflexión en el punto (8.0) La recta tangente en el otro puD'ae 
inflexión, el origen, es el eje \

Tabla 3

/(O /til / 'O Conclusión

t < 0 - - /es ilcsrceicntc 1 j trafica de f es cotKasa t+aí»
l = (I (1 n e n w y nii llene extrenin alaliso la pralica il:/usrí 

punti) Je mCleMon
0 < « < 1 4> /esJc..rcticme Ijpralicadc/cscuticjsah-Mrt
t = 1 -1 11 • / tiene un sator mfnimn relativo la groTcaA'* 

cóncava Iulij arriba
1 < r < H + /es acuLnie la gra/ica de/es cotuva K4.aC3
T « 1) l 0 /cscrccicnic la grafiea Jt/licnc un punto Je 4Ío<
K < I - /es creciente la gráfica de /es cóncava h*.arí*

Cuando trace la grafiea del ejemplo 3 en la graficadora. obsencquí*'| 

revela el punto de inflexión en (8. 0) o el cambio de concavidad en*** 
punto Esta situación prev alcce para las gráficas de la mayoría de las funcia® 
trazadas en la graficadora Sin emb.irgo frecuentemente, al trazar la ^ 
de NDER2. se puede estimar un punto de inflexión, y en consccue»i¡ 
donde la concavidad cambia Esta información se puede confirmari 
camente El ejemplo siguiente muestra este procedimiento

► EJEMPLO 4 Sea

/(t( = 5x~^^ -

(a) Trace las gráficas de/. NDER(/U). r) y NDER2(/(r), r) en recitfi^ 
los de inspección separados y estime lo siguiente íi) los extremos rc!a“'* 
de/, (ii) los intervalos en los que /es creciente y en los que es dectcciíi*^ 
tiii) los intervalos donde la grafiea de / es cóncava hacia amha > 
lo es hacia abajo. (i\) los puntos de inflexión de la gráfica de^ (b) 1
las estimaciones del inciso (a) analíticamente i
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FIÍÍLRA 5

HGLin 6

- x''\ o 

riGl'RA 7

Solución
(tO La gráfica de / (r.i/ada en el reelángulo de inspección de (-8. 10.8| por 

|~3.‘>4| y 1.1 grállcj de NDER(/(i), ij ira/.ida en el reciángiilo de 
inspeccmn de [-U4.‘J4| pur [-7 2,5 2). se imiesiran en las figuras 5 
j ó, respectisamenle

li) De la figura 5 se esiima (|ue / nene un salor mínimo rclaliui en 
.X = 0 y de las llguras 5 y 6,/iiene un \alor máv.im<‘ en .x = 2 

lii) De la llgura 6. tomo/'(r) < 0 cuando .t < 0 y cuando a > 2, se 
estima que f es decreciente en los inlersalns (-co. Oj y [2. +cc¡ 
También de la figura G. como/'ui > 0 cuando 0 < x < 2. se 
esliina que/es creciente en el miersalo [0. 2] Estas estimaciones 
son consistentes con lo que se observa en la gráfica de / de la fi­
gura 5

(un De la figura 5. la gráfica de j parece ser cuneas a hacia abajo cuan­
do 1 > 0 No se tiene segundad acerca de la concavidad o de los 
puntos de intleMiín cuando x < 0 Por tamo, se necesita tnsesii- 
gar la gráfica de NDER2íf(x).x). la cual está trazada en el rec­
tángulo de inspección de |-6. ó| por (-4. 4| en la llgura 7 A partir 
de esta gráfica. > 0 cuando .x < -I y f'i.ri < 0 cuando
-1 < A < (I y cuando» > 0 De este modo se estima que la grá­
fica de/es concasa hacia arriba cuando s < -1 y cóncasa hacia 
abajo cuando-1 < s < 0 y cuando i > ()

íis) Como 7"(-h = 0 y la gráfica de / cambia de concasidad en
X = -I. se estima que la gráfica de/tiene un punto de inflexión 
en X = -I

(bj Ahora se conlimarán las estimaciones analíticamente Considerando 
f(\) = 0. se obtienen los ceros de/los cuales son 0 s 5. es decir, la' 
intercepciones a de la gráfica A continuación se calculan/ (si y /'V x)

fU) = /'v»i = -tíís--'/-’ - ';'x-'/^

= - ») = + W

Cuando \ = 0, f‘{\) y í"[\] no existen. Al considerar f(\) = 0 se 
obtiene .x = 2 Por tanto, los números críticos de / son 0 y 2. A partir 
de r’(t) = 0 se obtiene \ = -l Al construir la tabla 4 se consideraron 
los puntos en los i|ue x es igual a -I. 0 V 2. y los ínter»alos siguientes.

A < -1 -1 < V < 0 0 < \ < 2 2 < X

_ Si’/' - ,7'

MGLRA8

Tahia 4

jm /ni / m Cor.í Imum

\ < -1 - ' i L- di-i.ri...,.'nti:. 11 grali.j de¡ es uin^jv.i 
luLij amlM

1 - -1 (, -S II ! es d.'Lfcucnle. la grallcj de / tienen un 
f unlii Je mflexiñn

1 <■ l < II - * 1X., d.'eiei.icnic. tj pr.iliea de • C' 
lu.u jhjio

1 - (1 0 n c n c 1 tiene un sjlnr niín'mn rel.iti.o
0 < t < 2 “ 1 Ls treLienie b erallcj de 11 ..rv.njhe- 

su jbjji*

' - XU 4K 0 - 1 nene un s.ili'f ih.imt > a-bliv.'. b trjfi- 
«.a de 1 cs koncjsa lu.ia abai'

2 < i “ ■ f es deeie.ieie 1 1 de i es .oreava
lucia jb.ijii
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A p.iríir de Li inf<iriiiiiurin de Ij tabla 4 y lotali/andit algunos pur* 
dibuja la grallca de J mostrada en la tigiira S La tabla y la gráfiia tanfi- 
las estimaeiones del inciso (a) ^

EJERCICIOS 3.8
III los eju II un I ti ’■/ ilihiiji ¡II i;riiluii líf f lUuriiiiniimh 
l'iiiiu rii lo Müuunh. Un i xlrmun nliilíMn ih t. Un luinun ik 
iiijh MKii (ii lii i;rtijHii iU‘f Un iiihntiUn til Un i/iii Jutrt'
I ii nti i in Un ijiu i\iUtrii luui .Un iiiimiiiin dniuk Ui i;riifi 
nnU I ti i mu m ú liiii iii iirnhíi \ lUiiuli lo • t luii lu iihtijn. Ui 
¡u iiilu lili lU Un líiiuicnu \ lU iiijlcxiun ^ Un iniiilnUn w riu u- 
li\ hiin;mildU\ \ iihluiun i/i uno <U i/iii uiii;ii liunrpori 
I xtii iiifiiniuu imi til mili liiblii umiltir o Un t¡c i'Mii un iiiit 
\/iini Un r< uilliuUn iii Ui l•nl|ll ciiUiiii

1. /(V) i-" - t«' + ■'v- + I

2. /ui = i t-" - i'

3. y(») = j i"* - I (* - i* t I

4. /ui = - 4i' + Un

5. MU = \x* - Ix' ^ u- 2

6. /i\l - li'' 4< ' fu- 4

7. Mr)
J r* SI t < 0
(2r- Si (I " r

«. fu» -
(2U - h‘
lu - 1.^

■•I r < I 
••I I 2 »

•k yu» SI » < o 
I I ‘ SI (» -r- ,

Ul. JIXÍ
I -t* SI « < 0

1 .r * SI (I i i

II. ;u) Tu - 2)’ SI i S 2 
<2 - ti* SI 2 < r

12. /Ul = Tt‘ + ‘ir’ 

l.T. /Ul = (r ♦ li'fr - 2»’

14. /u» = »•(» + 4|*

15. /Ul -
sciu t - .TI SI ; ,T S t S .7

Ifí. /(t)

17. /(t) 

19. /(t) 

21. f(x\

23. /(ti

24. /it)

j cus t SI -r í i r: 0
|t(islT - Vi Si 0 < t C .7

18. /u» ' I—li
1 - ’

2». /(ti = —!—
V - 4

22. yit» =
»• - I

t- - 4

t= - y

t-
t - 1

* I

X- + I

(t + l»-''u

Un Un ijinuiin 25 n J2 lu) iruti' Un l•r^¡|uúl. 
NDLRl/(ti. t» i NDrR2(/(ti ti cii niiiiiu¡iiUn * r~ 
non xcpiiriuUn \ nlinu lo Mviiitiili lil Un txiriiiiii 
un ík f. Ul) Un mil rxuUn xn Un i/iu Jim riíiiiih i <i ’ 
cj ikirititiih. Iiiii Un iiihnuUn ili’iuU Ul «ra/iu/(j< 
liui Ul lirribíi \ ilon U 1“ i' litii iii uIhiju. in) Un p irf.ii ^ • 
Jliucn tU Ul v^ujiui lie / (/»» Conliniic Un nfuiiwiivi- 
lili no Ul) iinulilii iinitiiU c nnoiport Ui iiijorimiiirn 
bihUi Miiifjiinli’ II Ul luhUi V ik txUi xhíioii l pnrul-- 
inli'riniu ion lU lu lubUi ilihnji Ui l•ruJkulU J\ loiipiri'- ' 
Ul l•^u^llu lU f lru:üJiun il iiuno lu)

25. /U) = X* t Ix - ITv- - I4t + 24

26. /Ul = It-* - I.St’ + Tlt- - llt - Ul

27. /u I = I 2.5 - \ ■ I 28. /111 = T í, t - I

29. /Ul = 4t‘/’ i-*'* 3(1. /■(»! = r-N4->

31. (U) = sen t T uis t, \ € (-.7 ;:|

32. Mu - Tsciilr - .5cosl».\ e|-l.T. ' .7]

33. \iiles de dibujar la graliea de una luiiLion jplu-- 
jiasds ll^(ado^ al priiiLipiu de esta seeLiim jP f s 
i.»mi.nicn(e iiii.orp(ir.ir esta infoniiaciun en una uK-

3.9 APLICACIONES ADICIONALES SOBRE EXTREMOS 
ABSOLUTOS

•\ l'in de aplicar el teorema del \alor extremo para determinar 1(" t*'' 
mos ahsoliiios de una tunuon. la funuon debe ser conlinua en un iiiKf'- 
cerrado Ln la sCLCion .3 2 las aplicaciones trataron sobre tales fun. 
Ahora se consideraran aplicaciones i|ue linolucran extremos abs(>luU"r' 
las cuales mi puede emplearse el teorema del xalor extremo Sin 

primero se presentara un teorema, el cual en ocasiones es útil pacJ''*' 
millar SI un extremo relaiuo es un extremo absoluto
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t. /!< ‘I

/

IIM lU I

ii iii II

I’iifj ilustrar el leort-ina. rcticrasc a las luiiuoiics uiyas ¿rallLas se pre- 
senl.m en las llgiiras I y 2 C aila una de estas Iiiiiliones es continua en el inter­
valo / y tiene solo un exlreino relativo,/(< i en / Ln los dos casos el leoreina 
si{,’uieiue yaranti/d que el extremo relativo es un extremo absoluto

Suponga que la luneión/es continua en el intervalo / i|ue contiene al 
número t Si /(t) es un extremo relativo de /"en / y <• es el único núme­
ro en / para el cual / tiene un extremo relativo, entonces f(i) es un 
extremo absoluto de I en /

La demostración de este tetirema se presentara ai l'tnal de la sección 
El teorema 9 1 se emplea en los ejemplos siguientes, los cuales tratan 

con aplicaciones en las que se rct|uiere un extremo absoluto pero no puede 
aplicárseles d teorema del valor extremo ícn el primer ejemplo se trata de la 
situación del ejemplo 5 de la sección 1 ^ Rellérase a este ejemplo en este 
momento

^ EJEMPLO 1 Si un envase de liojalala cerrado de 60 pulg^ de 

volumen tiene forma de cilindro circular recto, determine analíticamente el 
radio de la base del envase si se emplea la inimma cantidad de hojalata en 
su elaboración

I

IK.l K \ 2

/•pulK

V

I H.l K \ 3

Solución La ligura 3 muestra el envase ciíindnco donde el radio de la 
base mide r pulgadas Se determinara el radio de la base para el cual el arca 
de la superficie total del envase es un mínimo absoluto Ln el ejemplo 5 de 
la sección I L se inosiro que si .Si;) pulgadas cuadradas es el area de la super­
ficie total, entonces

.Sin 120
r

+ 2ff/-

E1 dominio de S es (0 -foo) y .S es continua en su dominio 
Para terminar cualiiuier extremo relativo de ,S se calculan las derivadas 

primera y segunda de S

.S'(/f -l;r/ S ir) - 4;r

Observe que S'i/) no existe cuando r = 0 \ que 0 no pertenece al dominio 
de S. Por tanto, los únteos números críticos son aquellos que se obtienen al 
considerar S'(r) = 9 de donde sc tiene

4nr^ = 120

En consecuencia. \ es un luiniero critico de 5 Se aplica el criterio de 
la segunda dcnvaila y los resiill.idns se resumen en la tabla 1

rabia ¡

Sir. S o) í mu hiMi'ii

, ' I,
V iki. un \ llar iiiiiiimii tlI iiivu
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Debido .1 i|uc S es uiniinuj en su dominio y el unito txtreminc!ain,¿ 
S en su dominio se tiene en i = v^OZ/r . se concluye, por el leurenu v, 

i|ue este valor mínimo relativo de S es su va[or mínimo absoluto
Al aproximar a ceiílésimos se tiene % TO/;r = 2 12 . lo cual C'> 

con la respuesta del ejemplo ^ de la sección 1 3

C'iincliislón: La mínima cantidad de imjalata se empleara en la elab(r_
del envase cuando el radio de la base sea pulg « 212pul¡2 ^

V pjlg

ipulg
> l'u't-

HGIRA4

r EJEMPLO 2 Una caja cerrada con base cuadrada tiene ui
lumen de 2 (KX) pulg’ El material de la lapa y de i.i base cuesta 3 cenia 
pulgada cuadrada mientras que el material para los lados cuesta 1 5 lctl 
la pulgada cuadrada Estime en la graficadura las dimensiones de laca, 
modo que el costo total del material sea mínimo Confirme la csiiir_ 
analiticamenie

Solución Sean t pulgadas la lungituü de un lado de la base eu.ir.i
C(r) dólares el costo total del material El área de la base es t- pal__
cuadradas Sea \ pulgadas la profundidad de la caja Vea la figura 4 
que el volumen de la caja es el producto del area de la base > la pnifunJi. 
se tiene

"t
x-\ =

\ ~

2(MXJ

2OU0
i-

El número tolal de pulgadas cuadradas de las arcas de la lapa > de 
es 2.C*. > el de los lados es 4 vv Por tanto, el numero de centavos del n'- 
total del material es

3(2r-J + '(4v\)

Al sustituir V de (1), se tiene

(u,

IKillUS

a„ = fn^.txv(a^)

C.v) = f.t= 4. iliM>
V

El dominio de C es (0. +co) La figura S muestra la gráfica de í ifJí" 
en el rectángulo de inspección de [0. 20] por 11 000. 3 000] Se estimaq.í- 
punto mas bajo de la gráfica se obtiene cuando v = 10 De (I). si r =
V = 20 Por tamo, se estima que el lado de la base del cuadrado debe ir-'-' 
10 pulg V la protundidad debe ser de 20 pulg p.ira que el costo del nui'- 
se mínimo

Pani confirmar la estimación analiticameme. se calcula Cttl v C n'

Ov) = I2r- C(v) = 12 + -•*

Observe que Ctv) no existe cuando v = 0 > que 0 no penenescals' 
mimo de C. Por lamo, los únicos números críticos son aquellos que sef^
tienen al considerar C'(u = 0. de donde se tiene

12x - 12 000
.t2 0

1000
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I 4 uniL.i soluLKin TL.il ík csij ccujLiün Cv 10 De este mudo, el iinieo 
num>.ro i.riliu<t es 10 P.ir.1 determinar si Ct 10) es un \.ilor mínimo rü.iiivo 
para C. se aplica el cnlerio de la segunda deri\ ada. j los resultados se resumen 
en la lahia 2

¡aillo 2

C MI < M) ( >"lc/uu> II

X in 0 - C lien: un v.iliir mmimii rJ liv»

Como C es umtinua en su dominio y d único extremo relativo de C se 
tiene en \ - 10. se cnnclu>e. por d teorema 3 9 I. i|ue el valor mínimo relati­
vo de C es su V alor mínimo absoluto Por tanto, se ha conílrmado la estimación

ronelusíón; ti costo del material será mínimo cuando el lado de la base 
cuadrada mida 10 pulg > la profundidad mida 20 pulg A

I-n los ejemplos anteriores y en los ejercicios de la sección 3 2. la varia­
ble para la c|ue se desea ilcterminar un extremo relativo se expresó como una 
tuncion de solo una variable En ocasiones este procedimiento es demasiado 
difícil o bastante laborioso, o en ocasiones es imposible Con trecuencia, la 
inlormacion dada permite obtener dos ecuaciones que involucran tres varia­
bles En lugar de eliminar una de las variables, puede ser más ventajoso 
diferenciar implícitamente El ejemplo siguiente ilustra este método El pro­
blema es similar al del ejemplo I. pero en este caso el volumen del envase no 
se especillca

ttrjif

t piii^

iK.t in r.

^ EJEMPLO 3 Si un envase de volumen lijo tiene la torma de 
un cilindro circular recto, determine la ra/on de la altura al radio de la base si 
se emple.i la c.mtidad mínima de material en su elaboración

Solución Se desea determinar una relación entre la altura v el radio 
de la base de un cilindro circular recto, de modo que el .uea de la supertleie sea 
un mínimo absoluto para un v olumen l'iio Por tanto se considerará el v olunien 
del cilindro como una uinstante

Sean unidades cubicas el volumen del cilindro (una constaniel 
A conliiuiacion se dellnen las variables
.Sean i unidades la longitud del radio del cilindro, r > 0 Sean li unida­

des la altura del cilindro It > 0 Sean S unidades cu.idr.idas el area de la 
siipcrllcic total de! cilindro (rcTicrase a la tlgura 6)

Así. se llenen las siguientes ecuaciones

.S = 2i:i' + 2r:rli (2)
1' = nr-li

Puesto que T es una constante, se puede resolver t 3) p.ira r o para li en tér­
minos de la otra y sustiiiiirla en (2>. lo i|ue hace de .S una luncion de una vana- 
ble n método alternativo consiste en considerar a i ci'mo una luiicion de las 
dos variables / y li. sin embargo, no son milependienies una de la vilra Esto 
es. SI se elige / como variable independiente entonces i depende de r. tam­
bién. h depende de r
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Al ililereiici.ir S y V ci»n respecto a r. teniendo en mente que l¡ tv 
Iiiiieión de /. se tiene

— - 4/rr + 2nl¡ + 2nr^ ,j
dr dr '''

= 2n,h +
dr dr

dVComo V es un constante, entonces — = 0; por tanto, de la t.. 
eión anterior.

IJirh + ur-^ = 0 
dr

con r ^ 0. Si se di\ ide entre r y se despeja .se obtiene

Al sustituir de (5) en (4) se tiene

f =

^ = 2m2r - h} I»
dr

Con objeto de determinar cuándo S nene un valor míniino rcla’n 
ISconsidera = 0, obteniéndose 2r ~ h = ü. de donde, 
dr

r = [b

A fin de dclenninar si esta relación entre ryh hace de S un mínimo rcL • 
se aplica el criieno de la secunda derivada. De (6) se obtiene

Al .sustituir de (3) en esta ecuación se nene

Los resultados del criterio de la segunda derivada se lesumen en laiji’’^' 

Tabla.?

líl
Jr Jr-

ConiliLsitm

r 5" (1 - S licnc un \alof mínimo roljioti

De (2) y (3). S es una función continua de ren (0, +oot Comoi:'^''' 
extremo relativo de S en (0. +co) se ttene en r = [h. se concluu’. l'"^" 
teorema 3.9.!. que S tiene un \ alor mínimo absoluto cuando lijr = -
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ii(;rRA7

( mu'liisión; [•.! arc.i ilc l.i siipcrlitie tol.il <lol envase será mímmu. para un 
volumen espeeílico etiamio l.i r.i/i'm de la altur.i al radio de la ha^e sea 2. ^

lin ocasiones, los problemas {jeoméirieos tpie miplivan extremos absíi- 
lulos son más lácilcs de resolver ulili/ando lunuones ineomiinélrieas uimo se 
muestra en el ejemplo siguiente

^ BJEMPLO 4 Se inscribe un cilindro circular recto en una es­

fera de radio dado Determine la ra/ón de la altura al radio de la base del ci­
lindro de mayor superficie lateral

Solución Refiérase a la figura 7. donde la medula del radio de la esfera 
es constante e igual a <i.

Sean 0 raüiaiies la medida del ángulo central subtendido por el radio del 
cilindro, r unidades la longitud del radio del cilindro. Ii unidades la altura 
del cilindro y S unidades cuadradas el área de la superficie lateral del cilindro 
De la figura 7.

r = son 0 y li = 2a eos 0 

Como.V = 2/rrli.

S = 2;r(<i sen í}|(2(ícos Oi 
= 2/ta-(2 sen 0 eos Oi 
— 2/r<i'seii2íJ

Así. S es una función de (i\ su dominio es {(), ¡ ;T).
Al obtener las derivadas primera y segunda de S. se tiene

^ = 4/ríí-cos2fl V = -X/Tíi-sen 2Ü
lio ■ ,10-

iSConsidere = 0. entonces 
ilu

eos 20 = (I

Como 0 < 0 < i ff. entonces

0= '.;r

Se aplic.i el criterio de la segunda deris.id.i y los lesiiltados se resumen 
en la tabla 4.

riiMit 4

1 ,10

■r-s ( i'tii

0 V ii.-no lio Valer ni ivimo iil.ilon

Como .V es continua > tiene un muco extremo relativo en su dominio, se 
concluye tpic el v.ilor máximo iclatixoes un valor máximo absoluto.

Cuando fi = ' n.

I = ii sen j fT h 2íi eos ^ ,t 
--- |,v2ri - s2.(

l’or tanto. It/r - 2.



roncliistóli; Pam cl cilindro que tiene la superficie lateral de majoríre¿ 
ra/ón de la altura al radio es 2 \

Se concluye esta sección con la demostración del teorema 3.9 I

Demostración del teorema 3.9.1 Se demuestra el teorema qj 
caso en que /(t) es un valor máximo relativo en el intervalo / Una de-, 
(ración semejante puede darse cuando f(c) es un valor mínimo relativo.

Como/(f) es un un valor máximo relativo de/en /. entonce^.p-.; 
definición 3.1.1. existe un intervalo abierto J. donde J G l.y dondeyc 
ne a r, tal que

fie) a f(x) para toda r e ^

Puesto que r es el único número en / para el que/tiene un valor máxirr.iTi^ 
tivo. se deduce que

fU ) > fik) SI A e y y L * c r

A fin de probar que Jic) es un valor máximo relativo de/en /. se de: ^ 
trará que si </ es cualquier número diferente de c en I. entonces /(ci > f: 
Suponga que

fin á fui) iV

Se probará que esta suposición conduce a una contradicción. Puc'Wí: 
ú ^ c. entonces c < <1 o J < <•. Con.sidere el caso en el que c < Jibi 
mostración es similar SI t/ < o.

Como/es continua en /. entonces ; es continua en el intervalo Cifr- 
|í\ i/j. Por tanto, por el teorema del valor extremo, f tiene un valor ms*." 
absoluto en (c. </|. Suponga que este valor mínimo absoluto ocurre en e.w*' 
de c & e S (¡. De la desigualdad (7) c ^ c, y de las desigualdades l7|i ‘ 
c ^ ti. Por tanto c < <• < J. y en consecuencia./tiene un valor min!ii»n 
lativo en e. Pero esta última proposición contradice la hipótesis de quí.'í 
el único número en / para el cual / tiene un extremo relativo Así. 
sición de que /te) s fui) es falsa. Por tanto. f(c) > fu!) si d G / > d * 
en consceueneiu./(c-> es un valor máximo absoluto de/en I. '
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EJERCICIOS 3.9
EntaJa ejertii to defina loda\ las \anahles preehaiiieiue como 
minieras v na alude rsinbir ana eaiu luMiin

1. Pura el env.ise dcl ejemplo I, suponga que el cosio del 
niulcrial para la lap.i y la base es dos veces el de los lados, 
tu) l^ciemiine anuIflieamciUe la utuira y el radio de la base 
de modo que d costo del material sea mínimo. (Ii) Com- 
paic la icspucsla dcl meiMi (a) con la solución gráfica de 
esta situación obtenida end meivu icj del cjcreido 21 de lu 
sección 1.3. ¿1.a solución grúlica apoya la respuesta del 
inciso tuf’

2. ID) Haga d ejcniplu I si d envase es abierto en lugar de 
cernido (b) Compare la respuesta del incis*» (a) con la 
wilueión gráliea de esta situación en el inciso (c) dd ejer­
cicio 22 de la sección I 3. solución gráfica apoya la 
respuesta dcl inciso (u)'’

En las ejeri n las J \ 4. cimfinne analilu aipenie la esnm' 
«hleiuda i on la i^rafu adora en el iiu isa {cl del ejerrinr-* 
iodo de la iffcu?» ¡..I.

3. Ejercicio 21 4. Ejercicio 24

5. Se V a a cercar un lerrcno rectangular de 2 700 m* * ** 
y se uiih/orá una valla adicional para dividiré! ient»’‘ 
mitad. El costo de la cerca empleado para dividir^’® 
no a la inilad es de S24 por metro coligado, y cl 
cerca pora los lados es de S36 por metro cciiocadix 
liee la giaticadora para esiimar tas dimensiones *11* 
no de modo que d costo total del matenal poraUC® 
sea mínimo, tbt Confirme la estimación del incisoU'^ 
Iftieamente.

fi. Un tanque rectangular abierto, cuyo solutnefl^' 
125 m*. tiene base cuadrado. El cosio dd maieníl^
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c^ lii-' * I’"*' Liuiir.iJd > i.! dtl niaitrul pjfj 
|,>s lad*'' es de ''12 í.il l'IiliLe la j;raliLjdora p iri estimar 
ljMlinK;n''i‘'”e'> del laiupic de mudo ijUe el enslo iLI nía 
tfial scjminmui tbl Conlirme' laesiimneion del iiieiso (.1)
^iiieamciilc

7 In íjbnejnte de* eajas de*se*j eonsiruir una eaja cerrada 
tcRtM \()liime*n de* 2K8 pulg' y cuja base de forma 

itiunjíular lie*ne el largo igual al triple- de su ancho (u) 
ItilKC lj gralieadora para c-slirnar las dmicnsiuncs de* la 
cjjj construida con la rmniiiia cantidad de material (h) 
Cuonmic la esimiaeion del muso la) analilie'amentc

I Haga el cje*aicio 7 considerando ahora c|uc la caja se fa- 
hncara sin lapa

f. Si seexclujen los salarios el numero de* dolares del costo 
porljlometro de* la operación de* un camión es K + \,
donde I kilómetros por hora es la sclocidad promedio 
del camión <j) Si los sálanos combinados dcl conductor 
) de! ajudante son S27 por hora, estime en la calculadora. 
e*on aproximación de kilómetros por hora cual debe ser 
b velocidad promedio dcl camión para ijue el costo por 
kiiúmetru sea mínimo (hj Cnniirme la esiimacum dcl in 
civo(a| anahlicamentc

H fj numero de dolares dcl costo de combustible por hora 
para un barco carguero es de l)02i '. donde 1 nudos (mi­
llas luuiicas por hora) es la vdixidad promedio del b.irco 
la)Si hay costos adicionales de S4()() por hora, estime en 

U graficadnra. con aproximación de nudos, a que \elixi 
liad piumedio debe navegar el barco para que J costo por 
milla naulica sea mínimo Ib) Conllnne la estim.icion del 
muso ta) analilicamenie

II Uaulumovii viajaa unalasade lOpie/s v se aproxima a un 
emeem Cuando el automóvil esta a >20 pie del crucero 
un camión, que siaja .1 una tasa de 40 pie/s en una carrcleni 
perpendicular a la carretera del automóvil, pasa por ei cru­
cen» (a) Determine anuhncamente en que tiempo, después 
deque el camión deja el crucero los vehículos están mas 
ceinuins Apoye la respuesta del muso ía) grancanienle

12i)pic

aviones A y II vuelan bori/ontalmenie a la misma al- 
ue modo que l.i posición de D esta al suroeste de l, 

»m al oeste y 20 km al sur de A Suponga que el avión 
líela hacia el iwstc a Ifi lin/min y que el avión B vue- 

^‘íícia el norte a 21 1 km/min ía) Deiennme en cuan- 
^vegundtis los aviones estarán lo mas cuca posible > 

vera la distancia más corta (b) Apoye las respuestas 
•Puso (a) gráficamente

■

:n km

4

a» km

13. Duemnne una ecuación de li rcu.i langeiii a la curva
V = v’ + 5x tpic tenga 11 puid.snij mínima

14. Un gencr.idor de comente directa tiene una fuer/a elec 
irnmolri/ de h volts y una resistencia im..ma de r nhnis 
donde 1. y r son constantes Si H tihnis cs l.i resistencia 
externa, entonces la resistencia total es Ir + /íi ulims y si 
/' watts es la potencia entonce.

P =
(r + «I-

Demuestre que el consumo inaMmo de poiuiua ocurre 
cuando la resistencia externa es igual a la resistencia míen a

15. Fn una comunidid particular cierta epidemia se pmpiga 
de modo que r meses despucs ülI inicio de l.i cpidcnii i /' 
porcentaje de la población esta intectada donde

P = ^
(I X*)-

, Fn cuantos meses se mleciara el numero máximo de per­
sonas de la uimimidad y que porcentaje de la población 
sera este ’

16. Un carlJ que contiene 32 piilg* de región impreca tiene 
un m.irgcn de 2 pulg en sus p ules supenor c inlenor 
mientras que en los lados los niargeiics son de ‘'pulg 
Delemiine las dimensiones del menor iro/o de cartim que 
pueda empicarse para reaiiAir c*l cartel

Ln lii\ ijircitiri\ 17 \ lÜ. \i iitilizii el U mmn ndiunwio 1 om 
¡Hluuui pirfiitti CiiiinJii una íiiinpañui íi¡uni hiijo uunpi- 
laitiii ¡Hrftihi unten miiíhiis tnnipañitn ptf/mmn, por h> 
t/ut ium;iina ih illas piuile afuiar il pruii> uíí.mnfí»n/« Ut 
proiliuaan Por tuiilo hoja il riizonen íJl loiiipiUiuui ptr- 
fulii elpru la di un oriiiulo e<¡ Liiiiuanu. v ¡a iiimpiuutipiiide 
siiulir lo ipu ilisteiiiu priLiii tonutiiUt

17. En condiciones de tompelcnua perfecta una compañía 
puede vender los .irticulos que produce a $200 por unidad 
Si C(r) dolares es el costo total de la producción Juna 
cuando se producen x artículos y C(t) = 2t‘ + 4(lr -1- 
1400. determine el numero de unidades que deben pro- 
ducirce dianamente a lln Je que la compañía obtenga la 
niaxima ganancia total diana i»e<rt'»nnj la ganancia 
total es Igual al ingreso total menos el costo total

18. Lina compañía, que construye y vende escnlonos opera 
en condiciones de competencia perfecta y puede vender 
todos los escnlonos que produce a un precio de S4ÍHI por
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C'.Lritiinií Si '•c priKliiti'ii x csLiilorins > >l* XL-mlcn c.ida 
sciii.iii.i. > Í'OI diil.ifc-. cs el tu>lo liiUl lie t.i píinliit- 
t.ii)ii 'L-m.in.il. ciili'iiies íiu - 2»* i KOi ‘ 
DelL-rmine ui.inlns OM.rilonn'' ilehcii píikIuuinc scm.injt- 
menie p.ii.i (|tii' d l.iluic.iiiic <il)icn(:.i Li ii).íxim.i pjn-inLi.i 
Inl.il ■■cm.in.il i-'s Li mumiii.i |:.in.iiK.M luMl '•cni.i-
n.il ’ ConMilcic l.i Mieciau-u ilel ejiTUtio 17

]'>. I I leimmo ni iiiiuliiii>iu \ lU- iiiiiiiii¡iiilin. sijiniricj que 
existe un iiniKi prmluklor de eierto jrlíuilii. p.ir.i el lujI el 
pieiii) X m LonseoienLia, la demanda pueden ser eon- 
Ihiladii' reeiilaiidi» la santidad de anístilus priHlueidus. Su- 
piinj:a que en inmljcnmes de niuiiopuliii. t unldadL^ de 
un ariisulii snn demandadas diariaiiieiile ctiaiidii el preeui 
piir unidad es de ¡i diilares) i I til - /i Si el ntimern 
de diilares del eo^lll K'lal pur prodiieir » lll1ldade^ está 
dado |M>r íVii i* 4 20i • ^<KI. determine la maxi 
Illa panansia (nial diana

20. Ilelcmnne la dMaiiua iiiiiiima desde el pimío I‘i2 ID .i iin 
pmilo de la iiirx.i \ • i I. v enuietilre el punto de 
11 uirva mas eeiLaiio a /'

21. Ol'leiii'a la dislaiiiia mínima deole el oiieen a la us 
II ’i 4 I íi. y eiuiieiitie el punto /‘ de ti Mía mas 
eeieano al oripen Después demiksiie ipie el oit/m estaen 
la reeta peipemlu til.ir a la les la da la que pasa ivr /'

22. iKiuiiiiiie la disi.niuia mimm i desde el punió ti2. ' ■ a 
un pumo de la p.iial'ol.i \ i' x em ueiUie el pimío I! ile 
la paial’ola más leiiaiio a I De |uus deiiiueslie que I 
e .la en l.i K\t i luuinal de la p uahula en II

2.1. I 'na xenl.iii i lijui ,Nii>»iofi sonsiste de iin lesi im'ul<>. >-io 
II,ido |H>i un ' t mil lu tilo Si el p> niueiio de nii.i xeui.iU > 
Nomi III es de t.' pie. dili niiine iiunio d. Iv ii.edit s i i.i 
dio di I seiiiii iii iilo X |,i .iliiiia d'*l fi i [.in>'iilo ile modo que 
l.i XI Ulan 1 .idmil.i la m.uoi i .iiilid id de |iu

I

•'■I M‘ aii Ixa 1111. ii ii III ' I loiiMil. laudo alioi i ipu i ii la \ , n
........... * ..........do lian mu. olo 11 nm u| ,|. p,. , i
I.. i.iiii’ido poi pu-1 n lili ido d ai. .1

21 l'liaxiir.idi i.iiod. ’/pi, d. ....... , iiaiOiMH.. po,
mi pililo di pi. de aii.lio ...................... p.»|s.i
dl.idii al pa.illo .1 imI d. K ,| ,,iu lio d. I .mi.d... 
pniii.jiie 1,1 lipa j.ind.i dnldai |,i. quin.i' Noi.msid. i. |i 
iiluliiiM lioiDoiit ildi la Upa

• » 'X
H pie

2í». Si dos pasillos perpenJicul.ires entre si miJ.*.*. ' • 
\ Iji pie. respcLtivamenie. ..cuál es la Ion;:i!Lj áe 
de asero mas Urea que pueila tr.ui'piinarsc h •ne.'j.-.- 
le lie niixlo que pvuda dohbr la esquina ’ No i.,- 
aiieluir.i hon/ontal de l.i \iga

• sp.

27. l n embudo de xoomirn ».'{V»itu'o t. e 
i. iiouisiil.u ixMo l Vteitmisc !.i ra,. r. v’e 
de 1,1 l'.i'e de m.xLx qite se er p'e. 
m.iieii.il eix sunsiiv.vio”

2.S. l n vono .iiexd.ii iv.t>* s^* "iseuV .
.1 ,l,’ V .dvii’e tj t.i.-v'ti .te !.i ..’t!,:., e. ... 
so'..•dex.'tii.veixoux •.i.;,ep.... . ■

I > ''.o siivxdli isslo lU.i \
M ‘ ' .1 'il.‘ l’t'leoe •, 1 u I'i'liI ; a‘ , i.t v 
,1.1 . i'i'o d.i viiluuK'n i'o.iiii' 1 q.i,- p* .x’. « . 

dei.i
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il) P"f ‘ * PiicMiilu lie C'la sccui'ii i|tic l.i üiNl.mu.i
■ '■I P'""*' 1'i‘M ‘i> ■' I' I ‘Pi'-'

U W/. - í II fs

h», * »■! » ( I
^ 1- . II'

'I ' i-l de iimdjiles desde ¡‘¡ .i un
puiii>> /'!'■ 'I ^ eiilunees s sera un infnimn .ilmiluio 
iUarJ" I* ssM •J'i ininiTUn al)si>Iuii)

,l [j .et-cii'ii ir.inssLrs.il de un Ihrhedern nene Li (oniu de 
u[i iiuneulo isiisteles invenidn Si las UmiJitudes de liis 
LJi>^ i'juale-- sim I *> pule, delemiine el latnaim del anguín

Inrinadii pnr csIoh lado'. ipie prnpiirtinni. al beliedern su 
Niaxima eapaudad

I ■' pu!g P

3.10 APROXIMACIONES MEDIANTE EL MÉTODO DE NEWTON,
DE LA RECTA TANGENTE Y DE DIFERENCIALES

I /'!)

Antes del .idscnimicnio de las cakiiladnras \ de las i.<iinpu(jdor.is. las raÍLcs 
de una ceiiaLión de la íornia /(\) = K o. equivalentemente, los teros de la 
luntmn J. lueron aproximados ptir medio de letmcas numentas que implican 
la derivada Aunque tales aproviniaeiones son ahora fáeilmeiile realizadas 
por la graneadora mediante los proeedmiienlos \o/u’ o :oom-in. se deditará 
esta seeeióii a la discusión de tres tetmtas numéritas. La primera de estas 
létmeas, eonoeida tomo el iiuliido üc Newtnn e ideada por .Sir Isaac Nevvitin 
en el siglo Wli. es caratterisiieo en los procesos nuiuerieos empleados por 
las ealeuladtiras

.Se imtia el estudio del método de N'evvton considerando una inleriire- 
lación getimeinca de los tvineeptos involucrados ReHerase a la figura 1. la 
cual muestra la gráfica de la ecuación V = j{\) fil número res una intercep­
ción V de la gráfica Para obtener una aproximación de r. primero se elige un 
número vj. elección que debe ser razonablemente cercana a r. Después se 
consider.i l.i recta tangente a la gráfica de / en el punto {V|. ^(\|)} La recta 
tangente, denotada por /]. se presenta en l.i figura I. > la intercepción i de T| 
es V; 1:1 numero sirve .ihor.i como una segurd.i aproximación de r Luego, 
se repite el proceso con la recta tangente A en el punto (v^, v;i) La inter­
cepción V de '¡'i es V: Lsle prt'ceso se continúa basta obtener el grado de 
aproximación requerido Rn esia gráficM. parece i|uc los números \^. in. 
elcelera. están cada vez mas eercanos al numero /. Esta situación ocurre 
para mueh.is luneiones

A lln de vibtener las aproximaciones sucesivas .v^. vv. de la primera 
aproximación \| se uiilizan las ecuaciones de las rectas tangentes La recta 
langenie /1 en el punto (V|./(V| I) tiene una pendiente de f\\\> Por lo que una 
ecuación de f \ es

V - /■(l| I = - Vi)

La iniereepeión \ de /¡ es 12. > se determina v^ cvmsiderando v = v^ > 
V = 0 en la ecuación anterior Asi.

0 - ^(V|) = /'(V|K': " V|) 

fi V| )

y'ivi)
t2 = V| - SI /’Uj) ^ n
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(’íin csic v.ilor tic \y. una (.uiauiDn de ¡2 fs

\ - /(V.*) = /

Dc'-piics se toiiMilcra en esta ctuauón r = ti y i = 0. de ilniide se ohtivrj 

0 - /(\>) = y - vs)

/{i:i
f<\2)

SI /'(V;) * 0

Si se uintmiía de esia manera se iibliene la tormuia general para la 
inaLión \ en terminns de la aproMinaLion anienor r,,'

1 o

I KU'KA 2

^ " /'i t"!' '*

Por supiiesio. la Innnula (11 se puede adaptar taeilnienle para utilizarse sn l-j 
(.ompiitailnra o en una cakiiladnra prograinahle

A partir de la lurniul.i (I) se puede nhiener la (i> + 11 esiiha apri'v 
ni.iLinii .1 partir de la /í-esiiiia uproxiitiaeiun. considerando /1 \, i s i 
Cuando / n„) =t I) la reeta tangente es horizontal. > en tal caso, a meiii''.,,. 
la reet.i tangente sea el eje i mismo, no se tendrá intercepción t La llcufa! 
muestra este lieeiio cuando / (iji = 0 De modo que el método de .No.' - 
no es aplicable SI/’n,,) - (I par.i alguna laiiibien debe tener en iii.r 
c|ue el \.ilor de \„. i obtenido a partir de (11 no necesariamente es una irjj 
aproxiiiueion de r ijue .Si por ejemplo. no esta razonableiiunie ei... 
de / enlotiees puede ser pequeño de iihhIo que la recta langeT e í
es aproMMiadameiite horizontal J-.nlonces la interecpcion t de 7 p-_
estar mas alejad.i de r que i| Vea la figura í en la que est.i siluasK'ius.ure 

I n el ejemplo ilusiraliso siguiente se muestia como el método de Ne.i ' 
se .iplica a una eeiucion par.i la cu.il se coiu>ce la respuesta

EJEMPLO ILUSTRATIVO 1 Cnlicecl método de \c« -
p.ira obtener la raíz positna de l.i eeiiaeioti v- = d comen/ando con imap' 
ruer.i .i|iio\mucum ile 4 Se escribe l.i ecuación como - 0 = (i\ ■ 
eonsider.in

/ni I- d > /'(u 2

De (1) se obtiene

.1 '‘A'J.
ru„i

I
\liou se .iplaa con s.dotes ile ;i \ \aloies eorrespenulieiiles Je » f 

• •litenei \„ . j en mu c.dcul.idora .Se niieia con \| 4

I, d

I ^ lis
i:^‘
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11:*^ = ^002‘'

» I (s = r,
U' - '>

2l4

= 1(1025 -
noo25r o

2(10025) = 1(KK)0- (l(l(X)O)- - 9 
2(10000)

- 10000 = .10(X)0

Cii.ri.iintnii: ludas |.i>, .ipro\inidu«nics ^ULesnJ^ stran 1 0(X)0 Di. modo que
l.i raí/ [)osili\a ül li LLiiaLiuii i* - 9 = 0 ts 10000 con (.uilru ulras 
ikumalcs A

ObscrvLqutf(.liaudin„osimaso|uuondL./(\) = 0 Jlx,,) - 0 Asi de(l)

'h+I — '«
fi t„ ) 

J <

= \„ - O

= '.t

Ln Lonsccueiiua ludas las aprosimaLiimLs sucesivas serán leuaks a Note 
qiÍL est.i siluaeion se présenla en el ejemplo tiusiraino I donde (odas las 
apruMiiiaeiuiies despues de \\ inelusendola. tienen el mismo s.ilor eonside- 
r.mdo eiiairo eilras deeimaks

ramhien observe en (h que r„ | = iinpliea que y(t„l = 0 l’or 
lanío se puede eoneluir que euando dos ipruvimaenmes sueesivas son ijiua- 
ks se llene un i aproximaeion para un eero de /

Sin eiiibaruo. es posible que para ciertas tunuones, si la ckeeion inieial 
de \| no esia cerca del cero deseado se pueden obtener apriiMinaciones para 
un cero dilerenle Vea la lijtur.i 4 c|ue muesua la grallea de una Iunción para la 
cual esta siiuaeion puede oetimr Observe que la ekeuon de t| indicada pro 
\ima al cero deseado / proporciona aprovimaeiones sucesivas rs.
V1. provimas a otro cero \ De este modo cuando se aplica el método de 
Nevvion debe hacer un bosque|o de la eraliea de la luneiun a fin de obtener la 
aproxiiiiaeion inicial Consulte la frailea contomie proceda para asegurarse 
de cpic se esta aproMinando al cero deseado

ín resumen, cuando utilice el método de Nevvion para resolver una 
ecuación de l.i lorm.i/(u = (I efectúe lo siguiente

1. liag.i una hiitiui wi/iinx ron para la primera aproMiuacum V) 
Un.i {.ratica de / le avudara a obtener una elección razonable

2. ni'icnga una segundi aproximación v; con el valor de V| en la 
tonmil.i 111 Despucs utilu c vs vn (I) para conseguir una terce­
ra .iproxiiii icion vi.v asi succ'ivameiitc. hasta que Vn,| = \„p.ira 
el grado requerido de aproximación

^ EJEMPLO 1 Utilice el método de Nevvion para determinar la 

r.iiz real de la Ccii.ictoii

- 2v - 2 = (I

eoii cuatio citi is dccim.iles



Solución Sca/^íí) = i'’ - 2r - 2. iJo modo que/(= Tr - 3 f.. 
ioiu.es de íl) se nene
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/m - 1' 2\ - 2

';i»l
-2x„ -2

lr„* - 2
(J)

Í..i tiMlUa dt/se niuesir.i en la figura 5 Como la grafita de/ inier-i.cu. 
eje \ en un único punió, exisle una raí/ redi de la etuacK'm dada Di.huJj2 
que /í I) = y /(2) = 2, esta raí/ se cneucnlra entre I y 2 Una tleu 
adecuada para la primera aproximación es T| = I 5 La tabla 1 presenu! 
resultados obtenidos en una calculadora para las aproximaciones sü>.c*i.^ 
calculadas a partir de Cí) con esta rj Se desea la raí¿ con una aproxinuv - 
de cuatro cifras decimales, por lo que se emplean cinco eiiras decimal:, r 
los cálculos Como t«; y tf, son iguales (con cinco cifras decimales) sen 
dondea el numero a cuatro cifras decimales para obtener 1 7Ó9.1 conmlarj 
requerida

IKfLKVS TuMíil

" 1 X>, - 2

t 1 SUMKI 074211 1 H42tl
2 1 K43II (1 fR/>2K l 772)t7
X 1 772HX oixnst 1 7(/>x(i
4 1 76'At« (HMXHll 1WH'}
S 1 7f.'C‘l niXXHK) 1 7f.')2‘l

r EJBMPLG 2 Utilice el método de Newton para detcmii'- 
con tres cifras decimales la coordenada x del punto de intersección cnilf 
mer cuadrante de la recta 1 = |rylacurxa\ = sen t

Solución La llgura 6 muestra la reda y la cursa se desea deicrmi''- 
\alor positivo de x para el cual

i.
sen X = i X 

sen r - X =0

Sean

/(ti = T sen X - X y /'(x> = 3 eos r - l

De la lormula (1).

/(L,)

¡ahíii 2

7 SUM \
1 ci>, 1

1 2<MN)(I 117277 2 7277
2 2 7277 011441 2 2V)U
7 2 27% 0IKI07 2 21M
4 2 27h‘l 00000 2 21M

'h+1 ~ 'íi “
x„ - t„ 

^ eos x„ - I

De la figura 6. parece que una elección razonable de x, es 2 Se utiliri'^'' 
calculadora para obtener las aproximaciones sucesivas a partir de la í*»nt^ ‘ 
(4|. estas se muestran en la tabla 2 Los resultados se expresan conct*- 
cifras decimales Observe que. con cuatro cifras decimales. X4 y ty son 1?- 
a 2 2789 Por lo que p.ira tres cifras decimales el valor positivo de a. f-' - 
cual sen x = ^ t. es 2 279 *
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/m I' *>1 ♦ H 

FKiL'KA 7

||h25 J í7S]p.w|l 22S,:77S| 

/U» I* 5i «- K

FKÍIJRA «

I.ns icorcm.i^ i|iic cM.iblcccn l.is LnmJiciones par.i l.is lu.iIc> cs ;iplu.dl)lc 
el mcliidi) lie Ncwliin. ;isí comí» los icorciiüis rcl.iuoii.ulos j su .ipro\iiii.iuón. 
piicilcn uicomr.irsc en lexios de .tn.ílisis nunicriu».

Un.i tic l.is ni.incr.is simples en t|uc los valores de Iuiilh'jii pueden .ipro- 
ximarse se denomina opro\wuu u'm liiuiil. la cual uidi/a l.i rcua luneente a la 
tiráliea de una luneióij diCereneiable. Se inicia la discusión sobre tiproxima- 
Clon lineal con nn ejemplo ilusiralivo que muestra la idea básica

EJEMPLO ILUSTRATIVO 2 La Ujiura 7 muesira la "rá-
rica de

f(\] = i' - 5t + K

y la recta tanjienle en el punto (1. 2) trazadas en el rectángulo de inspección 
de |l). y.4| por [O, 6 2|. Si se aplica el procedimiento :iinm iii de la gratlcadora 
en el punto (3. 2) y se traza la recta tangente, se obtiene la figura S la cual 
presenta el rectángulo de inspección de |l S25. 4 175) por |l 225. 2 775) 
Si se aplica otra vez zooin iii y se traza la recta tangente, se obtiene la figura 9 
la cual muestra e! rectángulo de inspeccitin de [2 706. 3 294| por 
I I.H06. 2.194). Observe cómo la recta tangente se aproxima a la gráfica de la 
lunción cerca del punto de tangencia De este modo, si i está en un pequeño 
inlersalo abierto que contenga a 3. la coordenada v correspondiente de la 
gráfica de la tunción puede ser aproximada por la coordenada \ de la recta 
tangente ^

07IIÍ.. J29J|p..f [I KIK.,2 l')4| 

/'«I I- - 5i ♦ H

Se utiliza el concepto del ejemplo ilustrativo anterior para una función 
general f diterenciable en un número \(g. Una ecuación de la recta tangente a 
la gráfica de f en el punto (v,,. A 'i)M es

- /Ou> = /'ír„)(.i - .r,)l
\ = yi-'id +y'('oio “ 9)1

Kellérase .i I.i figura 10 donde /•* es el punto (in, /"t V(|)). (J es el punto (i./(a|) 
s H es el punto (t,/(M)) + /'(xoHt - Mi»- Observe que para un número 
suficientemente cercano a .q|. el punto Q de la gráfica de J está cerca del punto 
H de la recta tangente. Hn consecuencia, si v está cerca de V(j./tvl puede ser 
aproximado por/'tt,]) + /'('iiH-' “ qjl.estoes.

fk;ura9
f(K) « A'n» + A'oKx - »o>

* ' - /H) lista aproximación se denomina siprnxímaciún mediante la recta tangente, 
o concisamente aproximación lineal, de /t v) en V().

► EJEMPLO 3 Sea

fi\) = eos- V - .V + I <51

(a) Obtenga la aproximación lineal de /ni en O tl)> Apove la res-puesta del 
inuso (a) gráficamente (c) Compare el v.ilur de Ao c.ilculado medi.uiie la 
aproximación lineal del inciso (a) con el valor ile la lunción obtenido a paitir 
de 15)cuando ves igual a -0.2. -0.1. -0.01.0. 0.01.0 I y 0 2n<;i'iu 19
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FKil K\ n

Solución

<a) Se calcuLi/'(\);

/'(U = -2 sen veos r - l 

La uprnxini.u.ii'm lineal de/{\) en 0 es 

/(O » /íOj + /'ÍOIÍ.T - 0)

Comu^íO) = 2y/'í0j = -l.se tiene

= 2 - r i(

tb» La fijturj 11 muestra la gráfica de/y la recta tangente en (0. 2i tne._ 
en el reciánguln de inspección de [-3. 3] por [0. 4). la cual apoja larr 
puesta del inciso (a)

(c) La labia 3 compara los valores de f(\i calculados con íf» j > 
calculados con (5). Observe que cuanttr más cerca se entucniraii 
cero, la aproximación resulta más exacta.

Tabla 3

. -02 -11 1 -(Mil u 001 (11 i:

/it) ' 2 k 22 2 1 2Ul 2 1 'W I'» !•

/|ll Cl)\' 1 k - 1 2 lf> 2W linm 2 1 VnW 1 ")

i

Ahora se tratara el concepto de tliji-renaal, el cual también fvn:- 
aproximar cambios en valores de función de puntos cercanos a puntO'é •- 
la lunción es diferenciable. Vera que una aproximación mediante difítr 
cíales está relacionada a una aproximación lineal Aunque la aplieac 
diferenciales a la aproximación de valores de lunción no es muv impone- 
en está época de adelantos tecnológicos, éstas son importantes comn une: 
ficio nolacional conveniente para el cálculo de anndcriuutüs. cotno'ínc 
el capítulo siguiente.

Suponga que l.i tuncion J está definida por la ecuaciiin 

V = /m

Ln puntos donde fes dilcrenciable

/•(X, = |í„,
.11 \x

donde

Av : /ti + Au - /u>

De (7) se deduce que para cualquier

si 0 < |Atj < S entonces 

SI I) < [Av| < (5 enionvcs

e > o existe una (5 > II tal que

IAv - r\x) Avl 
----------;----- :--------- - < í
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\ /ni*

f» / -\
» • \x

K\ 12

\ xi fui

Al W

------\
I

M(;i R\ 13

I siii ‘ i^>>iilli..i que ¡/i\ - /(uAi| es pet|iicño umip.ir.ido Lon |¿»j I-.s 
dettr. p.ir.1 | .A 11 siitiuuilunuUe pLiiuum / ív» Ai cmim.i buena jproxinu- 
Linn ikl v.ilor lie Al. y se estribe

A\ /lilAx ,X,

SI |Ai| e's surieienleinenle pei|ueno

[\ir.i una iiiler[)relaeion prutiea de-1 eiiuneiadrKbi, retlerase a 11 llmira 12 
Ln esta (i^ura una eeliaemn de la enría es \ = ^(i) I a roela f'I es tan¡jen!e 
a la tuna en h\ /(t». es el punto f r + i» Jí\ ■*. A D) \ la disianeia di­
rigida A/C> es Ai = /U + At) -,/(ri r.n la figura. Al > Al son posiliios. 
sin embargo ellos pueden ser negamos Para un lalor pequeño de Ai. la 
pendiente de la roela secante P(J y la pendiente de la roela tangente en P 
son aproMinadainente iguales esto es

Al == /'(O Al

lo eiial es el enuneiado (Kl
H miembro derecho del enuneiado (K) se dellne como la Jifinn- 

< lili Jf \

Si la función j está definida por l.i ecuación i = fi\). entonces la 
dirvrenciiii dej. denotada por d\. esta dada por

<h = y (i) Al (9)

donde i esta en el dominio de /“'y Ai es im incremento arbitrario de i

Ahora eoiisulle la figura 1 ^ la cual es la misma que la figura 12 excepto 
que se muestra el segmento de recta lenieal MH donde la distancia dirigida 
MR es Igual a r/i Obsene que ih representa la lariaeion de i a lo largo de la 
recta tangente a la gráfica de la ecuación \ = /(i) en el punto Pi\.J[ i)). cuan­
do ilana en Ai

bste concepto de diferencial induie un upo espectal de funciones de­
dos lariables \ en el eapiiulo 12 >-e presenta un estudio detallado de tales 
lunciones Ll símbolo <// puede emplearle para representar esta liincion La 
i.inable i puede ser cualquier mimero del dominio de /', > Ai puede ser cual- 
i|iiier numero \linnar i|ue <ll es una luneion de las dos lanables indepen­
dientes i y \i. significa que a cada par ordenado (i. Ail del dominio de JJ 
le corresponde uno y solo un numero del contradimimio de tij. y este numero 
puede representarse por f/íii. Aii d- modoque

(¡H i. Al) = / u) Al

Al comparar esta ecuación con (9) se aprecia que cuindo i = /(i). di y 
<//(i. Al) son dos notaciones dilerenies para/'(ii Ai Hl símbolo di se uti 
li/ara en las discusiones posteriores
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EJEMPLO ILUSTRATIVO 3 Si v = - r. cm.
/(O = 3.»- - i. lie miulo que /'(O = 6t - 1 De ia definición 3.101 . 
nene

<l\ - (6\ - 1) Al

Rn particular, si x = 2, entonces Jy = 11 A.r. {

Cuando y = la definición 3 lO.l proporciona dy. la difereni.U:. 
la sanable dependiente Ahora se desea definir la diferan ial de la \an^, 
independíenle, o d\. Para llegar a una definición adecuada y consisten'^.- 
la definición de </v. se considera la función idenlidad definida por/ít) = i 
Para esta función./Y.x) = I yy = .r. así. de CJ). i/y = I • Ai.esdecir.

si y = .r entonces dy = A.r i|<

Para la función identidad se desea que dx sea igual a dy, es decir, deb.di. 
enunciado (10) se quiere que d\ sea igual a A i. Este ra/onamienlo conJun 
la siguiente definición.

3.10.2 Definición de diferencial de la variable inde' 
_______pendiente_______________________________
Si la función / está definida por la ecuación y = fix). entun»' 
la difercnciul dcx. denotada porJ.t. está dada por

dx = Av

donde X es un número del dominio de f y A.\ es un incremento arb.- 
trario de \.

De las definiciones 3 lO.I y 3.10.2. 

d\ =f'(\)d\ ‘I

Al disidir ambos miembros de esta ecuación entre dx, .se obtiene

= riAl si í£i vs O 
d\

Esta ecuación expresa la derivada como un cociente de dos diferenLul.''

cuerde que cuando se introdujo la notación ^ en la sección 2 1. 's’
dx

que dv y dx no se les había dado un significado independiente íR •' 
momento.

^ EJEMPLO 4 Dada v = 4i- - 3.i + |. encuentre 

Av - í/i para (a) cualesquiera .\ y A\. (b) .\ = 2. As = 0 1: (d ' '' 
As = 0,()l:(d).v = 2.A.S = 0.(101.

Solución

(al Comov = 4s- - 3.s + l.sea 
í(v) = 4.V- - 3.V + I
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I nii’iii.cs

= /(I + Au - j{\)
= 4(x + A\)- - 1(1 + Aij 4 I - (4\- - 3i + I)
= 4x- 4- SrA» 4- líAx;- - - ^A\ 4- I - 4i- 4- I
= (Xx - MAi + 4(Ax)'

De (I 11,

¡h = / (X) f/i
= (Xi - 3)(/x
= (Xx - 3lAx

Am.

A\ - ih = 4(A X )-

I i)s resuludos par.i los hilisos (bl íc) y (d) se dan <.n l,i i ibla 4

r<ihla 4

1 X1 X\ ih 1 i¡
rh) 2 0 1 1 51 1 X om
(1.) 2 001 0 nm 0 n niKiiM
nli 2 1)001 (MiM'im onn 0I>00(K)4

(4bser\c de l.i tabla 4 xjue cuanto mas cerca se encuentre Ax de cero, la 
diferencia entre A\ \ Jx sera menor Ademas, note ijue para cada xalor de A x. 
el xalor correspondiente ile Ax - í/x es menxir que el de Ax De modo mas 
IJeneral, il\ es una iproMinacuni de Ax cuando Ax es pequeño y la aproM- 
macnin es m.is exacta que el xalor de Ax

Para un xalor lijo de x por decir x,,.

í/x = r(X()li/x

esto es c/\ es una función lineal de í/x. en consecuencia </x es usualmente 
mas lacil de calcular que Ax. como se \ lo en el ejemplo 4 Puesto que

/(x„ 4- Av) - /(X||l = Ax 

entonces

;(X„ 4- Ax) = /(X||) 4- Ax 

Asi

/■(X,, 4- Ax) - /'(X,,) 4- í/x

Ln la figura 14 se ilustra este resultado donde la ecuación de la curxa es 
X = /(x) La recta/Tes tangente a la curxa en el punto/’i X||./(X|])b Ax y í/x 
son Iguales y están representados por la distancia dirigida FM. donde \l e»

J. X Mil

\i i/i 1 \i

I K.l 14
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d punid (Xd + á.t. /(<()))• Sean Q d pumo (ro + At. /(xo + At» y 
la distancia dirigida SÍQ. Lu pendíanle tic PT cs/'(x) = d\fitx Tambi¿n,lj 
pendiente de PT es MK}PM. y como PM - íir. se tiene que dy = .í?í j 
H{J = A.v - dy Observe que cuanto más pequeño es d valor de de (n 
decir, cuanto más cerca esté d punto Q del punto P). menor será el salori 
V - dy (es decir, menor será la longitud dd segmento de recta KQi.

Una ecuación de lu recta PT es

y = /(x„) + /'(xoK.t - At,)

y la ordenada de K es/(Xf,) + dy. Observe que cuando f(X(, + A t) se aprv 
xima mediante/(Vo) + dy, se está aproximando la ordenada dd punluQde 
la cursa mediante la ordenada dd punto H de la recta tangente. De modi 
que. ulli¿or direrenciaics para estimar valores de función es esencialmented 
mismo priiceso que la aproximación lineal; sólo la notación es diferente.

[■k;lka 15

W EJEMPLO 5 Utilice diferenciales para aproximar d volumn 
de un cascarón esférico cuyo radio inicmu mide 4 pulg y cuyo espesor es i*

Solución Se considera d volumen de un ca.scarón esférico como a 
incremento dd volumen de una esfera. Consulte 1a figura 15. Sean rpuigj<lt< 
d radio de la esfera. V pulgadas cúbicas d volumen de la esfera y AV pul­
gadas cúbicas el volumen del cascarón esférico. Entonces

V = \nr^ y dV = 4Kr~dr

Si se sustituye r por 4 y dr por -L en la última ecuación, se tiene

dV = 4;r(4)Uiti
= 4;r

Por tanto. AV' =* 4;r.

Conclusión; El volumen aproximado del cascarón esférico es ¿i 
4ffpulg’ ^

^ EJEMPLO ó Un contenedor cerrado de forma cúbica y cuu- 
volumen es de 1000 pulg-^. se construye utilizando seis cuadrados ¡guales Je 
material que cuesta 20 centavos por pulgada cuadrada. Aproximadamente, 
¿cuánto debe medir d lado de cada cuadrado de mudo que d costo total Jd 
material tenga una variación dentm de un margen de S3.00'’

Solución La llgura 16 muestra el cubo donde x pulgadas es la lonciiisl 
de los lados de los cuadrados y, en consecuencia, la longitud de las aristas Jel 
cubo. Sean C dólares d costo total dd material. Como el área total de los sos 
cuadrados es pulgadas cuadradas, y d costo dd maicnal es de 50.2Ü fxv 
pulgada cuadrada, entonces

C = 0.20(6x2)
C = 1.2x2 (|i|FKiLIKA 16

Para que el volumen de un ci'ho sea de UKX) pulg’, .r’ = 1000. debe tene^ 
que.x = I0.Cuando.r= 10. .se obtiene de (12). C = 120. Así, d assio W
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malcnal será exaclamenic S120 m las Inn^itmlcs tk- los Lulos de los cuadra­
dos miden ID [)ul^. romo d cosio del maleri.il es corréelo cuando esté den­
tro de un iiiar]2en de S3.l)(>. se desea ilelerimiiar |.Vr| tal «jiie j,\r| C 3 Se 
udh/.ir.i la dtlereneial dC par.i aproximar .i(" iJe (12). se llene

dC ■- 2.4ii/r 
AC ■ 24tAi

Con t = 10.

|AC*| 24jAr|

C'omo se desea ([ue |AC| c" 3. se determinara eu.indo 24 | A i | < 3:

24 IA11 < 3
l-i'l ^ 0.
|A.i| < (Ü25

Concliisíón; I.as medidas de los lados de los cuadrados deben estar den­
tro ele un mareen de 0 I2.‘' pulg .i fin de ipie el costo loijl del material esté 
dentro de un maijjcn de (K) A

Kn la seceiim 2.4 se demostraron los teoremas para caluilar derivadas 
de l’iinctones alycbraieas, .-\liora se cnuneiaran estos teoremas con la noia- 
cii'm de I.iebni/, y junto con la derivada se presentará la lórmula p.ira la 
diferencial I-'n estas tormulas. u y i soti tunuones de i. \ se sobreentiende
iiue las lórmulas se cumplen considerando que ^ v ^ existen. Cuando

</i ' d.\
aparezca r. considérela como constante

1 d(( 1
0 V du) = 0

d\

11
c/U")

d\
= v/l"-' ir di.i") = xíí" ' di

111 d(i 11) dll lir dial) - ( dll
dx d\

IV din + V» dll 1 di IV diii + V) = dll + di
í/v d\ d.\

V </üir| di , .,</» \" d(lll) = II di + idll
dx di di

, ‘í-! - t
dx dx .(») ‘f" - » '

dx r- ' l ' V-

VII dtu") II 1 tiu= nii'' ' -r \'ir í/ln") = lili'' ' dll
d\ di

La operacn'm de dilerencuicion se extiende de modo que incluya los 
pr«icesos para calcular la dilereiiual así c«'mo l.i derivada Si \ = /l»i. dy 
puede obtenerse al aplicai las fórmulas I' \ II’ o calcul.mdo MO > mullipli- 

cándola por d\.
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EJERCICIOS 3.10
III lin i ¡t II u ¡<‘\ I ii-i. iitiíii I 11 lili liiilii til Ninloii ¡nirti (l< Ur- 
iiiiiuirhi nir rmllU hiiiiiiii loiniiii iiiiiinn ifiii\ ilmiiitilci

1. »' 4«- - 2 0 2. íu’ f t I = 0

X V ♦ 1 I) 4. i' + » I = N

III li'\ i'jiriiiwi ^ ii ID iini'lii il iiiítinlii til Ntuliiii ¡uirii 
mil iihir ion iipriniiiiiit uní ilv iiiih uiiiiií. il uitur tiiirininuiilu 
ili Li ftir iiiiliuiilii

5. »* - 4i S = <1 )j nií/poMliv j

<1. »‘ - 2» + 7 - (I. íj ral/nt'í!Jli\J

7. »■* - Hk + 5 = 0 la incnornii/posm\a

8. i' - lOi + 5 0. la iiu>nr ral/positiva

y. 2i‘ - 2i' + Ir - 4 = 0. la ral/negalixa

II). i‘ + i' - - X - 4 = 0. la ral/posiiiva

III Im I jvri u io\ lia N. iiu il nulinio tic A't mIoii ¡nira ohii - 
ncr t!\aliir ilcl rtulnal tiiiuiiu ii i ifrattiu tiiialcf

11. .1 r+sulviLiidolao-iiJLion i’ - ^ = 0

12. s 10 rcsolviciulo la a.iULiiin t' - 10 = 0

1.1. ¡,0 toMiKii'mlo l.ic+uatHm X ’ - (i 0

14. 5,7 asiiKitmlo lacaiatiiiii V' -7 = 0

l.ii los ijinuios /5 a IH. i//»/i</hc el iiutoilo tic iVeiiri)/i ¡nira 
iliti niiiniir ion iiiniro i ifnis ilu iiiuili s h loonhiiiulii \ lUI 
¡i.iiiio til iiiiersii I ion lili imiihr iiuitlriiiiii th las i:rofuas ilc 
las líos 11 iiai lo/it (

15. X = X. \ = tus» 16. X = [ j. X = sen i

17. X I*. X - sen t 18. x - x-, x = tos v

III los i/tn II IOS ID a 24 lui\ia lo situmiiu ¡nirn la fian ion f 
lili ohli ii\;ii la niirounuii ion liiiiiil lie fu) tn r = 1 ihhiiniu 
la n spiii sia ili I ini isa (a) sirafít aun me (i) < oinpnrc los \ a- 
loies ih JlxlialiiiUiilos a partir ih la aiirownai inii laiiiil Util 
au Mí» <ai ion los xíjWex ih Jiiiu ion ohu nulos a partir ile las
II nai loiit s llallas t naiiilo r < x iipial a 0 0.0 9*), I. I 01 x I I

ly. /(XI = t- 20. /ui = x'

21. /ixi = 2sx 22. /u) = ^
í'

2.1. /m = tus X 24. /(X) - sen i

III los eji IIII IOS 2^ a 2A uil tlili nnnu í/x \ Ax pata los ki 
Ion s til X X Ax í/i)/);/»»/( la liniliia s los si\¡nuiilos ih rula 
iiiiliiiiilosiasas loni;iliiilcs son ils s \s

25. X = X- X = 2> \x 0 5

26. X X'. X = 2 > ^x = 0 5

-7. X \ X . X h> .\x I

28. 1 si X - 4 \ A X I

I n los 11,1,1, IOS 2D,i <1 I al.nl, unSs. Ihiih. u i \s - ,¡\
2‘>. V i ’ - Ix. X = 2.Ax = 001

.11). X = X 1x. X I. Ax (102

■ —.X -2. Ax -01
X

.12. X = i. T = i.&x = -02
T

.1.1. X = x' + 1. r = l.Ar = -0 5 

34. V = r' + l. X = -I. At = 0 1 

l íi los cji ri li IOS ti 42 i ali ule tis

35. V = (3x- - 2t + D* 36. v=
r- - 2

37. V = rN2“3 38. V = X 4 - 1-

39. V =
2 +■ eos t
2 - sen xr

41). X =
' 1 1

t* sen — - X tos —
X V

41. X = tan* X seV X 42. X = eot 2x tse 2i

43. 1-1 medida de la arista de un tubo mide 1.5 emxamur-
posible deOOl tm F.mplee diferenciales para dcte:_ 
el emir aprinimado al taltular a partir de esta r-:^ 
(niel Xolumen, (bl el aa-a de una de las caras

44. Una taja tncialita en fnmia de cubo tiene un xi’-- 
inttnurde lIMHltm' Las seis caras serán de incij i: a 
de espesor Si el toslo del metal que se emplcoao. 
SO 20 por tenuiiieirn cubito, ulilite diíertnuales p.-. 
terminar el tosto aproximado del metal utilir_i c. 
tonsirutcioii de la taja

45. l'n tanque cilíndneo abierto tendrá un rcsfiir.' . 
2 Liti de espesor Si el radio interior es de 6 m) b-- 
es de 10 III, obtenea mediante diferentialcs b 
.ipro\iiti.ida de malenal de rexesiimienlo que eeirpí-'

46. fc.1 tallo de un hongo es de fximta eilmdnea > leiU 
2 eiii de altura > r eentimetros de radio tiene un' 
de l eenliineiros euhieos. donde V = 2."r' l •’ - 
reneialfs p.ir.i ealeiilar el meremento aprx'XinuJ A- 
meii del lallo euaiidu el radio aumenta de 0 4 etn a ' *

47. l na x|ueinadura de lx*mia cireular en la piel deu*a'- 
na es tal que si r eeniinictros es la longiluJ del n- 
eeniimeiros cuadrados es el .irea de la quen—'• 
torees 1 = Tír' l liliee diíerenciale-. para d.Icr- 
disiniiiueion .iproMinad.i del arca de la queni-dj'^J-'-' 
el radio disnunuje de 1 em a 0 S un

48. Cierta baelerta de tonna estenea es tal que si rr-C-' 
la longilud del radio y I" mieras tubieas es su' 
entontes 1 = 'J/rr‘ Empleo dilereneialfs pan A"'" 
nar el meremento aproximado del xolunien ilc bl'- 
tiiando el radio aumenta de 2 2 piiii a 2 1 pin

4'7. L ti tumor en el euerpii do una persona tiene íomuC' 
de inndo que si r eontmielrus xis la medida xJfil c--” 
ecntimelrtis eubiuis es el volumen del liiMU’6 
1 = , m ' Uliliee diferenciales para delemiiitJ ‘ 
erciiientxi .iproximado del volumen del luim'f 
radu* aumenta de 1 5 un a I 6 un

50. Si i segundos es el tiempo para una osulaeiixi s»*^' 
de un péndulo simple de / pies de loneiiuA 
4ti-l = donde X = 12 2. Un reli'l quci«=-"

.11. V
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f^nJuI» Jí • P“-' adclunla 5 minuuis tadj din Dclcmii- 
nc 1j k.anmljd apnutmada (juc debe alargarNC el pi!ndulii 
juratuneisif !•» mexatrnud

51 U nicdida de l.i irsiMencia ck’etneu de un .ilanihre c« 
medida de su Innfilud e mversamen- 

ic pn<r>’'sH>rul jl cuadrado de la medida de su diámetro 
Supontta la rcMstencia de un alambre de lon^uiud dada 
ce ijkula a partir de la inediuon del diámetro con un error 
pmihle dcl 2'i Detenninc el cnor porcentual posible del 
lilix lakulado de la resistencia

52. l'n kontralista ucuerda pintar los dos lados de KHX) se* 
fíales circulares, cada una de m de radio Al recibir las 
señales, se dcscubno que estas son I cm más grandes Use 
diferenciales para determinar el incremento porcentual 
jprninudo de pintura que se necesitará

53. Si el error posible en la medición del solumcn üc un gas 
es de 0 I pie' > el error pemiitido en la presión es de 
OüdlC Ib/pie^ determine el lumuño del recipiente mas 
pequeño para el cual se cumple la le> de Bo)le (cjcreicio 
13 de la sección 1 lü)

54. Pora la les adiabática de la expansión del aire (ejcraieio 24 
de la sección 2.10). demuestre que

55. Demuestre que si la lc> de Uo>lc se cumple, entonces

ilP _t/T 
P ° V

56. I n rollo de unta llcxible de /. pies de longilud, fijaili en 
la parte superior de una labia iiicliiudaque lorma un ángu­
lo Wcim la luTironljI. se deja r»>djr por la tabla

Vea la figura adjunta Si T segundos es el tiempo para que 
la unta se desenrolle completamente, entonces

Demuestre que

^ _ dO 
r 2 rmi 0

ND" s.

57. Las ccuacionc's de la lonna tan t + <u = 0 surgen en
pniblemas de conducción de calor Las raíces positisas de 
la ccuacKín en orden creciente son a¡. O;, a,. . . Si
n = I, determine flj y Qi con cuatro cifras decimales

58. Siga las instrucciones del ejercicio 57 considerando 
(1 = -2

£jj lti\ ejframn 5Wy 60. tina aproxiinaai'n para .T
iim amo ctfrax lieiimalft utilizanJo t¡ méhhio Je Sewton 
para reMih er la a uüí ion

59. un 1 = 0 60. eos .t + I = 0

61. I-Áplique como se uiilt/a el concepto de diferencial para 
aproxmur valores de función

REVISIÓN DEL CAPÍTULO 3
► SUGERENCIAS PARA LA REVISIÓN DEL CAPÍTULO 3

!• Explique la diicrcnua entre exlienio relamo > «'vfrmo 
oñjo/umticunatunuon

^ Invente un ejemplo de un.i lunuon I que tenga un extremo 
rrUlivo i-n el punto Pu JU )j > para la cual se cumplen las 
vondiuoiics siguientes

la icUj langeiue a l.i gr.iticade f en /'es lion/onut.
1 •nvclJLuigenlealagtaficade/en /’cs vertical.
I a liráficj de (no tiene tecl.i t.ingeiite en /*

^ Ijiunui el icoirma Je! \ator «’Wmwo

^wriha cómo determinaría los exiicmos absolutos de 
“"a luiiuiiii que salisiace las condiciones dcl teorema de! 
‘Jl-ircxiiciiio
*"'cnie un ejemplo de una función que satislaga las enndi- 
oiik» dcl teiiicma del vulor extremo y que tenga la pro- 

indicada
la función tui tiene números críticos.
^’lii im exlrenio absoluto ocurre en im número cntico.

(V) los dos cxitemos absolutos ivurren en nunKtxrs cnticx>s. 
(di la luiKion ttenccxacl-imenle cIck númerosc'TUIcos pero 

ningún exlraimi absoluto evune en los nuiiKnncnucos.

6. Invente un ejemplo de iiru luncion que satisfaga las con­
diciones del leonmu del valot extremo > para la cual el 
valor mínimo absoluto ivurra en un numero cniico > don­
de fu ) no exista >
tal la gráfica de f no tenga recta tangente en el punto 

!«•./(*)).
Ib) la gráfica de í tenga una recta tangente vertical en el 

punto (r./(i II

7. i,Que directrices dclwii seguirse cuando se definen las va­
riables empleadas para obtener una función como motlelo 
Hiii/r/mifico de im problema veibal ’

H. , Por que debe establecerse el dominio de la función que 
uiili/a cumojmxJelo matemático para resolver un pioble- 
maveibal.'
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'). \ lili lie .ijilk.ird lei'ieiii.i ilel v.ilur c\lrenio j'.u.i reviKer 
un prnhleui.i vcih.il que iiii|’1il.i un e\«eim> .il> ultitn. .qiic 
miulieinnes ilel>e '•jlisiji.er 11 lutiLioM que se iiiih/.i uuini 
iiinilelii '

III. lili queje el |)rni.Liliiiiieiilii (¡iie iiiili/.iri.i par.i re nlver 
un jui'blem.i .ctlul que mipliL.i mi e\(íemu.il»--i'lutii en tm 
iiileii.iln ceriiiilu

11. Inuniie > piiipi>ru<me l.i inierpiel.ieum peunieiriL.i del 
lii'unuiih Hotli

12. I nunue > pnijioriiuiie li mieipiel.u.ion i:ei>indrie.i del 
hi'iimn ihl uiloi n.tilin

13. I xplique puf que el lemeiiiu de Hulle ei. un c.im) espeei.ii 
del leorem.i del i.ilnr medio

14. lauto en el (eoreiu.i de Rolle eomoen el leorcin.i del \utor 
medio >'0 requiere que l.i luneion / ''ea Loniinu.i en el in­
tercalo eerrado |<í, Ii\. pero ililereiieiahle m'iIo en el ínter- 
calo abierto lir. h\ [-'piique por qué lio teurema>. son 
calido-, alando / i<m. r i/<io ambos nocMsieii

15. I i’or que es in.is imporiaiite la ecisteiieia del numero r, 
paraiiii/ado por la eondusion ilel teorema del calor medio, 
que el calor real del numero t ' Im su respuesta enuiiLie 
situaciones en las que ‘. -lo la cMsteneia de c miporia c no 
■ij calor

16. Incaute un ejemplo Je mu lunaon (pie -ati-ta;'a las hipó­
tesis del teorema dd calor medio peto p.iia la cual no se­
pa».I.i determinar d calor exacto del numero i paraiili/ailo 
jeor la conclusión

17. Ddiiia la Inncion t US I ronme en im mierc.do ,Coim> 
se dele miman.1 analilicanienle que I es ereeienle en el 
inicrcalo cerrado |.j. h]'

]K. Dclin.i la lunaon/es(/art'i(c/iicen un iiilenalo .Cómo 
su deienniiuna .iiuliiiLjincniu «juc* t us decrucienle un ul 
inturcalo eerrado [u. h\'

r.nunciu d i nirno ilc Iti (>nnu ni ih imuln para uxlremos 
relaticos

211. , r.imo ducurmin.iru aiulitic.iinente los uvirumos rulamos 
de una tiincion'

21. Inceiiie un uieniplo de mu luneioii dilereiicuble ipie ten- 
j;a ux.ietainunte dos extremos td.iiivos Dibuje la ^ratlca 
de la luncioii

22, Irnume un ejemplo de una timuiui dilereiiuable c 
lio line.ii que no leneu extremos lelaiic o> Dihuie la prafica 
de la liinaiin

2.3. Iiicenie un eicniplo de iiii.i lunaon uinimiia que sea díte- 
leiiuable en todo punto exeepio en d onjrcn. quu lenea un 
c.ilor mmniio rel.iUcocn d oneen. > cuj.i ¡itálica no tunea 
reda f.inL-enlc en d oripeii Dihiije la ¡irátiea du la tuncion

24. liiceiile un e|eiii])lo de iiiia lunaon aiiitmiia que sea dilu- 
leiiciahle en lodo punto excepto en el uneen. que tene.i un 
calor imnmin tel.iiivo en el onyuii. y cuca gratlca tenga 
una recta laiigeiile en d origen Dibuje la gnilic-.i de l.i 
lunaon

25. Imeiitu un ejemplo de una fununn eiintinua / ^
dilcrencuble un lodo punto exuupin en el ongen.) u
/ no tenga un uxirumo rul.itico un d ungen Dihjj.-Jjj. 
tica de la luiieimi

26. Ddin.i la gnifica de I.i lunaóny es ii¡iu,n,i hunjcr, 
un ul punto if. f(i )í ,rúmo dulurmiiuru analui.i-- 
ipiu la gr.ítica de una lunaiín us aínc.ica lucuMm*-jc- 
punto particular'

27. Deliiia- la grallea du l.i tune ion J us « «Vk.juí

un ul punto l«. /(< M , 011110 dctcTnmiarM ¡inalit..,- 
que l.i gráfica du uiu lime ion us ameac.! luua . 
punto partieular'

28. Dellna: ul punto (■, fii |i us un ¡niiiio ih m/7i-ui<n. 
Ilea du la (iineion / ,romo determiiuna anjli:;..- 
los puntos du innexum du la grállea du una ture-

2V. Dibuje la graliea du una lunción J para la cual laer._ 
tenga un punto de iiiriuxión en ii .Jii 11 donde I o 
y (( ) - i. / U) > ti SI i < <. > I tu < Os] ( ./

.3(1. Dibuje l.i grafiea de una luncion I p.ira la cual [j.- _ 
tenga un punto üu mfluxion un (<. tu ti dimde/ u 
/OI a II / ( U < II SI l < < . \ / n I > (I st l > .

31. Dibuje la graliea du una tuneion I para la euJ U je_ 
tenga un punto du mtluxion en K. tu li dtinde/s- 
exista. 7' (u > (ISM < (. > I H1 < (IM i > (

32. í-.nuncie d i nh rm ih lu \if;iiiiJii itcin.itlu pjraciL-.-. 
rdalicos.

33. .C'u.indo US más fácil aplicar d cnterm de L . 
dern.ida ’ , Cuando es mas laul aplic’.ir d criter 
primera denvada' , Pueden aplicarse 'lenipre e: 
nos ’ lixpliquu su respuesta.

34. ineente un ejemplo c dibuje la graliea de iiiu l.. 
para la cual fiOj. / lOl x CiOi son iguales a (l.de-i; 
tul / (lene un valor immmo relaticoen 0.
Ib) / nene tm calor tnaxiino rel.itico enO.
(c) J no nene extremo rdaticoctt 0.

.35. Defina preeisaineiitu. iKili/ando la nina.tén í-' 
uno iJc los sigiiiunlus lírnilus (ul lim rn =- 

(b) lim /Ul = /.. F-iumeic en paLibras K’quec-I--'- 

de estas delinicmnes signifiea sm emplear la f.’—■ 
€ .V m las pal.ibras liniitf. ce npruviiiíi u. irfir..:' ■' 
cm liiiiilc o iU (ru f un liiinic

36. , Como su ccaliia ul límite de una lunaún raciwi-i- 
c urcec o deerccu sin limite ’

37. Iiueiue un ejemplo de una runcioii / que ilu'tfs' c--' 
de los siginemcs limiius. (ul lim /"ui = i-

(bl Imi fui .-í 5.(cl lim /ui = -2.

(dj lim /uj = (l.(ui Iim ft\) = tCo;

(fl lim yui = -00;

38. Detina: nuiiioUi linnzoiunl de la gráfica de una lurs-

.39. j.C'omo pueden delurimnarse las .Lsinlotas hen/i’"--- '
la gráfica du una runcion ’

40. hicuiuu un ejemplo du una runcióii cuca erat:*j‘* 
rucia t = .5 coiiu' una asíntota ccriical 5 
' -4 como una asíntota lion/onlal
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St U «cw ‘ '■ ^ «'intuía 'crtical de la gráfica de la
(k la lutwion f., cuáles muí lu' posihiUdades dcl 

^^mp-Kiaimcnti* ifc I.» gráfica de / en el pumo (r. JU (j7 
mliOTacion adicional, obtenida u paitir de la gráfica 

jf U denvada de J. garanli/urá un cumponamiemo espe- 
.itRodela giafica de/en ((./<« 11’

4i Si la pática de la derivada de una fuiiciiín/revela que/ 
nene unevireino relativo en r.i cuáles son las posibilidailes 
del ciHiiportaniicnlo de la gráfica de fen el pumo j)?

informacii'm adicional, obicmda a partir de la gráfica 
de U denvada de/. paranti/ará un comportuniienio espe- 
cífM) de la gráfica de /en U.fki)>

43. Ok es una t¡unii>ta ohin ua de la gráfica de una funciiin ’

44. Cuindi' la gráfica de una función racional tiene una 
asíntota oblicua y cómo se determina la ecuación de 
Uasinlnla'

45. hJalKHr un resumen de los pasos que deben seguirse para 
dibujar la grafiea de la función/definida por la ecuaenm 
, S fix).

46. Euiuncic un teorema diterente del teorema del extremo ab- 
vnlutuquc garanlicequc on extremo relativo de una función 
en un intervalo es un extremo absoluto de la funcn'm en el 
intervalo Cuando resuelve un problema que involucra ex- 
utmos abvoluiiis., en qué cimdiciuncs cmpIcMría el teore> 
ma enujK'iado cii lugar del teorema del extremo absoluto'’

47, (lii Invente un ejemplo de una luncirtn para la cual pueda 
aplicarse el teorema enunciado en el ejercicio anterior para 
determinar un citremo absoluto, de modo que no pueda 
aplicársele el teorema dcl valor cxiremn. (b) Invente un 
cicmplo de una función para la cual se puede aplicar el 
teorema dcl ejercicio anterior o el teorema dcl v alur extre­
mo par.i determinar un extremo absoluto en un intervalo.

48. ,.CVimo se aplicaría el mi'itnUi de Nenltm para determinar 
los ceros de una función? fin su respuesta enuncie la fór­
mula para determinar c^. g a partir de jr^

4‘J. jf'ómo se estiman los valores de función mediante la 
aproximación lineal? ,,Quc condición 'ocondiciones) debe 
satisfacer la fucKión / en el número para estimar /(x,J 
mediante aproximación lineal ’

50. Si V ^ /I n. defina las diferenciales dv y <it,

51. ¿Cómo están relacionados la diferencial d( y el incre­
mento Al? ,.Cómo están relacionados la dilerencial d\ y 
d incremento Av ’

52. ¿Por que la derivada de una función puede expresarse 
como el cociente de dos dilcrenciulcs'

53. ij’ara que tunción son iguales las diíercncialcs de las sa­
nables independiente y dependiente’ Muestre esta igual­
dad geometríeamente en una figura que contenga la gráfica 
de la función

► EJERCiaOS DE REPASO PARA EL CAPÍTULO 3
12. (a) /tt) = «' - 9r* 5;|-l.2|

tbj /(i) = .t-' - Mr- + 5:1-2. II
Em kn e/eiTu loi ¡ a lU. (a) dibuje ¡a gnifíro dr la función en el 
«rna/í» mdiiado (b) Duurutre Im extremm iibmlulos de la 
fmKnrnelintrnuh, s» exiue iiliiiinu. vdelenmne Im xalorcx 
¿t/wru hfiualex iH-urren hx exireinm ubxoluluí.

I- /'ti - s 5 + X. [-5. +0O)
I fui = i/4 - -t- ;<-2.2)

3. /!„ = |ij -.r2¡;¡-2.4| 

i /U| = |f) - t2|;|-I.5|

í./lx)= -p^;|0.41

' n-^i

13. /Ir) = sen t + eos r. | -1. I ]
14. /(i) = 2cosr r;|-l.3]
En Im ejen lam 15 y Ifi. verifique que la\ irex t undiciimef de 
la bifuitexis del teorema de Rolle v«n íatnfechm por la función 
en el inien alo imlu ado. Despuéx eiicuenlrv un valor adecua­
do para V que satixfuga la roru7««dn del teorema de Rolle 
Apove vráfií ámenle la eleeción de c trazando en el mismo 
reeidnftulo de inspección las gráfica-, dv f\ de la recta rum;en- 
le /iwrirori/o/<71 Ir./le)).
15. /(r) = .r’ - X* - 4r + 4, [-1. 11

16. /ix) = 2sen3r:lU. ^;r|

’'• /ir) 

/ir)

/i«)

2scn3i.|-\n. J/r|

•»W2t.|0. ^rr|

2x -) .4 
+ 4

si
SI

-2 fi » < I 
I s t • 2

;|-2.2)

'»• <r„ .9-1 SI 1 -
1 15 SI 4 s r .5

J, r**^”*‘ /■^- (ij riíiMjc cu la giajicadum las exlre-
/m,- / .,* unen alo tiiduadn (til Ci>"-

"''imi tiux aiuditii uiiu-nit

* ' 12r- -r 16.1 4.2)

/:« los ejercitios 17 a 20, \enfitque que la hipótesis del teo- 
ifina del valor medio es \ufnyei ha por la junción en el míen alo 
induado |u. b] Después encuentre un »u/or «;dc<«if/o/wru c 
que xalixfogu la conclusión del tcoiemo del valor medio. ,\poye 
la elección de c trazando en el miuvo recidiigulo de Inspec­
ción la qrdru a de f cu el iiitenalo cernido |u. bj. la recta laii- 
genlr eii («'. /(«')), .v ¡a reí tu secante oiie pm" ; or /m punlm 
ia. /(o)) y (b. yib)) y niovirundí) que las rectas tangente \ se­
cante wn paralelas.

17. /it) = s/3 “ t
18. f(.r) - x-*;(-2,2)
19. /u) = 4eosx;! ¡;r. 4^)

20. /txi = 3 sen *x:|0.ffl
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21. (a) Si t es un.i luiicmn pulimniiuil y Jui). /i/o. t'un y
l ili) son cero, iiiilitc d tcnieni.i Je Rolle par.i tlemos- 
Irir ([110 evisieii .il menos Jos números en el inlers.ilo 
.il'icrio (ir. /') i|iie son rjítes Je la eeiiaeicíny "(U - (I

(Im Deimicstre i|iie la rnneiim Jet'miJa p<ir 

/<U = (,r - 4)-’

sjiislaee el iiieiso («i si el inlcrvalo (n, />! es (-2. 2i.

22. .Si /es la luneit'ii JefiniJa por/Iu = |2r 4¡ - fi. en-
iimees/c-li - Dy/(5l = 0. Sin embarim./'<'» nunea es 
eero. .Muestre por iiué el teorema Je Rolle no se aplica.

Pi¡r¡i lti\ fuiu'ii'iu\ <lf //M cjt nu io', 2J » 24. no exilie «weiói 
luirntri' <■ (71 «7 iiUfmiltt iihierin («. I>) (¡iic .uiihf(i¡;íi la cnii- 
I luuán lid /(7<r«7mí ild uilar nicilia. En aula cjcrvicuK tlvicr- 
wiit- t/ui íiwJúiíin ¡Iv la hipáicsis ¡Id leorcma ¡Id uilar 
medio no it' ciimpU'. Dibuje la >iráfií a de f y la recia ipie pa^a 
iwrl'\piinlin (a./iaUy (/>./(/>)(.

, 4 — \ SI .t ^ 1 /I j ^23. /(t) ; <j = fl, h = }
|{i - si I < .»

24. /ui = 2(1 - 2r‘'’;<; = -O.h = 1

En li'\ ejrrdcins 25 a 52. la) irjce la |•rliJlra: deiermine a par­
tir de la urájlra th) lin rtíremos relaliein de f. (el lin ealnrei 
í/f.t en lili i/tie tu urreii Im e.ilrcmos rdatnw, (d) hi\ iiiierudm 
en lii\ ,iiiefe\ en nenie, v (e) hn iiuenalo\ en lo.\ ipic/<m de- 
i reí iente. Ciinjirnie aiudiiieamenie la in/orinadiiii idileni- 
da priiju ámente

25. flxl = x' }x- - A

26. /(») = ,t' , li- .► .r - 5

27. Itx, = IX - 3)*'' + 1

2N. /(ti = tt s- 2)''’ - 3

2!1. /i I) X - tan »; .r G i- !, tr. ni 

.3(1. /(i) - sen 2» - cosI\;.i G 1- ' rt. ';r|H M

.31. yi») * u + i)-/'(t - 3»- 

32. Mti - ,r \25 - .t-

En hn ejeren iin .IJ a .16. Iiiií’m lo \ii;iiieiite: ful delennine lin
eurniun rdaiivm de /,' íli) olnniKa hn xalorex de i en hn ipie
ocurren hn , xtremm nhiliem. leihn inienahn en hn ipie/es
i'fí r rV«/(-, idi hn inlen nhn en hn ipie f i . dei reí n nte: le) halle
hn piiiUin de inlle.xion de la iirájii a de i. i¡) delennine en ddn-
de la uratua de / rt ciiiiuiva hacia arriha; Ip) delennine en
ih'iidi la KH'lira de l'e\ eiiiicaxa hacia ahapi Ihlnije la .i;ráli-
I a de la ínncií'iuii>arlirde hn rexpiieuax de hn iiu iun la) - If;)

.33. lixi « (I - 4)-(. 2)'

.34. /(t) - (,\ - 11' (t - .^1

,. .. I (1 - i)’ si V <; 1
.3.S. yul = '“ '

|l 1 I,' SI 1 < ,

36. nx) = j-'' -

f:n hn ejt n'ienn .17 a -I-I. exanie en la úríiíícur/íiní hn inin¡a\ 
de inlleuihi de la yrJfíur de la iiniuon dada \ en donde la

íjrdfiia ct lónraya liaeia urnha y en dónde lo n luiiiuctr, 
Ciinlirwe hn eUiniaaamn aiialilh tímenle

37. I,a timeión Jel ejercicio 25

38. La timeión Jd ejercicio 2ft

39. lai función del ejercicio 27 

4(1. lai función Jel ejercicm 28 

4!. La funeiiin Jd cjereieiu 29

42. La función Jd ejercicio 30

43. La función Jd ejercicio 31

44. lai función Jd ejercicio 32

En hn ejerciehn 45 y 46. dihiije inui poreián de tu srJj'itai 
íííifí fian ión f <¡ue pase por el punto donde .x = c y i¡ut ic. 
yn hn eondieiones dadax. Supoiii;ci ipief et cimlimiaenc’.;.' 
iiiicn ah) ahierio (jiie conliene a c.

45. (u) f’l.x) > Osi.i < c;/'(A') < Osi.i > c.
/"(,v) < Osi.t < r.ytr) < Osi.r > t;

(h) yi.v) < Osi.t < r.f'l.x) > (Isit > 
f'l.x) < Osit < r;/"(.c) < Osi.t > <-

(c) riv) > Osi t < < Osit > r.
/"(ti < Osit < r;r(i) > Osit > e:

(íl) fie) = 0,/"(<•) = 0;/’(t) < 0;sit < r. 
rit) < Osit > <"/"(t) > Osit < c;
/"{t) < 0 SI t > <•

46. (a) /•{.) = -2.fie) - 0;/"(t) < Osit < e;
f'l.x) > Osit > t-

(h) fu Inoe.sisie;y'Vt) > Osit < t;/’’(t) > 0
M .r > c.

(c) /'(t) < Osit < c:f'(.x) > Osit > c, 
n.x) > Osit < < Osit > c:

(til liin fl\) = 1; Hm /'(.t) = +oo;/(rl>tl

SI t < (■;Z'it) < 0 SI t > f

hn hn ej'eteieKn 47 y 4d. dilnije una i’oreiiín de la 
niuijinu lón f ipie paxe por hn piintin (a. /UD). (h.Jihu. l* ( 
t (d.Julli V ipie .\alixfaj;a hn eondirianex thuhn. Ttimhdi- - 
je un \e,i;menlo de la reeta tani;cnte en cada uno df ciri'iy-' 
hn. en caso de ipie exi.ua la reeta .Si/pn/i-'•'
a < h < (■ < d V tjiie/ex eontiniia en idiiiin inleruili“^- ‘ 
i/ne contiene a a v d.

Al. (a) fui) r i);n/>) = -1. ncMKie.sisie, 
f'di ii.rui < Osit < ik 
/■|0 -- Osi/» < t < r.ftx) < Osit > i- 

(I» fui) > U-.fui) = D- fib) = 1,/'■(/» = ”■
/'■(( I = 0;,/((/) noexisie;/”(t( < 0 
si i < > (Isi.r < t < Ik
f'U) < Osi/» < t < d:f(x) > Osit >

AH. (iii /•(„) U.iih, ,. -I./ -,/,, ^ ()./■(,-I - "

luí u.fuli - -l.fuli - 0;r(»i
si t < /);/"ui > Osi /, < , <
I I .U 0 'i ( < X < d.f’íXi > Osi i >

(lo /'(ui lili cxisie;y'(/>! :: O./ii) . 2; 
f'u ) = O./ k/i - ii.y'(i) < (isi i < <».
/ ' 111 1- 0 SI o < t < e; yU) < 0 '1 » > *'
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TI lili'' ii '-• /‘I /11,'iirn tuijímhi iiuifMin hi f^ril/hii 
</>' ""‘1 /ii'nii"! / I iiv« i¡i'iniiiii> i-\ ti i imjiinui ilt 

/i’i "ii"'''< ' ' /‘II ““I I' < < n tiiílii niiiiuTo
{[tjrlirJf l‘i V't’lií'i Jilt'iiiiiiu hi mlormtit luii <-

«■« ""‘1 ui'U'jiiiilf <1 Im hilildt t¡f la tiiiiim
Ih mil’' i >i ¡¡¡u / « > i m unti, liitli>\ inlmtiltn

11' i/i 1 N .Ti iií«. uní tí'K ftin-nun it'hiliuu df /, U\I 
¿a//1j «,'wffi i» </'■ N 1 ii'diimi /ii;t íii íirrihíi. fMilmiJf In

‘ /lili iii <i/'iijn. (ul /i)s piirutn dr iiillfxum dt'
fíd’tiif hi i’iii/ii.i di lina fuiii iini/</iic /t7ii,'i/ las 

prtyiJi~lt \ di liitahlíi u Im iiint murmdfj um Im indiuidm 

J9. U''vcr.iMlc/son - 4 \ 0

50. Lh l.oflP^ de / son \ 5

1

'•"•U-tl)MJi-/'sOll0v 1

52. 11 Lcni de I es -I

.i

l.n Im tjiTiuirf 51 ti 5fi. en la Jiuiiru adjimin \e iinicUni Iti 
i;rafu a de la fuiii uhtf i '.e^menlin de tamienh \ honz<"iUde\y 
de iiijlexinn Dcieninin la \i{;iuenie iiifnniuu iiin a ptirlir de la 
liiiiira«' iiiinrpiirela in iiiin laida uiiulara lux laidas de la • 
iiihi J 6, li) las ¡nlcnuhn en las ipie f es i reí lenle, (iil las 
iniertalas ui los ipie f es deireiienie. Uní las crm'HiiM rela­
mas ilef, (111 donde la gr»i/7( u t/e/fs i áiuaiii luían arrihu, |i) 
donde la i'ráficn de f laiitain liaeia ahaja, (si) las ¡nniias 
de inflexión de la i;r(i/n u de f A partir de la labia, dibuje 
urajh íis pasibles de f \f"

SX

I ■Í.3)

54.

Á
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y

En los ejetriaos $7 a 60, deirmine el límite y apoye la reipuei- 
la gráficamente.

Km * 2x-S 
1- + 4

llm

lim

iim

4-r - 3 
5t' - X + 1

• -f 5 
-- 2x - 4

8x^ + 7x - 2
7x‘ + 3x^ + 5x;

lin los ejercicios 61 y 62, realice lo siguiente: tai trace la grá­
fica de la función / y haga un proposición acería del lom- 
portamtento aparente de ftx) canfonne .x crece sm tfniile. 
(h) Confirme analítiiamenle la respuesta del inciso 
ta)calculando lím fis).

61. f{s) = -fj + i - -fx ,

62. /(x) = ♦ X - Vx* t 4

Ln los ejercicios 6J a 66. determine las atintoias de la gráfica 
de la función. Apoye los resultados irazanilo la gnífha > las 
asinUitas en el misma rectángulo de inspeci lón

65 /(T) = -^3 66. /(X) =

l.n los ejercicios 67 a 71), la) iriicc la gráfiiii de f. 
NDER(/(xJ. xj > NDER2Í/ÍX), x) en rcctihigidos de inipec- 
cuín sejHirados y estime lo siguiente: (i) los iniersalos en Ln 
que f es i reciente y en los que es deirei lente, (ii) los eute- 
mos relativos def: liiiidonde la gráfica esióncasa haiiaam- 
ha y donde lo es hacia ahajo, (iv) los puntos de inflexión de la 
gráfiia de f. (b) Confiniie las estimaiiones del muso la) una- 
Utu amente e incorpore la información en una labia semejante 
a la tabla 4 de la sección Jh. A jiartir de la wfoniuición de esta 
tabla dibuje la gráfica de f y rom/>árela i im la gráfica de f 
trauida en el inciso la)

67. ftx) = 2x* + 5i' - 2lt' - 45t + 27

68. /(X) = 3x^ + Rx-' + ^v* - 2v

67. ftx) = 6^x - X 70. ftx) = Ix'’' * x*'^

71. Determine el valor máximo absoluto alcalizado por Ii 
función / SI /(T) = A sen kx * B eos JLx, donde A. H y l 
son cunslanles positivas.

72. Si ftx) = !«•' + hx^, determine o y /> de modo que la 
gráíica de / tenga un punto de iníTcxiún en el pumo 
(2, 16). Apo)e la respuesta gráficamente

73. Si ftx) - iir’ + hr + ri. determine a, b y c de modo 
que la gráfica de/tenga un punto de inflexión en el puniu 
(I. -I> y que la pendiente de la tangente de tnflcxiiín en 
ese punto sea -3 Apoye la respuesta gráficamente.

74. Si ftx) B dcmueslre que la gráfica de /tiene

puntos de inflexión que son colincaics. Apoye las rnspuev- 
las Ira/ando la gráfica de / y la recta que conlienc a los 
puntos de inllcxión

75. Si/(x>= r|x|, trace la gráfica de/y demuestre analiu* 
cántente que el ungen es un punto de inflexión.

76. Sca/(T) = r", dondenes un numemcntcniposiiivo.
(ul Demuestre que tu gráfica de / tiene un punto de in­

flexión en el ungen si y sólo si n es impar y n > I 
(b) Demuestre que si n es par. / tiene un valor mfnimu 

rclativocnO

En los ejercicios 77 y 7B. confinne analiliiumente la eriimu- 
ción obtenida en la graficiuJora en el inciso Id) del ejenicio 
indicado de los ejercicios de repaso del capítulo I

TI. (al Ejercicio KI3. |l>) Ejercicio 105 

78. <u| Ejcicicio 104; (h) Ejercicio lOt»

77. ¿Cuántos artículos debe producir cada semaru el fabncan- 
te del ejercicio 57 de los ejercicios de repaso del capitulo 1 
para maximizar las utilidades'’

80. Delenninc las dimensiones de una cuja abierta, que tenga 
base cuadrada y un volumen de k pulgadas cúbicas, que 
pueda construirse con la mínima cantidad de maienal.

81. Dos ciudades 4 y H obtendrán su abxslccimicnlo de agua 
de la misma estación de bombeo, la cual se ubicará en la 
onila de un río recto a 15 km de la ciudad Aya 10 km de 
la ciudad B. Los puntos del río más cercanos ¡sAyB están 
separados 20 km. y A y rí se encuentran en el mismo lado 
del rín.
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(jl l iiIm. i i t'Ml"- KÍ‘11.1 |ijí.i tsiinur (iimdc iltbc uhi 
w.ir-. I.i lísljcnin tic lHuribi.1) ilc niuJo ([iic kc impLc 

11 imiH'r i.iiilidad ilc luhcri.i 
it)( (iiiifiTniL 1.1 L'lini.iLiim di.i iiuimi (.i) .in.ililii..imi.rilc

|-'km Kikni

:'»lm

S2 I ri labriLunlL- ufacc Lnircgar .i tm ujnurujnli: Mll.a
.1 S’fiOt.id I iinj \ fcdiMr tt prcuii por sillj lti $1 di.1 pe­
did.j I'iIjI pur tail.i silla .idiLiimai ijue exuda a "íOO 
r>-.li.riiiine la (.anudad lolal de diil.ircs iniplivadiis en la 
lí.msatvUiii mas praiide piaihle eiila il l.ibruaiile v d 
imiiLTuanrli. Apn\e 11 respiitsu ^ralitamenre

II' In uindiLiuíiLs de iiinni'pidin (xea el ejeruuo Id de la 
itLi.in sd) 1.1 deiiiiiula diana de tiLflu .imuilo es de \ 

unidiJis eiiaiidi» el preeiu por unidad es /• dedares \
' • l> - *211 Si 20i dul.ires es el ensln lolal por pro 
diisir 1 iimdailes dekrnimL 11 iiiaxmia uiilidad «ilal dian i 
\p.ne la respuesta ¡:ralieamenle

l’ar Ki instruir un enx ase eerr.ido en lnrm.i de ulmdroLifeii- 
I ir re..iii que kne i un uilmiien de 27 pule', la t.ipa ) la 
l'ase se ei rl iraii de iro/us eii.idr.idos de liujal.ila 
*3' l tilkj la pralluidora para esiimar el radio del eiuase 

•I ‘e emplea l.i eaniid.id mínima de hojalata en su 
sim'Uiii.uoii Ineliiva l.i ho|alata (|iie se deseeha al 
ubiLiier 11 lap I \ la base

'l'i < onnrme l.i esiim.iLion del meisu (al analiliLameiiie > 
d, piii-, dekrmine 11 allura que debe tener ..1 ensase

'' d III nula de un .irlinilo panieular es de KHli uni- 
d'l uniido d [itiem por umd.ui es de/'dolares enlon- 

¡I di I lelLiiiiiiie la uiilid.id lolal itiaxima

" un I mido. ..Uva pobl.ieiun es de II IKtO babiljiiles, 11 
■j'.i ilv vfvvimiLiiti) de una tpideini.i es toniimiaiiienlc 
rioputuoiul ni mmiLio de peisoius infetladas j al nunie 

di p..isuna lio mieslad.is Deleniiinc el nmiKui de per- 
''u is inteuladas ui.uulo la epidemia esi.i cteeienJo a im.i 
''•J iiiaxima

^ l'sbidu a s.litas lesiiiLUtiiies, il lauiaiiode una eoniunidad 

Puiietilei ..st.i liiiiiiado .1 * IHHJhabll.inU'. > la Usa de vfe 
■•'ni'uiio de la pobl.Kioii es lonjuiii.miente piopuruun.il a 
"* lani ino ) j 11 dileuikia entre ■* ltO() > sU unuño De- 
''■■iiiiiiii la e.mliil.id de |>ersoius para la eiial la lasa de 
'•fseiniieniii de 11 puhl.ieiiin es un niaximo

*’’-lsiiiiuie la dislariLia mas enría desde el pimío /'di. 4) a 

punto di la cuu.i = Ih. > encuentre el punto
lu s urx .1 que esl.í m..s ecica a /'

H'). Inu eomp mu que opera ui eundiciones de eompctencia 
perfeUa (se.i las instrueeiunes de los cjtruems 17 > IK de 
la seeuon *')) construye j vende nidiOs portátiles 
uniipañ'a puede vender Iodo, los radios que produce a un 
pre-tio d. S7^ t ida uno .Si se construyen r radios tada día 
y Tic) dólares e. el costo diario de produttion. enton­
tes C(v» = i- + 2*11 1- 100 , Cuantos radios deben pro­
ducirse cada día para que la umipa/ii.i obtenga la máxima 
ganancia duna total'

90. Do. partículas inician su movimienio al mismo tiempo 
Una de cll.is se desplaza a lo largo de una retía lion/ontal 
y su eeuaeion de movimiento es t = r* - 2i, donde t 
tenimieiros es la dManeia dirieida de la partícula desde 
el oiigcn a los r seuundos La otra se mueve a lo largo de- 
una retía \erliea! que mlcrsecu a la reeU liori/onul en 
el origen y su t-tuacuín de movimie-nlo es v = r’ - 2. 
donde V centímetros es la disianeia dingida de la partícula 
desde el origen a los / segundos Dclcnnine tuando 
la dislaneia dirigida entre la.s dos p.uticula.s es mínima, y 
sus velotidades en ese instante

91. L’n 1 fstalera descansa sobre una terea de ^ m de altura > 
se apoya eonlra uiu pared a K m detrás de la cerca Deter­
mine la longitud de la eseaLra más torta que pueda em 
pte.ir^e y que cumpla e .tas eondieiones

92. Resuelva el ejettieio 91 tunsiderandu .tbora que la ecrea 
mide h m de alliir.i y que 11 pared esLí a « m detr.is de la 
terca

9.Í. Determine el volumuulel cilindro circular recto mis gran­
de que pueda inscribirse eii un cono urcul.ir rcdo que 
tiene un radio de 4 puiu y una altura de 8 piilg
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V4. Uiu ticiiJ.i (k* idni|iit1a ticiK'lj formj de un uino Deler 
mine la ra/oii dd raiiio a la uliura üc una tienda de «.ainpa- 
Aa de volunten dado que requiera el mínimo de material 
para vu eonviniccidn

95. Dctemime las dimensiones del cono circular recio de volu 
men mínimo que pueda circunsenhirsc a un cihndni de r 
eeniímetnis de radio } h ecntíiiieiros de altura

k

9(1. Uno de los ángulos agudos de un triangulo mide ¿ n rad. 
y el lado opucsio a este ángulo nene una longitud de 
Mi pulg Dcmucsirc que de lodos los triángulos que satis­
facen estas condiciones, aquel que nene el área máxima 
es isósceles SuKerciiíUi exprese la medida del arca del 
inangulo en términos de funciones tngonoméincas de uno 
de los otros ángulos agudas

97. I*n un almacén los artículos que pesan KMX) Ib se trans 
portan al nivel del piso asegurando una cuerda gruesa bajo 
una plataforma móvil baja y jalándola con un vehículo 
moton/ado Si la cuerda se dmge en un ángulo de B radia­
nes con respecto al plano del piso, entonces la intensidad 
de la fuerra de /'Ib o lo largo Je la cuerda esta dada por

/. a HKXXl
k sen 6 + eos 6

donde k es el coeficiente constante de fricción y 
íl < í; < 1 .Si (I s fl $ i-rr. demuestre que f- es mi 
nima cuando tan tí b k

9H. la) Demuestre que de lodos los rectángulos que tienen un 
arca de Kl pulg^ el cuadrado cu>o lado mide 9 pulg 
tiene el perímetro mínimo Apoye I.i respuesta grá­
ficamente «

(bi Demuestre que de todos los rectángulos que tienen 
un períiiKtiu de ^b pulg. el cuadrado cuyo lado mide 
9 pulg tiene el área máxima Apoye la respuesta gra- 
ricumcnie

99. Un Iroro de alambre de 20 cm de longitud se corla en dos 
partes, y cada parte se dobla en forma de cuadrado ,Cónu> 
debe cortarse el alambre de modo que el atea total de los 
dos cuadrados sea la nimima posible’

lüU Un troro de alambre de HO cm de longitud se dobla en 
forma de rectángulo Determine las dimensiones Jcl rec­
tángulo de inay or área posible

tl)l. Para cierto ailiculn. donde c unidades se demandan u 
manalmcnlc cuando el precio de cada unidad cs/i dóbrci.

Uf'px = M)' - 2 • lü*x +■ 18 lO'x* - 6x'

P numero de dólares del costo pronKdio por producir 
cada unidad está dado por

Cíx» = ¿rj - 24 -r II • ¡(t'x '
Jij

yx 2 100 Determine el numero de unidades que deben 
producirse cada semana y el precio de cada unidad para 
que la Utilidad semanal sea maxiini/aJa 

IU2. Utilice el método de Newton para determinar con lies 
cifra.s decimales la raí/ positiva de la ecuación

4«^ - ív’ + 2t - í = 0

103. Emplee el método de Ncuuin para deieniimar con tres 
cifras dccmulcs la rau negativa de la ecuación

If* - 4t’ + 36r- 2i - 8 * 0

104. Calcule con cuatro cifrav decimales, medíame el mclodn 
de Kcuton. la coordenada a del punto de inlerscxcion <k 
la curva v = sen x y la recia v * 2 x - 3

1115. Oblonga con cuatro cifras decimales, aplicando el tnciixJ» 
de Ncvvion, el valor de t en el míen alo (|;r. ^/ri pan 
el cual tan t = t

¿a /ni ejerciciiif 106 v 107 poní ¡a función f tlndo, haiio lo w- 
l’iiienir lal ileiennine lii aproximación liiiriil i/e /Ul n 
\ = 8 (h¡ rcspucMu dfl inciso fu) Knífiiamentf
Id xom/hirc los ialnre\ de /(ti <tí/ru/<ii/m it /w«ir Je la apro­
ximación lineal ton /«»talorv\ defuiiiionohieniJuxapanirik 
la eciiat lón Jada laanJo x ex iiiual a 7 9, 7 99. 8, 8 01 v R I

106. /it) = Vt 107. /(X) a sen J fft

IU8. Si V a 2.r - 3 tul calcule d\ y Av para t = 2 ) 
A r = 0 5 <b) Dibuje la gráfica c indique los segmen­
tos de reda cuyas longitudes son J\ y Av

109. ,Si V a HOa - 16t' Jetenmne la diferencia Av - dv 
SI (iil V = 2y At - 0 1. ib) t = 4 y Av = -0 2

110. Si t' f >* - I = 0.dctcniiinet/v cnclpunt»*
(I. I)si.¿t = 0 1

tu. Utilice difcrcnvtalcs para aproximar el volumen del ma 
tonal necesann pan elaborar una pclotu de caucho si el 
radio del núcleo hueco debe ser de 2 pulg y el espesor 
del caucho es de ¿ pule

112. .Si f segundases el tiempo pota una oscilación cumplcu 
de un péndulo de t pies de longiitid. cnloncCs 
4JT*t «= donde e - 32 2 Utilice dilerenuaics para 
cniimar el efecto sobre cl iiempu si se comete un cror 
de 0 01 al medir la longitud del péndulo

113. I aniedidadel radiode unconocircularrectocs ^ desu 
altura. Utilice difctendales para cslirnar apmxinuib- 
tnente cuánto debe medir la altura si el emir del v otumen 
calculado no debe cxc'edcrel
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]|4 SuponjiJ / ) A’ lunuoncs (|ui; sudslaLcn Lis
lei’rvnij dd \.ilnr medio en I«. /»j Ademas 

suponga que/(U = g'(»l para Imla \ en el iniers.ilo 
jhienu f«i. /» Demuesire que

/ii> - ein = /i'O - ‘.’iwi

pafa CidI « de |«./»! .SínfiTí/KW sea/;(U = /(«I -• vi'* 
y aplique el teorema 3 ^ 1 a la lurjcmn li

115. Sean / > e dos luiieumes dilereiiLi.ihles en eaila numero 
del miersato cerrado [o. h\ Suponga ademas que 
/i.íl -- gioi > /</') = d/'f Demuesire que cxisie un nu- 
meriM en el iniers.ilo ahieno (<j./oial i|iie/(i) =: i
Sue<ri»iríi; sea //UJ = /ti) - glt) > aplique el leore- 
ma de Rolle a l.i funuon li

116 Si/es una luiiuun polmoniial, nlilice el teorema de Rolle 
p.ira demosirar que entre LUales<|uiera dtis rtiiees conse- 
culisas de la ecuación /1 ti = 0. existe, a lo sumo, una 
lai/de la ecuación/I i| - 0

117. Dilnije la gráfica de una tunuón en el imerxalo / en cada 
uno de los casos siguieiiles |n) / es el inlersalo abierto 
(0 2) >/es coniinu.i en / l'n I. / nene un \alor máximo 
relamo pero/ili no exoie llil / es d intervalo cerra­

do 10.21 1.a fuiicKín/'tiene un valor mininio relativo en I. 
pero d valor mínimo absoluto de f ocurre en 0 (c) / os 
d intervalo abierto (0. 2|, > / tiene un valor in/mmo re­
lativo en I

IIN. .Si/iT) = (r* 4 n’i'’. donde/I es un numero raenmal y 

t> *■ 0. demuestre que la gráfica de / tiene dos puntos de 
inflexión s| ;» < . j no tiene punios de inflexión •■i

1’^ 2
W). (a) Si/t n = .3 ¡ t [ T 411 - I I. denme ire tpie f tiene 

un valor mínimo absoluto de 3
lili .Siel'l = -fl'l + 3|t - 1 (. demuestre que jí tie­
ne un valor mínimo absoluto de 3 
(el Sin > (I. /» > tl> /iit) = «|t| -r /;[» - 11. de­
muestre que h tiene un valor mínimo ahsolulo que es 
el menor de los números ir v h.

120. .Si/(tl = I' 1“ ' i * - 1 T'- donde ii v /) son números 
raeion.iles positivos, demuestre que / tiene un valor 
máximo rel.ilivii de<//>'7(u -t- hf'^'

121. Si ¡i V (/ son números racionales tales que /i + </ = 1,
demuesiie «lue la recta V = v + ío/» 4- /lí/iesiinaasm- 
lol.u'hlieua de la grafic.ide/tti = u -f oi'’(» /i|'
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osla este momonlo se ha estudiado la roma 
del Cálculo llamada Cálculo Diferencial, en 
la que se estudio la derivada En este capitu­

lo se iniciará el estudio de la otra rama del Cálculo deno- 
minoda Cálculo Inlegral la cual trata acerca de lo integral 
definida. En la sección 4 7 oprenderá que estos dos 
ramas del Cálculo están relacionados mediante los teore- 
mos fundamentales del Cálculo, descubrimiento culminon- 
le en el siglo xvii realizado por Newlon y Leibniz, quienes 
Irobajaron en forma independiente.

Un procedimiento de cálculo necesario paro aplicar 
los leoremos fundamentales es lo antiderivación o ontidife- 
renciación la cual se estudia en las secciones 4 1 y 4 2, y 
posteriormente se utiliza en la sección 4 3 paro resolver 
ecuaciones diferencio/es seporob/es, oplicados ol movi­
miento rectilíneo.

De igual forma en que la derivado esto rclocionada 
geométricamente a lo recta tangente de uno grófico, lo 
integral definida tiene una interpreloción geométrico como 
el oreo de una región plana, misma que se defino en lo 
sección 4 4 como un nuevo tipo de límite Mós odelonte, 
en lo sección 4 5 se presenta la integral definida en térmi­
nos de este limite. Las propiedades de lo inlegrol definido 
se presentan en las secciones 4 5 y 4 ó, los cuales se 
utilizan en la sección 4 7 paro demostrar los teoremas 

fundamentales del Cálculo.
la integral definida so aplico en la sección 4 6 a fm 
do calcular el área de uno región plana, y en las 
dos secciones finóles se aplica para determinor d 
volumen de varios tipos de sólidos En la sección 
4 9 se utilizan los métodos de reboñado, de dis­
cos y de oronde/os, y en la sección 4.10 se em­
plea el método do copos cilindricas

j
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4,1 ANTIDERIVACIÓN
Cn titTM forma ya se lia fanuliari/ado eon las opiTuno/u s inxersii^ La 
aütcion y la sustracción son operaciones inscrsas. así como la multiplica­
ción y la tliMsión, ademas de la potenciación > la eMracción de ratees En esta 
sección se estudiara la operación tnsersa de la dilerenciaciun denominada 
aniuicnxacti/n o aiilidiferciu uu ion, la cual implica el calculo de una un- 
luUrixciihi

4.1.1 Definición de antíderivada
Una luncion F se denomina untiderhada de la función/en un ínter- 
%alo/sir(i) = /■(») para todo\alor de \ en /

[ EJEMPLO ILUSTRATIVO 1 Si r es la función defini­
da por

Fix) = 4r^ + \- + 5

cnloncesrti) = 12i- + 2i De modo que si/es la luncion definida por 

íl\} = \2\- 2\

entonces/es la deri\ada de /'. > Tes la aniidenvada de f St C es la luncion 
definida por

CID = 4t' + - 17

entonces C lambien es una antíderivada de f porque G(D = I2\- + 2c Ln 
realidad cualquier luncion determinada por

A\' + * C

donde C es una constante es una anlidern ada de / 4

EJEMPLO ILUSTRATIVO 2 Si C es una constame ar­
bitraria. entonces cualquier función defimda por

sen r + C

nene la luncion eos \ como derivada Por tanto, cualquier funenm de este ti­
po es una antíderivada de eos e 4

Par.i L’enerali/.ir l.i discusión de los ejemplos ilustrativos anlcne'rcs. eon- 
siderc la luiieion / como una .inlidcriv ida de la luncion / en un intervalo /. 
de modo que

/ I D /ID

Lnloiices si (! es una luncion dchiuda por

(ÍID /ID -* (
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donde Ces un i tonsunic arbitrana,

Gít) = Fix)

= /ir)
y G es (anibikn una anlidcnv ada de /en el inlcrvalo /

Aliora se príKcdera a demoslrar que si F es cualquier anlidensada pir 
Ukular de/en ü inlersalu /. emontes cada uniidenvada de/en / esta dada po: 
F(r) + C donde Ces una tonsiante arbitraria Pnmero se necesita un leorc 
ma preliminar cuya demostración se basa en el teorema 3 3 3. el cual aflmu 
que SI la densada de una función en un intervalo es 0 entonces la funcioa 
es constante en el intervalo Recuerde, en la sección 3 3 se demostró este teo­
rema para ilustrare! poder del teorema del valor medio

4.1.2 Teorema

Si fy ü son dos funciones dcnnidas en el intervalo /. tales que 

f ix) = x'Vr) paratodaven/ 

entonces existe una constante K tal que 

f{x) = íjlv) + K pañi toda ren/

Demostración Sea h la función definida en / mediante

/i(tj = f{\) ~ /;.(0

de modo que para toda t en /.

/lÍT) = /(T) - uU)

Pero, por hipt)tesis./(\) = j,'(t) para uxla ten / Purtanto.

/i(T) = 0 para toda \ en /

Al aplicar el teorema 3 1 a la función h. se infiere que existe una constante A 
tal que

/i( r) = K para toda ten/

Sisesustituyc/i(\)por/(vj - í-(\J se obtiene 

f{x) = í>(v) + A' paratüda ren/ 

lo que demuestra el teomma ■

11 teorema sijiuienle se deduce inmediai miente del teorema anterior

4.1.3 T«or«ma

Si Fesunaantidcnvada pirticular de; en un intervalo / entonces cada 
antiderivuda de / en / esti dada por

rtri + C (i)

donde C es tina coiistanle arbitraria, v todas las antidenvadas de I en 
/ pueden obtenerse a partir de 11) asignando valores particulares a ('

Demostración Se.i (/ cualquier amidenv.ida de I en / rntonces

(itrl-yh) paratodaven/ (Z>
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Como res uru anlidensadd particularde/cn /.

Fix) ~ J{\) par.i toda r en / (3j

De (2) y O)

G'(k) = í'(xi paratodarcn/

Por tanto, por el lenruiia 4 i 2 existe una consiame A'tal (|uc 

Cf\) = Fixi + A' para toda r en /

Como G representa cualquier aniidemada de J en /, toda anlidenvada de/ 
puede obtenerse a partir de Al) + C donde Ces una constante arbitraria Por 
tanto, se ha demostrado el teorema ■

La üntidcTÍsación o tinlídircTcnciadim es el proeeso mediante el cual 
se detemiina el conjunto de todas las antidernadas de una lunuon dida El 
símbolo j denota la operación de antiderivacion > se escnbe

= AO + C (4)

donde

ru) = /(i)

y
íAAU) = (5)

La expresión A \ ) + Cen |4| recibe el nombre de untidcnsada nencral de/ 
Lcibni/ introdujo la convención de escribir la diferencial de una función 

antes del símbolo de antidertvacton La ventaja de utili/ar la ditcrenual en 
esta lorma sera evidente en la sección 4 2 cuando se calculen anlidemadas 
mediante un ítunhio </<* \iinuhli' De |4) > l5). se puede escribir

JjtArJí = Av) + C

Esta ecuación establece que cuando se antideriva la diferencial de una lun* 
Clon, se obtiene esa luncion mas una constante arbitraria De este modo puede 
considerarse que el símbolo para antidcrivacion representa la oper.tuon in­
versa a la operación denotada por d para calcular una diterenual

St {/(V) + C I cs el conjunto de todas Lis lunciones cuvas ditcrencia- 
Ies son /I i»</r tamhicn es el conjuiiut de todas las (unciones cuva derivadaes 
/(i) lAir lanío la aniidenvacion se considera como la opiumoit para dtlir 
minar iI umjimio d< indas las Jiiiu lom s ¡pn lu imi ana dt risada ilada

Como la antiderivacion cs la operación inversa de la derivación los 
teoremas de antidciivacion se obtienen de los teoiemas de dilerenciacion 
\si los tcoiemas sijtuicntc's pueden demostrarse a p iriir de los teoremas co­
rrespondientes de ditcreilciacion

4.ll4 Teorema

d\ = \ + t
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4.1.5 Teorema

J afix) d.\ ~ 

donde a es una constunic.

ni leoreina 4.1 5 cslablece ijue lu anlidcnvada ¿’eneral dcl producto ik 
una constante por una función es la cnnstunic por la unlidcnvada gcnenl 
de la función

4.1.6 Teorema

Si/ y ^ están definidas en el mismo tnlcrsaln. entonces

Ji/(rl + í.’(r)|í/r = J/(j:)í/í + j'j?(j:)£/x
El teorema 4 1.6 afirma que la aniiüenvada general de lu suma de üi>s 

funciones es igual a la suma de las aniiderisados generales de las funcione> 
considerando que ambas funciones están definidas en el mismo intervalo .Ai 
extender el teorema 4.1.6 para un número finito de funciones y cumblniniJolo 
con el teorema 4 1.5. se obtiene el teorema siguiente.

4.1.7 Teorema

Si /i,/2........ fn están definidas cu el mismo iniersalo. entonces

ki/i(\) + tVsU) + ... + f„/„(r)JJt

= (■] fi(.v)(/r + (•> + .. + c„ I /nltiJ»
I
donde C|, i-i,.. ..c„ son constantes.

1 4.1.8 Teorema I

.Si fi es un número racinnal, entonces

= ,,.= -1
J ” + 1

Demostración

n / \
'\tl +'í‘ M '+ 1

= t" 1

EJEMPLO ILUSTRATIVO 3 Del Iena*ma4 I.Sp.iraval'"'
res partieiilaies de n se tiene;
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-2 + I
+ C

t" + c

+ ! 

4 1

+ c

-I

+ c

-r- + c 

+ C

El ejemplo ilustrdtno siguiente muestrj cómo se uiili/un los teoremas 
4 I 4 a 4 I 8 para obtener la unlidemada de una luneion

EJEMPLO ILUSTRATIVO 4

(3i + ‘>)Jx = I 3r</\ + $ü\

= 3 xdi + 5 d\

(por el teorema 4 I 6)

(porel teorema4 1 5j

= + C'ij + 5(\ + Ct) (por los teoremas
4 I 8y4 1 4)

= ^\- + 5\ + (3Ci + 5C2)

Como 3C] + SCt es una constante arbitraria, puede denotarse por C. de 
modo que el resultado puede estnbirse como

- r- + 5r + C

La respuesta puede senflcarse al calcular la densada

+ 5v O = 3x + 5

► EJBfAPlO 1 Esaiue

(Sv’ - 8r'' + 9r- - 2t + 7W/i

Solución

(Sf* - + 9v- - 2i + 7)íy\

= 5 I \'^d\ - 8 I \’t/i + 9 \*f/\ - 2 I .xdx + 7 [ í/í

= 5 -^-s j1 + i). ^ - 2-:d7x + c
2 4 3 —

= - V- + 7\ + C

► EJEMPLO 2 Calcule
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Solución

MilKj'f" ij

1

= J (r^'- + x-'l-}dx

.5': r\n

2 2

4- 2x'l^~ + C

► EJEMPLO 3

5f- 4- 7 „

□(.‘icnninc

í
Solución

Í ,¡i = S f + 7 Í -

= 5 J f-'Vf + J f

’ ' »

J_
4/í

+ c

= 5(^í‘’'’l + 7(-3f-''’» + C

= + c ^

Como se hi/(t en el ejemplo iluslrjlno 4. 1j uniiJenvaeión pueile \enil- 

e.irse .il eulculur la densadj de la respuesta Para apojar gráficamenie 
anlidensada se asigna tm \alor espeeífieo a la eoiislanlc arbiuana C \ «J-' 
pues se ira/a la derivada inimériea de la aiilidenvada F’osterionnetile. en el 
mismo reelátteulo de inspeteión. se tra/a la jjráfiea de la runción orieinal I-* 
respuesta es apocada si las dos gráficas resultan idénticas

EJEMPLO ILUSTRATIVO 5

5/- -r

l.n el ejemplo 3. xeaii

tili > Hn = - 21

Observe que /■ es la antiderivada de / para C - (I Las grálicas de ’' 
N0I-K(/ (/I. n están Ira/adas en el tcelangiilo de ms]vveion de 1-10 U'l P'" 
[0. I‘i| en la lieuia I I.l lieebo de ipie las gráficas sean ideniaas a|H'va'j 
respuesta del eieinplo 3 ^

I os leorem.is paia la anliderivaila general de las iimeioiies seno > s'^ 
seno se dediieen inmeilialamente ile los teoremas ci'iresptmdientes Je di 
lereiieiación
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4*,1.9 Teorema

sen \ il\ = -tos I + r

Demostración

/J,(-t(ís \) = -(-slM i) 

= sen i

4. V.10 Teorema

tos x(l\ = sen \ + C

Demostración

/-),(sen t) = tos \ •

Los iforetnas siguienies son tonsetiieiitt.is de los ieoremj.s de dilcren- 
tiatuin para las luiitiones tangtnie, totangente. setanle > tosetanle Oirá \ez. 
las demosiratnnits son inmediatas al caltular la demuda del miembro de­
recho de cada etuauon

>i'4;1,11itTepi:!ema

set’ \ </\ = tan \ + f’

■■ 4«1«12 Teorema ,
j tsf' \ í/l = -LOl \ + C

^ Stt l Mil \ J\ sts l -( t

tst 1 sOl \ i¡\ t-M. I t (

> EJEMPLO 4 iMiM

\,hI < StL t I III t •' l Si
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Solución Al aplicar los teoremas 4.1 13 y 4 1.12. se oblienc

J (3scc.ilan.r - 5csc-.rjí/r
sec X tan xdx - 5 ¡ ese* xJx

3sce.t - 5(-coi.t; + C 
3 scc .t + 5 col X + C 4

Las funciones lngonnmütnca.s se emplean con frecuencia cuando se 
calculan anliderívaüas que involucran funciones trígonom¿trica.s. Las ocho 
identidades fundamentales siguientes son de crucial imponancia.

sen .r ese .r = 1 eos t scc .t = I lan;rcot.r = 1

tan.r sen X 
eos .t

cot.r eos X 
sen X

sen-.r + cos-.t = I tan* I + scc* X col* t + I = ese* a

► EJEMPLOS Calcule

j - s-Qi .V - 3 sen* .\
J sen .t

Solución

j 2 cot .r - 3 sen* X 
J sen .X

= 2¡^ cnlr./.v-3 f dx

j sen t J sen x

= 2 J csc.tcot.t (/t ~ 3 J sen.r(/i

= 2(-csc \) - 3(-eos r) + C (de los leorenias4 1 14 > 4.1 |91 
-2 ese ,r + 3 eos r + C 4

^ EJEMPLO Ó Detennme

(tan* r + cot* i ■* 4i </\

Solución

j (Un* V t col* \ I 4)d\

Jllsoc'v 1) + icsc’.t - h f -Hi/l 

J scc- \i/v t ese* \i/i * 2 |* ,l\

tan i col \ • J I I (■ (tic los Icoicmas I I 11 > l I I ^

1 n el cupiliilo I se iiulico «.oino obteiu-i pioj'icd.idcs de la cialíca ds un-* 
liiiKtoii a paitii «le la gialica de su dciivada IV niancu scuu'iaiiU*. a ivuiti ds
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lü gráfica de urja función f. se pueden oblcner propiedade-. de la gráfica de 
una anlidensada de/como se muestra en el ejemplo siguiente.

i

ÍK-l lU.^

^ EJEMPLO 7 A partir de la gráfica de la lunuón/mostrada en
la figura 2. dibuje una gráfica posible de l. una anudensada de/ si F es 
continua en cualquier número. r<0l = 4y/(3) = I

Solución Puesto que F es una anlidenvada de f. f es la derivada de ! 
De la figur.i 2 se observa que /(3) = 0. de modo que F'(3) = 0 Como 
/(r) < 0 cuando r < 3. entonces / <\» < 0 cuando t < 3 De forma se­
mejante. r’ft) > 0 cuando r > 3 Otro liecho que se observa en la figura 2 
es que/(O) = -2. esto es, F'iO) = -2 Rsta infonnación se incorpora en la 
tabla 1 y a partir de las conclusiones de la tabla se dibuja una gráfica posible 
de /•. la cual se muestra en la figura 3

Tabla I

Ht} /•m ('■>ni luMon

« < ti - f es
■ 0 ' a -2 l-i pcmlitfiiii; df 1j rtoj unjicni; cs -2
11 < í i h csdcLfCsicillL'
1 V 1 11 / lunc un \ jlor iiiimmn rsbuoi
3 < t f es crccii'iiic

fin aplicaciones de antidenvacioii, Irecuenlemente se necesita determi­
nar una antidenvada particular que satisfaga ciertas condiciones ilenomina- 
das condiciimes iniciales o de rronleni, dependiendo de si ocurren en uno 
o en más de un punto Por ejemplo. si una ecuación que contiene 
está dada, asi como la condición de que v = V| cu.indo x - T|. entonces, 
después de que se determina el conjunto de todas las .iniidenvadas. si se 
sustilujen t y v por 11 > V|. respe.tiv amente, se determina un v alor particular 
de la const.inle arbitraria C Con este valor de C. se obtiene una anlideriva- 
da p.irticular

EJEMPLO ILUSTRATIVO ó Suponga que se desea obte-
iiei una aniiderivada parlicul.u' que satisfaga la ecuación

j la condición inicial de i|ue \ = 6 cuando v = 2 A p.imr de la ecuación 
dada, se tiene

,h = 2\,l\

hn tó) se sustituye 2 por \ y (i por v y se obtiene

6 = 4 + C
C = 2

(6)
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Cuando csic valor de C se sustituye en (6). se obtiene

y = + 2

lo cual proporciona la untidenvada particular deseada ^

^ EJEMPLO 8 En cualquier punto (x. %) de una curva particular 
la recta tángeme tiene una pendiente igual a 4r -* S Si la curva conlicncal 
punto (3,7), obtenga su ecuación

Solución Como ia pendiente de la recta tangente a una curva en cual­
quier punto (x. Y) es el valor de la denv ada en ese punto, se nene

ííl
f¡K

il\

4r - 5 

(4r - 5)í/t

J í/v = J" (4t - 5)Jx

V = 4(4) - 5v + C 

t = 2t2 - + C 17»

La ecuación (7) representa una familia de curvos Como se desea deiernimor 
la curva particular de esta tainilia que contiene el punto (3. 7), se sustilu>c 3 
por T y 7 por > en (7) y se obtiene

7 = 2(9) - 5(3) + C 
C = 4

AI reemplazar C por 4 en (7) se obtiene la ecuación requerida, la cuai c -

V = 2t- - 5t + 4 <

En la sección 2 6 se introdujeron las lunciones costo marginal e ingreso 
marginal, empleadas en economía Ellas son las pnmeras denvadas C > í 
de la función de costo total C y de la función de ingreso total R. respectiva­
mente Por loque C y/? pueden obtenerse de C'j /?'mediante ontidenvaciim 
Cuando se determina la función C a panir de C. la constante arbitraria puede 
determinarse si se conocen el laiio ,i.r;i«Tii/ (es decir, el costo cuando no se 
produce ninguna unid,id) o el costo de producción de un numero específiu* 
de unidades de la mercancía Como por lo general la (unción de ingreso 
toial es cero cuando el numero de unidades pn>ducidas es cero, puede utili 
zarse este hecho para detenumar la constante arbitniria cuando se obtiene lj 
función R a partir de R'

^ EJEMPLO 9 La (unción de costo marginal esta detcniii 
nada por una compañía como

C(t» ti t- 1

donde Cid dolares es el costo total de prikliiccion de i imuLides cu.iiulo se 
producen no mas de 25 unidades Si el costo de priKluccion de t unidades es 
de S.50, deteriiiine (u) I,i lunuon de costo toial \ (h)el costo de produce ion de 
10 unidades
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(a) CotnoC'ÍT) = + I. entonces
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C(r) = J (4r'/“ + l)í/t

rl/2
= 4 ^ + X + k

= Hx'l- + X + k

Debido a que el costo de producción de 4 unidades es S50. entonces 
C(4) = 50 Así.

50 = 8(4)'/- + 4 + A 

k = 30

Por tanto,

C(t) = 8v'/- + t + 30 (8)

K1 dominio de C es [0. 25|. recuerde que aunque x representa el número 
de unidades de cierta mercancía, se supone que \ es un número real para 
tener los requerimientos de continuidad para las funciones C y C 

(b) El costo de producción de 10 unidades es C(10) dólares, y de (8) se tiene

C(I0) = 8(10)'/- + 10 + 30 

= 65 30

Cnncitisión: El costo de producción de 10 unidades es de S65 30 ^

EJERjélClQS 4.1
l'"< II’ n ii ii’s I II 1l¡, rmliii ln uiiliih-nuií lóii Di los i'Jit- 

"iiin 1,1 i 25II 2S Mrifii/iif 11 rcuiluiilii luli iiliiiulii la lU -
'‘ijihiil, i„ ,, Ilililí ijii 12 ^ 2’) \ .1(1 apiñe'
''/"'I Olí i;faliiaiiiinu ! n Iin ilnmis ejenuun. UTipipic
"'llllipil ilí s/(i

'■ 1 2^^/^ ■'■J'±,h

"i 5/1 da "■1 10 ' X- i/i

"■i■ I/X ■'■i (il’ ' f (//

x'(2i- - hih

'‘■j- .s,/,

. -K' - (ii- 4i i .‘')i/x

+ tx- - 8r')i/t 15. i (T f l)(/i/
16. I I M - 

IK.

Idi 17.

1').

fí ^ ^

20.

22.

o. s.- - i¡\ 21. ( ', V +

ill 2.1. 1 it sen / - 2 cus Mi/r

/24. (5 ciiN t - 4 ven i1 Ji

25. í dx 20.
J COS- X

27. j" 11 ese x cut x + 2 see’ i)i(x

28. (tese- f - sec M.in Dili

\ >2''’— 
) ven- X d\
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2*1, - Mm'üuIO

3 un ü -4 IOS* H ,,,--------------------- mi
LOS 0

En /íM ejen u im M ii lo iirofuit de iiiui Jiiiuioii f \e iiuie\- 
tro en la J'innra adjuiilu Una onliden\ada dr f <■» /•'. la íiial 
e\ íimliniiü en IínIii numera i tune Itn \alore\ dadas Diliiije 
una vráfii a iiaulile de F 

31. {al /-(O) = 3

(li) Fm = 2yFiA) = ü

(u)
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ibl /-il" "

(IM

n-i) = (I.no) = 2./ÍI) = i>/(2) = o

'''■ '' o f(-\, 4./(f)i ^ 2> ni) I

i,

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

L1 punton.2K'‘lJ en utuiturvj y entudlquicrpunto (t, \) 
de li eurvj la retía tangente tiene' un.i pendiente ijiual a 
2r- 1 iJetermine unaetuaeion de la tur\a

La pendiente de la reela tangente en eualquicr punto (r. ») 
de mu tur\a es 3 x .Si el punto (9, 4) esta en la euna. 
ohtenga una eeiiaeiiin de la misma

Los punto, i-L 3) y (0, 2) están en una turva, > en eual-

quier punto (t. \) de la eur\a = 2 - 4t Deler- 
iJx'

mine mu eeuacion de la eursa 5/tecrttu«/ considere

—, -jj. > onienga una ecuación que eontenga a \'.

X y una tonsiante arhilrana C'| A partir de esta ecuación 
determine otra ecuación que involucre a v, x. Cj y C-. 
Calcule C'i > C; a p irtir de las eondieioncs

l'na ccu.ieion de la reela tangente a una curva en el punto 
(1, 3) es V = r + 2 Si en cualquier punto Ir. y) de la

/“ V
turva —= 6i, ulilenea una ecuación de la curva

Considere la sugerencia para el ejercicio 39

En cualquier punto (t. v) de una curva. —- = i -a:*.v
dx-

una etuaeioii de la recta tangente a la curva en el punto 
(I. hesv = 2-1 Delemiine una ecuación de la turva 
Considere la sugerencia p.ira d ejercicio 39

En tiialquier punto (t v) de una turva = 2. y
í/r’

(1. 3) es un punto de inflexión en el que la pendiente de 
la recta de inílexion es -2 Obtenga una ecuación de la 
curva

Una función de costo marginal esta definida por 

C'( t) = 31' + 81 + 4

y el costo general es de Sfi Determine la luneuin de costo 
total torrespondiente

Una compañía ha determinado que la tuncion de costo 
marginal para la producción de cieña mercancía esia dada 
por C'tx) - 125 + |t)r + ,,1', donde Ctii dolares es 
el costo total de producción de x unidades de mercancía 
Si los gastos generales son de S2.5I). ,tu.il es el costo de 
producción de L5 unidades'

L.i función de costo marginal esta dennida por 
Cix) = l)x. donde Cix) es el numero de cientos de dola­
res del costo loi.il de producción de x unidades de ciena 
mercancía Si el costo de 2(K) unidades es de S2lHl(l. de­
termine (a) la tuncion de costo total y (li) el costo general

I a tuncion de ingreso muginal |ura cierta merc.iiicia es 
Wlxl = 12 - 3x Si X unidades son demandadas cuando 
el precio por unidad es de p dolares, obtenga (al la fon 
clon de ingreso total y tl»l mu ecuación que contenga a /> 
y X (la ecuación de demamiai

l’.ira un articulo particular, la tuncion de ingreso marginal 
es(a dad.i por fí'iil = 15 - 4x .Si x unidades son de- 
mandad.is cuando d piccio por uimi.ul es de ¡i dolares.
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üclcmiinc (a) b funciib de ingrcMi iiXjI y (h) un.i ecuación 
que contenga J /> > ^ ecuación de demanda)

48. La cricicntij de un iraliajudor está expresada como 
un porcentaje Por ejemplo, si la cflLiencia de un obrero 
en un momcnio particular csid dada como 70^, cnlnnccs el 
trabajador se descmpcila a un 7(K( de su potencial máxi­
mo Suponga que E'r es la ericienciD de un trabajador a las 
I horas dcspuás de iniciar su trabajo y que la losa a la que 
E cambia es (35 - 8íjíí' por hora .Si la eficiencia del 
trabajador es de 81 % dcspuás de trabajar 3 huras, determine 
su eílcicncia después de haber trabajado (n) 4 h y (b) 8 h

49. El solumen de agua de un tanque es V centímetros cúbi­
cos cuando la profundidad del agua es de /i metros Si 
la tasa de sanoenm de V con respecto aban (4/r 
Wt * 9). determine el sulutncn de agua en el tanque 
cuando la profundidad es de 3 rn

50. Un coleccionista de arte compro por SI 000 un cuadro 
de un artista cuya obra nuinenla de calor con frecuen­
cia respecto al tiempo y de acuerdo a la formula

= 5/’^* + 10/ + 50. donde P dólares es el valor 
d!

previsto de un cuadro / arlos después de su compra Si esta 
formula fuese válida para los siguientes 6 años, (.cuál 
serta el valor previsto del cuadro 4 años dcspiah'*

51. Sca/(t) = ji[ y rdefimdapor

fu»
-\x- SI t < 0

ij- SI 0 s a

Demuestre que/cs una antidcnvadadc/cn (-oo, +00»

52. Sea

i;uj 0 SI t < 0
1 M 0 S a

Demuestre que U no tiene antidcnvadas en l-oo. -i-boi 
Sus;ereniia suponga que U tiene una antidenvada F a 
(~oo, +MJ. y obtenga una contradicción al demostrar qu 
del teorema del valor medio ve deduce que existe tu 
numero k tal que Kx) = r -v A si t > 0. y f(i) = i
SI r < (}

53. Sea/(a)= I para lixlaa en (-1. I), y sea

A'(»)
[-1 SI -I < a S 0 
I 1 M 0 < a < 1

Entonces /ít) = 0 para toda r en (-1.1) y /;'(»» = 0 
siempre que g' exista en (-1. 1} Sin embargo 
/U) * g(x) * K para x en (-1. I) Explique por que el 
teorema 4 1 2 no se aplica

54. Sea

/U» =
-1 si a < 0
0 SI a = 0
1 SI (I < a

y F(x) * |a| Demuestre que f (r» = f(s) si x * 0 (,£» 
/* una amidcnvada de / en (-00, +oo)‘> Explique 'u 
respuesta

4.2 ALGUNAS TECNICAS DE ANTIDERIVACION
Muchas anlidenvadas mt pueden delerminarsc .iplicando unicaincnle los tco- 
rcmis de la sección 4 1 Por tanto, se deben aprender otras técnicas de 
aniidenvación En esta sección, se estudiaran técnicas que requieren la re­
gla de la ladeiui para aiuidcmauón y aquellas que implican un c<wibu> 
de Minahle

^ EJEMPLO ILUSTRATIVO 1 a lln de direrenctar
x*)'^ se aplica la regla de la cadena para la dilcrcnctación > se obtiene

+ t^jl") = (] +

Ahora supxinga que se quiere antidemar (I + x-l^(2x). esto es, se desea 
calcular
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Con objuo de tener un procedimiento que pueda emplearse en tal situa­
ción, considere

=1+1- y híx](Ik = 2rf/r (2)

í-nlonces (1) puede escribirse como

J (3)

Del teorema 4 I 8 se tiene

J i/'-'í/n = + C (4)

Observe que (3) es de h misma lorma que el miembro i/quierdo de (4) 
De modo que

J dx] = + C

y con í;(t) > ,t; (v) <¿r dados en (2) se tiene

J (1 + x~)'H2idxi = |'„(1 + t-l*'* + C 4

La jusiiílcacion del procedimiento utili/ado para obtener el resultado 
del ejemplo ilustrativo 1 es proporcionada por el teorema siguiente, el cual 
es análogo a la regla de la cadena para diferenciación > se denomina re^’la de 
la iüJuui para anlidenuu ion

4.2.1; Teóremo Regla de ío cadena para antíderivación
Sea j» una función dilerenciable > sea el contradominio de t» algún 
intervalo / Suponga que J es una función definida en / > que F es una 
antiderivada de/en / Entonces

J /(!;(rn[t;'(i)</tj = Td-ft)) + C
Demostración Por hipótesis.

rti-d)) = /(i,-(v)) (S)

Por la regla de la cadena para diferenciación

/j,[r(i,’(u)| = r (it(x)»|i"'ív)|

Si se susiiiu>e de (“i) en esta ecuación se obtiene 

= /'U'tvDlgíUl 

de la cual se deduce que

que es lo que se deseaba demostrar
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Como un cuso purtiLulur Jd teorema 4 2 I. del teorema 4 I 8 se tiene Ij 
generalización de la fónnula de la potencia para antidenvadas, la cual « 
establece a Loniinuación

'4.2.2 Teorema
Si }• es una función diferenciable y n es un número racional, entonces

J U'fviriíí'ftjdti =
n + 1

+ C n ^ —1

► EJEMPLO 1 Evalúe 

J yJ3x + 4 Jk

Solución A fin de aplicar el teorema 4 2 2, pnmero se escnbc 

J %/3r + 4 dr = J (3t + 4)''-í/r

y observe que si

^’(t) = 3r + 4 entonces ^>'(r)dr = 3dx (6)

Por tanto, se necesita un factor 3 junto a </r para obtener g'(t) t/r En ten 
secuencia, se escribe

J (3r + 4)'l-dx = J(3t + 4)'/’l(3í/r)

= ^ J (3v + 4)'/-(3í/r)

A-sí. por el teorema 4 2 2 con g(r) y g’(v) dx dadas en (6). se tiene 

^j(3v + 4)>í^(3Ju= 1 t.3v+^4)3/::

= -(3r + 4)^'- + C <

► EJEMPLO 2 Calcule

j* v-(5 + 2\’)*'í/i;

> verifique la respuesta mediante diferencMcuin 

Solución Observe que si

do = .-s + 2t' entonces i;‘(v)f/v = 6r-r/v (7'

Como

-(5 + 2i^)Sdt (.‘5 + 2rVlv-J\)
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se niiccsita un facU)r6junloa p.,ra oblcntTí>'ít;í/r Por tamo, secstnbe

J t-(5 + Ix^i^üx = + 2t’A6r-</T)

Si su aplicad teorema 4 2 2 con /?ítj y j-Yt) í/r dadas en (7). se tiene

1 í (5 -t- 2rW.t=r/x) = i 'A±llV ^ ^ 

n J 6 9

= ¿Í5 -Í- 2t^)'' + C

Al \cTificar mediante diferenciación se obtiene

D,\li5 + 2i’)''l = I 9(5-1- 2tY(6x=)

= t-(5 2rV <

Si en la formula del teorema 4 2 1 ,/cs la función coseno, entonces F es 
la luncion seno y se nene

J cos(fi(ij)[j7'(tKfc] = sen(i;(\)) -i- C (8)

Esta formula se aplica en el ejemplo siguiente

► EJEMPLO 3 Obtenga

j \ eos ih

y apoye la respuesta grallcamenle

Solución Si

(<ftj = entonces g'íxjdt = 2\c¡\

Como

j V eos ll\
(eos t-)(í f/\)

(9)

(• o l tus l 

^í>lR( ^ u.t- o

rU.DRA I

se necesita un tactor 2 junto a t <l\ p.ir.i obtener c’iv) il\ De modo que se 
estribe

J i LOS \ ^ i!\ = ^ J (tos (2 w/(|

Al aplicar tb)con i,'(U y g'tt) i/t dadas en (9). se obtiene

j (los i’t (2 V f/i) = ' sen i - 4- C

Para apoyar la respuesta se tra/a la gráfica de la tuncion ilellnida poi 
i eos t“ y la graltca de NDERi ' sen \“. \) en el mismo reclaninilo de itis- 
pecciónde (-4 7. 4 7| por |-^ I, < I ]. como se imiestra en la llgiiia 1,1a cual 
indica t|iie las dos gralicas son idénticas M
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Los dcluitcs de lus soluciones de los ejemplos anteriores pueden acortarse 
SI no se establecen específicamente gíxj y De esta manera, la soluciái
del ejemplo I loma la siguiente forma

J V3i + 4 í/r = (3,c + 4i'l‘Odx)

1 (3j + 4)3/2 ^_ „ ^

= =(3r + 4)3/2 + c

La solución del ejemplo 2 puede cscnbir\e como

J t2(5 + 2x''f(tx = íS + 2r3,B(6r2í/r)

= i + 2^3)-*
6 9

= ¿(5 + 2r3)'» + c

y la solución del ejemplo 3 puede acortarse como sigue.

J xcmx'dx = (eos r2)(2í(/r)

= i sen t2 + c

► EJEMPLO 4

/ (1 - 8r3)-<

Solución Como(/(l - Rt^) =; -24t2f¿x', seescnbe

= - 8t’)-‘(-24v2jo

1 (I - 8t3)-3 
"6 -3

---------!--------- + c
18(1 - 8j3)^

<

En (Kasiones es posible calcular una aniidensada después de un cambio 
de sonable adecuado, como se muestra en el ejemplo siguiente

► EJEMPLO 5 Calcule
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Solución Sean

H = I + V ílu = <lx r = » - I 

Entonces se tiene

-j\ + X <lx = I (« - ])-»’/-</(/

= (ir - 2ii + \)ii''-üu

= - 2 + Ii'l-üu

_ ^ ^ ^ .- 7 _ , + , + L

= 5(1+ x)^>- - (I + \)5/- + ; (1 + r)'’/- + C ◄

^ EJEMPLO ILUSTRATIVO 2 Un msloilo allematiso para
la solución del ejemplo 5 consiste tn considerar

f = ^ I + t
T = t- - 1

t* = 1 + r
i¡\ = 2i t/i

Entonces el calculo loma la forma siguiente

X- 1 + t </i = (1- - I)’ I (2i (l\)

= 2 - 4 \-*<h +2 \-d\

= jx’’ - 1+ C 

= 5(1 + \f^~ - :J(l + + -,(l + 1)^'- + C

Al \crificar mediante diterenuacion se tiene

+ xp‘- ~ + xf- + -,(1 +
= (1 + O"'- - 2(1 + U’'- + (I +

= (I + xl'^'ld + ')■ - 2(1 + \) + 1|

= (I + + 2t + X- - 2 - 2i + I]

= x^ l.v

► EJEMPLOS Exalue

íl\

Solución Sean

Jii ilx¡t
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Por lanío,

í
= -2 eos II + C 
= -2 eos v.r + C

W EJEMPLO 7 Calcule

sen ,v \ 1 - eos s íix

Solución Sean

H = 1 - cos.t thi — scn.rt/.r

Asi.

J" sen .t \'l - eos ilx = tlii

= lii^l'- + C

= =0 - eosAí^^- + C ^

EJEMPLO 8 Evalúe I tan .t sec^ .r d.x medíame dos mélodos. 
(n) sea II = lan .t; (b) sea v = scc .r. (c) Explique la diferencia aparenie de 
las respucsias de los incisos (a) y (b).

Solución

(a) Siii = tan .r. entonces </ii = sec-.t i/.r. De modo que

í lan.rscc-.rt/t í"'
1 lan^A + C

(b) Siv = scc.t. cnuinces</v = sec .t lan,» J.v Por lo que

J lana scc'xüx = J"
■/

sec.v(scc.rlan,v</t)

V íJv

+ C

scc- .t + C
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(c) Como scc“ r = I + un* r. las funciones iJerinidas por \ un- t j i scc- x 
difieren por una consUnte, de modo que cada una es una anudc>nada 
de tan t sec* \ Ademas se puede escribir

íst’c-x + C = l(tan*\ + Ij + C 

= [ lan- i + i + C

= \ tan* \ + h donde A' = ’ * C ^

^ EJEMPLO 9 Una herida esta sanando de manera que f días a 
partir del lunes el area de la henda ha disminuido a una tasa de -'í(f + 2)‘- 
eenlímclros cuadrados por día Si el martes el area de la herida lúe de 2 cm*. 
(u) ,ciial era el area de la tienda el lunes ’ v (b) <cuál sera el area presisla dé­
la herida el s lernes si continua sanando a esa misma tasa ’

Solución Sea \ cenliniotros cuadrados el area de la herida / días a panir 
del lunes Entonces

iJA
ilt

-K/ + 2l -

A = 1/ + 2) - ili

Debido a que </(f + 2| - ill se obtiene

A

A

-V ILlil! 

-1
+ C

IKM

Como el martes el area de la herida fue de 2 ctii-, se tiene que A = 2 cuan­
do í = I Al sustituir estos calores en 110) se olitiene

2 = 1 ^ C 
C = I

Por tanto de 110) se tiene

A = -i- -f 1 Ül)
r + 2

(a) Para el lunes. / = 0 Sea \„el\aiorde Vcuando/ = 0 Detlll.

A„ í: T I

{'oncliisión: El lunes, el area de la herida es de 2 5 em*

(b) P.irael Men,es / = 4 Sea \4el\al0rde \ cuando í = 4 De (11)

/\ j =i 1- i

Comliisión: Para el ciernes, el area precisia de la hend.i sera de
Mein- ^
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EJERCICIOS 4.2
En lo% ejenitiof 1 11 e/ciiúc la rj/in</enunkm Venjhiue
('/ rc\id¡udo. nuJutnie difercncuuwn 0 iipo\e gro/iromrore la 36.
rei/mcilar 37.

1. J - 4v </v " J •V3c - 4 dx

3. (\ I* - 9 dx J^ x(2x' + l)''dt 38.

S. j t-(t' - " J 3t s/4 - X- dx
40.

T f '' H 1^ ‘ dr
41.

J ^3l- + 1

9. J (t- - 4t + 4)^'\/i: 10. J I"' - -3 dx
43.

11. J r . t + 2 </r .2. Jí ' .nv'r + 3

44.

45.

1.3. f —drJ (1 - z)’
,4. J^ x\2-x'-)''dx

15. J 3 - 2i r^/t 16. Jfn' + 3)''^^/c 46.

17. j cos4Üi/0 18. J[ sen ^ tdc 47,

19. j 6i’ sen v '</i 20. J|" i/cos4l*dí

21. j sec' ?>\d\ 22. j1" ese- 2Üd0
48.

2.3. j V ese 3i’cot 3,1'i/v 24. JC ^^ec’r'd^

25. j eos ti2 + sen vj'í/t 26. Jf
1 (1 + cos t)*

49.

28. Jf1 \/ r-
29. j 2 sen i ‘ 1 cos 1 dx

.31). J sen’i 2 - eos 2 c dx
50.

51.
3!. I cos'rseii/t/í 32. ^ sen'(icos OdM

.3,3. j lian 21 + col 2 V)'í/i 34. j
35. f ^ de 52.

J JÍT- + I) - 2x~ ~ Jx

fJ (3 -

s3 + 5ÍV + !)• Jí 39.

v:.
/

í ———rJ ír^ + 4)’/2

j SL*n r scntcus x) dx 

J \cc r lan x cosfscc ») dx

r /•'/’ +
J

íJ %> - 2

2)^

Lj función iJc custu nurginal para un aru'culn paniculii 
cstu dada ptir C'(v) = 3{5j + 4)''^* Si el costo gene 
ral es de SIO. dcicrminc la función de costo total 

Para cieña mercancía la función de costo marginal csu 
dada por C (4) = 3 \ 2a; + 4 Si el costo general es ik 
cero, detennine la función de cosoto total

.Si t unidades son demandadas cuando el precio por uní 
dad es de /> dólares, obtenga una ecuación que conlengia 
/) > T (la ecuación de demanda) de una mercancía para la 
cual la función de ingreso marginal esta dada por

K(t) - a + l()(t + 5)'-

La tuncion de ingreso marginal para un onículo partKuUr 
esta definida ptir /T(0 = «/jit + />)-- c Dcierminí 
(ul la función de ingreso total, y (b> una ecuación que 
umienga a p y t (la ecuación de demanda) donde »uní 
dados son demandadas cuando el precio por unidad esp 
dolares

Si 1/ coulomhs es la carga elednca recibida por un con 
üensador de comente eléctnea de 1 amperes a los r se

élgundos. entonces 1 Si I = 5 sen 60/ > 1/ =

cuando r s ^/r, dcicnnine la mayor carga positiva vM
condensador

Realice el ejercicio 49 cnnsiderandu ahora que 1 = 
4cosl2l)iy</ s llcuandor = I)

El costo de ciena pieza de m.iquinana es de S7()(l y 'U 
valor disminuye con el tiempo de acuerdo con la lomiuL

~ =-5()0ir *■ I donde l'dolareses su valor raft>>'

después de su compra , Cual sera su \ .ilor 3 aóos despu.' 
de su compra ’

El volumen de agua de un tanque es i' metros cubives 
cuando la profundiilad del agu.i es de li metros Si l.i taci
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Ji- xjnjfii'ii Je cnii rcNpcctu j h está dada pnr

liL = nf2h ^ "í)'. Ldltule d \olimicn del ai-uj dd 
Jh

tam|uc Luand» su profundidad es de 3 m

53. Para los pnmeros 10 días de diciembre una célula vegetal 
lauo de lonna ijuc r días después del 1 de diciembre 
el volumen de la célula estuvo creciendo a una tasa de 
(12 - »)■* mieras lubic'as por día -Si d 3 de diciembre el 
volumen de la célula fue de 3fJm\ ¿cuál fue el volumen 
el 8 de diciembre.’

54 r.l volumen de un globo crece de acuerdo a la fónnula 

/V ^•— = . / + I + = f, donde l' ccniímelros cúbicos es 
Ji ’

el volumen del globo a los i segundos. .Si V = 33 cuando 
I = 3 determine (a) una lórniula de l'en términos de i. 
Ib) el volumen dd globo a los H s

f5. Lvalue [(2< -»■ ll‘(/i medíanle dos métodos, (a) de­
sarrolle l2i + l)‘ uiili/ando el teorema del binomio. 
Ib) considere u = 2r -f I (c) EÍvplii)ue la diferencia apa­
rente de las respuestas obtenidas en los meisos (a) > (b)

56. Calcule / r{t* + 2)-<lx mediante dos métinlos (a) de­
sarrolle fr* + 2)' > mullipliijue el resultado por r; 
(l>) considere « = r* -t- 2 (c) Esplique la diferencia apa­
rente de las respuestas obtenidas en los incisos (a) y (b).

57. Evalué j —~ ' * dr mediante dos métodos (a) de­

sarrolle ( . » - I)* >’ multiplique el resultado por
(b) considere n = . r - I (c) Esplique la diferencia 
aparente de las respuestas obtenidas en los incisos (a| > (b)

58. Calcule / -. r - ! t’dt mediante dos métodos (u) consi­
dere ii = t - I. (b) considere i = •. t - 1

59. Evalué/ 2 sen icos ri/i mediante tres mctiHlns-(a) con­
sidere II s sen r. (b) considere v = eos i, (c) utilice la 
identidad 2 sen v eos i = sen 2t (d) Esplique la dife­
rencia aparente de las respuestas obtenidas en los incisos 
la), (b)> (c)

60. Calcule / ese* i col x tlx mediante dos métodos, (a) con­
sidere ii = col r. (h) CüiisiJere 1 = ese r (c) Esplique la 
diferencia aparente de las respuestas obtenidas en los in­
cisos (a)y(b)

4.3 ECUACIONES DIFERENCIALES Y MOVIMIENTO RECTILÍNEO
Una ecuación que coniicnc una función y sus derivadas, o sólo sus derivadas, se 
denomina ecuación direrencial Las ecuaciones diferenciales se aplican en 
muchos campos diversos. En esta sección se aplicaran dichas ecuaciones al 
mnvimicnlo reclilíiieo en lísica Posteriormente se aplicaran al crccirnicmo 
y decreumicnln. (o dccaimicrUo) exponencial y al crecimiento logíslico en 
química, biología, psicología, sociología, adminisiradón j economía

En la sección 4.1 se prcscnlaron ecuaciones diferenciales simples, 
por ejemplo, en el ejemplo ilustrativo 6 de esa sección se tuvo la ecuación 
dilerciictal

(h
,l\

2i (I)

Algunas otras ecuaciones dtlerenciaics simples son

í/v
<11
,l'\

.3v'

4 V + .3

12)

(31

El orden de un.i ecuación ililerencial es el orden de la derivada de ma­
yor orden ipie aparece en la ecuación. Las ecuaciones (l) \ (2) son de prnner 
orden V (.3) es de segundo orden.

Una lunción / detinida poi \ = yit) es una solución de una ecuación 
dilcrcncial m v y sus derivadas salislacen la ecuación Una de las ecuacio­
nes dilerenciales mas láeiles de revolver cs la ecuación de primer grado de 

la lorma
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para la cual (1) es un ejemplo pamculor. Al escnbir esta ecuación con óife- 
reneiales se tiene

Otro tipo de ecuaciones diferenciales de primer orden es aquel de la forma

fiy _ A'(-t) 
i¡.x h{\)

La ecuación (2) es un ejemplo particular de una ecuación de este tipo Si esti 
ecuación se escribe con diferenciales, se obtiene

h{y)dy = g{x)dx <5)

Tanto en (4) como en (5). el miembro izquierdo contiene únicamente a la sa­
nable y. mientras que en el derecho tiene sólo a la variable .t. Así, las sanables 
están scparada.s, por lo que se dice que estas ecuaciones son ecuaciones di- 
ferencíuk‘.s separables.

Considere la ecuación (4). la cual es

dy = f(x)dx

Para resolver esta ecuación se deben encontrar todas las funciones G para lis 
cuales y = G(r) tules que satisfacen la ecuación. De este modo, si F 
es una antiderivada de /. todas las funciones G están definidas por 
G(r) = /•■(r) -1- C. donde C es una constante arbitraria. Esto es. SI

r/(G(rJ) = í/(F(T) -l- C)
= f(x)dx

entonces lu solución cumplctu (o solución gencrul) de (4) está dada por 

y = F(.t) + C

Esta última ecuación representa una familia de funciones que depcmlco 
de una constante arbitrana C, por lo que se denomina familia de funciu- 
ne.s de un parúniulro. Las gráficas de estas funciones forman una familu 
de curvas de un parámetro en un plano, y sólo una curva de esta familia pa.si 
por cualquier punto particular (r|, Vj)

EJEMPLO ILUSTRATIVO 1 suponga que se desea en­
contrar la solución completa de la ecuación diferencial

Al separar las variables y escribir la ecuación con diferenaalcs se obtiene 

d\ = 2\d\

Si se antidenvan los dos miembros de la ecuación se tiene

dy = /(X) dx

y -H C, = + C-2
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Como Ct - Cj es una tonstanic arbitraria si Ct y C) son arbitrarias, 
entonees se puede reemplazar - C| por C. obteniéndose

V = r- + C (7)

1.1 tual es la solución cnmplela de la ecuación dircrencial (6i.
La ecuación (7) representa una iamilia de funciones de un parámetro 

La figura I muestra las gráficas de las funciones que corresponden a 
C = -4. C = -I. C = 0. C = 1 y C = 2 ◄

Ahora considere la ecuación (5). la cual es 

/i(y)</v = ^'í.t)(/r

Si se antideman los dos miembros de esta ecuación, se tiene

J" h(y)üv = J g(r)í/t

Si H es una antidemada de y G es una antiderisada de g. la solución com­
pleta de (5) está d.ida por

//(VI = G(i) + C

^ EJEMPLO 1 Obtenga la solución completa de la ecuación 
diferencial

íL> -

í/\ “ 3v’

Solución Si la ecuación dada se escribe con ditcreneialcs. se tiene 

^^■\¡\■ = 2i^/.v

quedando las sanables separadas .Al .iiitulemar los dos niiembu's de !.i 
ecuación se obtiene

J l\’</v ^ j 2i'Ji
ís'

•I ^ 12

■)i ‘ Si' 1 (’ 

la cual I s la sohicioii coiiipKla
l'.iia obtener este icsultado. i’iiineio se esiubio l.i soiisi.uile .iibiii.ina

......... .. ¡[y. ik- modo que al mulliplicai ....... imembios de l.i e.uasH'u poi
I.'' la loiistaiite aibitiaiia iiiiede eomo ( ^

I II < I i'ii'iiiplo iliMialiso siiMiienie se miiesiia coiii.' «d'teiiei una solo 
clon pal til iilai de una eiuaeioii dileieiu lal de i'iiiiiei oiden lO.indo se d.i iin.i 

condición iimi.d

EJEMPLO ILUSTRATIVO 2 \ tm de enconliai ima so
Ilición p.iilieiilai de la cmi.kioh diteien» lal H«» paia la dial i o cuando



322 CAPÍTULO 4 INTEGRAL DEFINIDA E INTEGRACIÓN

r = 2, se susiiiuyen cslus \illorc^ en (7) y se resuelve para (\ uhtenii- 
doseíi = 4 + C.oC = 2 Al sustituir este valor de Cen (7) se llene

V = .t' + 2

lu cual es lu solución particular deseada. i

Iji ecuación {3} es un ejemplo de un Upo de ecuación dirercnciai ú; 
segundo orden

(/-y
</r*

= /ir)

Para resolver esta ecuación se necesitan dos antidenvaciones sucesivas, v b 
solución completa tendrá dos consianlus arhilronas. Por tanto, la soluaa; 
completa representa una rumiliu de funciones de dos parámclrus, y b 
gr.íllcas de estas funciones forman una familia de curvas de dos parámeins 
en un plano El ejemplo siguiente muestra el método para obtener la soluciói 
completa de una ecuación difereneial de este tipo.

► EJEMPLO 2
diferencial

,¡~v 4r + 3

Solución Como

</-v _ \
tZr- f/v Id.v/

Determine la solución completa de la ecuacim

y considerando y" ^. se puede expresar la ecuación dada como

i¡y‘
tix 41 + 3

De este modo se tiene, con diferenciales.

<!}' = (4r + 3)(/.v 

Al antiderivar. se obtiene

j í/y’ = J" (4v + 3)í/v

y’ = 2t- + 3r + Ci

Debido a que v' = —. y ul siisliuiir en la ecuación anterior se tiene

= 2v- + 3.r + C'i</»

ily = (2.t* + 3t + C'i)i/v

J dy = J"|2i- + U +

> = !-r* ■* C|» + C':
la cual es la solución completa •4
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^ EJEMPLO 3 Ohlcngu la sulución parlK.ular de la ecuación di- 
Icreiiual del e|cmplo 2 para la cual V = 2yy'= -3 cuando v = i.

Solución Como v' =2t" + 3jt + C|,‘.c susliluye-I pory'y I por .t, 
obteniéndose -3 = 2 + 3 + C\, o C) = -8. Al sustituir este valor de C] 
en la solución completa se tiene

\ = + í.t- - X.T + Cj

l’iiesto que v = 2 cuando x = I. y al sustituir estos valores en la ecuación 
anterior se tiene 2 = • + ’ - 8 + Cs. de donde se obtiene C^ = i’.

‘ 2 ■■ -I,
lEnionces la solución particular deseada es

V = - H.r + ^’ ◄

I:n la secciim 2.5 se dijo que cuando una partícula se mueve a lo largo de 
una recia de acuerdo a una ecuación de movimiento, i = /(/). la velocidad 
instantánea y la aceleración pueden detemimarse de las ecuaciones

Por tanto, si .se tiene r u ii como hinción de l. así como algunas condiciones de 
frontera, se puede determinar la ecuación de movimiento resolviendo la ecua­
ción dilerencial. Pi procedimiento se ilustra en los dos ejemplos siguientes

► EJEMPLO 4
acuerdo a la ecuación

Una partícula se mueve a lo largo de una recta de

V = 10 eos 2 ;r/

donde v centímetros por segundo es la v elucidad a los t segundos .Si el sentido 
ptisiiivo es hacia la derecha del ungen y la partícula está a 5 cm a la derecha 
del origen al inicio del movimicnlo, determine su posición cuando / es igual a 
(a) 0 3. (h) 1 4. (e) 2.‘) y (d) 3.6 .Simule el movimiento en la graficadora y 
apoye las respuestas.

Solución Sea v centímetros la distancia dirigida de la p.irlícul.i a partir 
del origen a los t segundos Como \ =

10 eos 2nt 

10 eos 2;:/ ili

10 j" eos 2r:iílf

— I eos 2/T/(2;r t/í) 
2.tJ

\ = - sen 2itl + C
z

Piiesti> que V = 5 cuando f = 0.

5 = -seno C
z

C =
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Por unto, !a ecuación de muvimicmú es

i = - sen 2;r/ + *> 
R

(o) Cuando/ = 0 3.

\ = — sen 0 (tn + 5
R

= 651

(c) Cu.indo / = 2 9. 

s = - sen 5 K;r + 5
R

= 4 06

(b) Cuando / = 1 4.

T = — sen 2 8/r + 5
R

= 5 94

(d) Cuando / = 3 6. 

v = — scn72ff+5
R

= 406

Ahora se simulará el mosimienlo en ia graficadora sobre la recia 
\ = 1 Con la gratleadora en modo panimeinco. sean

ir)/ = — scn2n'/ + 5 v rí/) = 1 
R

HCURV2

Considere los siguientes parametros para el rectángulo de inspecciun
Wn ” Í|TUX ~ ^Icp “ •’^iiur ~ ^•■*«1 ~ — “!•
'ñus = -•J'slI ~ I Se presiona la tecla ItbaceI v dcsnuils la teda flnliaa 
1(1 t:t¡iiii-rtla, manteniéndose opnmidn li.isiu que el cursor este en / = 0 La 
llgura 2 muestra la pantalla de la graficadora con la información siguiente 
/ = 0. T = 5. > r = I Presione la tecla ftciha a la (Jcniha > manténgala 
oprimida Observe el cursor, el cual representa la partícula que se mueve a le 
largo de la recta V = I En la parte infenor de la pantalla de la graficadora se 
uhsena lo siguiente cuando / = 0 3. t = 651 cuando / = I 4. t = 594 
cuando / = 2 9, t = 4 06. cuando r = 3 6, r = 406 Estos valores apn>on 
Lis respuestas

Ctinclu.siiín; A los 0 3 s la partícula está a 6 51 cm del origen, a los I 4 s 
la partícula esta a 5 94 cm del origen, a los 2 9 s la partícula esta a 4 06 cm 
del origen. > a los 3 6 s la p.irtieula esta otra vez a 4 06 em del ongen ^

M(¡tiH\3

Si un objeto se mueve libremenie sobre una recta vertical ) es airaiJo 
h.icia la Tierra por la fuer/a de graved.id la utilfnninn lU hiela a la i!ra\etIaJ 
varía con la disi.mcia del objeto desde el centro de la Tiemi Sin embalo 
para pequeñas v.iriacionus de distancia la .iceleracion debida a la gravedad 
es casi consiante Si el objeto cM.i cerca del nivel del mor. un valor aproxima 
do de la .iccleracum debida a la graved.id es 32 pie/s* o 9 8 m/s*

^ EJBMPLO S Se lan/a una piedra verlicalmentc liaua amba 
desde el suelo con una velocidad imci.il de 128 pie/s Considere que l.i única 
tuer/.i que actúa sobre la piedr.i es la aceleración debida a Li gravedad üeter 
mine (u) que tan .ilto lleg.ira l.i piedra, y (li) que tiempo le lomara a la piedra 
llegar hasia el suelo (c) Simule el movimiento en la grafteadoru v apo>e la> 
respuestas de los incisos tu) > (b) (d) Delernine la r.ipule/ de la piedra al 
Iteg.ir al suelo

Solución 11 movtnuenio de la piedra se etcclua sobre un.i recta vertical 
l a figura 3 imiesira el comportmmento del moviniiciito. donde Lis ficn-has
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T.ihla 1

iiidiLjn 1.1 dirección del iiiovinitailo de la piedra sobre una reda vertical y el 
sentido positivo se considera liaci.i íimh.i

Sean i sejiundos el tiempo ijue transcurre desde i|uc l:i piedra fue lanzada.
V pies la distancia de la piedra desde el suelo :i los i segundos, i pies por se­
gundo la velocidad de la piedra a los t segundos y | v [ la rapidez de la piedra 
a los 1 segundos

0 '»
. <*

, "

Cuando la piedra llega ai suelo, v = 0 Sean t y v los valores particulares 
de t y V cuando \ = 0 y / ^ () La piedra estarJ en su punto más alto cuando 
la velocidad sea cero Sea i el valor particuKir de v cuando i’ = 0 La tabla 1 
presenta las condiciones de frontera

La aceleración debida a la gravedad es en el sentido hacia ahajo y tiene 
un valor constante aprovimado de -32 pie/s- Como la aceleración está dada 

í/rpor . se tiene
ili

= -32 
(li

dv = -32 di

J dv = -32 J dt 

i- = -32 f + C,

Como i = 128 cuanto / = 0. se sustiiuven estos valores en la ecuación an­
terior y se obtiene C¡ = 128 Por tanto.

»• = -32/ + 128 (8)

Debido a uue v =
dt

— = -32/ + 128 
dt

d% = (-32/ + 1281 í//

J (/( = J (-32/ + 128)«//

\ = -Ifj/' -r 128/ + Cs

Como í = 0 cuando / = 0. entonces C. = 0. > al sustituir 0 por C> en la 
ecuacKin anterior se obtiene

1 = -16/- + 128/ <9)

(a) Para avenguar que tan alto llegara la piedra, se necesita determinar s 
Primero se deleniiina el valor de t para el cual i = 0 De (8), / = 4 
cuando v = 0. En (‘>1 se sustitu>e 4 por / \ v por v. i»bteniéndose

- = -I6H6) + 128(4)
= 256

f’om liislón: La piedra llegará a 256 pie

(1)1 P.ira s.ibcr que tiempo le tomara a la piedra llegar al suelo se necesita 
delenmnar / Si se sustiluve / por / \ I) por v en (‘>1, se obtiene

o = - S)
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de donde / = Oyr = K Sin embargo, el valor ü ocurre cuando la piedra 
es lanzada

Concliislrtn: Le lomará 8 s a la piedra llegar al suelo

T II
8 2 YO_______

|o 4|pi>r|-l(K> ruoi 

>iri - 2 > \li) -Un’ ♦ l2Kí 

FUiURA4

(c) Con objeto de simular el movimiento de la piedra en la graflcadora 
se considera que la piedra se mueve a lo largo de la recta venical x a 2 
Con la graneadora en modo paramcinco, sean

rtrj = 2 y v(/) = -16/- + 128/

Considere los siguientes parámetros para el rectángulo de inspecuim 
6nín ~ *siep = 6 1. t^mtn ~ 6. r„,j, = 4. = |
'm(n = -160. v„uj = 360. y v^i = o Se presiona la tecla (tra^ 
> después la tecla fletba a ¡ti tunuerda. manteniéndose oprimida hasta 
que el cursor esté en / = 6 L.i figura 4 muestra la pantalla de la graneado­
ra como debe aparecer hasta este momento Presione la tecla JU-ilui a la 
(Jirechíi y observe que la piedra representada por el cursor, se mueve 
hacia .imba y hacia abajo a lo largo de la recta t = 2 Note que el mavi 
mu valor que alcanza V es 256 el cual iKurre cuando / = 4.loqueapova 
la respuesta del inciso (a| También observe que la piedra regresa al 
suelo (cuando v = 0) a los 8 s. lo que apoya la respuesta del inciso (b)

(d) P.ira obtener v se utiliza (8j y se sustituye 8 por / y i por i, obteniéndose

V = -32(8) + 128 
= -128

Por tanto. 11 | - 128

Conclusión: La piedra llega al suelo con una rapidez de 128 pie/s ^

EJERCICIOS 4.3
Fii loi tjfrcicios I ii 14 iletennine la »(»/i/rn*n < ompleia tic la 
tiiuiuoii JiftniKiiil

1. II 4x - S 2.

3. ds
ds

3«- + 2t - 7 4.

5. ds
Tx = Ixv- 6. 'd\ cI + X

dx - s

7. da
dT -

3x s 1 + «•
H

8. ds X- \ j' - 3
dx

V. di
dx

sec* X
luir 1

10. du .. cos2i 
di sen 3h

II.
d'-s
ds-

» 1 12 1

4
II

13 d's , ,— = scH st * eos 3f 
dr

14 d'li 
ds- •- Un 1 sec* i

15. ii\ ^— = X* - 2x - 4, \ = -6 cuando x = 3

16. ^ rs (X * llU + 2).X * - ’ 
dx 2 cuando x = -3

17.
di sen 2x ’

18. di = eos !/,i = 3 cuando r 
dt 2

l‘>. = 4ll + 1,)-.,/ = -1 j
di’

t: -2 cuando 
lis

\ = -1

1.1 3 1 . ,¿II. —, = j. ) = — j — a -1 cuando x = l

En li>\ ejenuioi 21 a una panu ufa rmien'n la laixnJf 
una reí la a las i x. i;im(lat s pies es la iltstam la dintiiilii Je la 
/i<ir/(<u/ií ilesJí il artuen i pu x par sei¡iinJa es tu xiliHiJiulJt 
la paruaila \ a pu x por sevii/ija jnir xt>¡i«iJí« . i la melera 
tioiidi lapaniiala ‘•ugcrLiicia para los ejercicios 2‘) a 32

ii = fÍL
di

— di = y di 
ds di ds

hi las ijcr, mas 15 ti 211 <»/ií«ieH la solmitin parluulur di 
la eiiiuuan diftremial deiermiiiada par las tandiiiaiies 
mil mies
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^ 2/ * I ' i-u.imld / 0 I-xprcsi; < Lti Ilí-
iiiino' df I
^ _ 4 / » = <1 uundo / = 2 Lepase v en anninos

Jei
,, I _ s - 2í » = 2 > ^ II (.iiaiuli) í = I) I.xpasL \ ) \ 

in lurmmiis Je t
j 17. I o ) \ = U tu indo / = 0 Lxpase i ) s en 
linmtu)> de t

38. Se uii.i pelul.i lutu .ilujii dtsJe un.i vtniana situada 
a XO piL soha' el suelo ton una xelotidad mitial de 
'M pie/s <u| (Cuanlo lardara la pelota en llegar al suelo* 
> (li) ,C on (jiiL rapidez gulpera la pelma el suelo'

3íJ. Un I mujer (|ue se tntutnlra en un globo dtjo taer sus bi- 
notulares tu.indo el globo se entonlraba a I ^0 pie sobre ti 
suelo > se elevaba a una (asa de lOpie/s (a), Cuanto Item- 
po lardaran los binoculares tn llegar al suelo’ y (bi ,ton 
iiut rapidez se mipattaraii los binoculares el suelo'

,j ,, /- * 2/. r = I cuando / = ü ) r = -3 cuando
f = 2 Fxprese i y i en icrniitios de /

_ "íf _ I = ^ j i = 1 cuando / = I Exprese i 
) un Icntiinos de /

27. ti = -4 % 2 cns(2í - * ;ri. i = 2y x = I cuando/ = O 
l xptese i > 1 en icnninos de /

2S (1 |Ssen3/ i -6y\ = 4cuando/ = 0 Exprese i 
) icii Itrimnos de /

29 II s hOl). 1 = 2(1 cuando i = I Obtenga una ccua' 
Clon que contini'.i a v y s

30. u - 5IXJ, i = 10 cuando v = 5 Delcmiinc una etua- 
Liiinqueconlciig.iai > a

M u ss . 2 I 4 cu.indo i = 2 Obtenga uní ccua 
ciiin que cuniciiga .i i > i

32 (1 - 2i - 1,1 = 2 cuando I = I DUcnnine una ccua* 
clon que contenga a i > i

¡nhi\,j, nii im O u .52. lui iihiih thjimr lii\ xiiniihh \ ii'iiio 
ranvitn \ OH gi/reu tic t xenhir iimi iiiiuliiMiin Ln Un cjcn i 
• lui í.i ,1J( ;,j;en tu itunut (¡iif Ui iiniiii fiurzti iiiif atUui n
uirihjitia (I la IIII li itit iim tUhulti ii lii gmuí/m/. iiuiíri/i/íi- 
¿JuwM Cpn/c* o i;,s ¡un ui ahajo

I na partícula se mueve a lo largo de un.i recta de modo 
que SI 1 centiiiielros por segundo es la velocidad de la 
partícula a los f segundos entonces e = d sen 3^1 donde 
vl Sentido positivo t's li.ici.i la dcrcdia dtl origen Si la 
Pinícula se encuentra ui el origen al iniciar el movimieii* 
•" diterniiiie su posición cuando / es igual a (al Oí). 
••'I 2 5 (c> 4 q. j (ijj 7 2 Simule el moMiiiiento en la 
lfjlK.iilofd j apoje las respuestas

^ llc.ili.e el ejercicio 33 consider.indo aiior.i que 
‘ 2 eos ' nt

Hita jKloia venicalmenle litcia amba desde el 
'■^slouiii un 1 vclocidid imua! de 20 pic/s (a) .Cu.mto 
bsnip.1 asttiidua la pdola' (l)> ,Q'‘c lan alto llegara l.i 
Muta ’ y leí ^ ( n.„n,, i.ujjr.i |.i pduij en llegar al suelo' 

’i'iiule el iiioMiniento en la grafit.idora > apoje las 
''^'Piicstas (1^. I,,,, musos i.i) it( (i-l ,(oii que r.ipidez 
^•"‘Mira la pdola d sudo’

36

37.

k I'•alce el ejercicio 35 considerando .iliora que la velo-
"“‘-'l'niuilesdeSm/s

\\ ' l’icdta desde lo alto del monumento a
iJc 555 pie de alUira lal ,ru.mto tiempo le 

l'ani a la piedra alcanzar el suelo' (li), Con que rapidez 
^'’'^aralap„j,.iel suelo’

40. Se linzj una piedra vertiialmentc hacia amba desde la 
azotea de un cdidciode íiO pie de alliini con una velocidad 
■Ricial de 40 pic/s (a), Cu.mto iienipo tardara la piedra en 
alcanz.ar su maxima altura' (bl, Cual es su maxmia altura ’
(c), Cuanto tiempo tardara la piedra en pasar por l.i azotea 
del edificio en su regreso' (d) ,Cu.il es la velocidad en ese 
instante' (c) ,Cuanto tardara la piedra en llegir al sue­
lo ‘ (f I, Con que rapidez golpeara !a piedra el suelo ’

41. Suponga que camina en el bosque j ve lucia amba como 
una rova se desprende de un lado de un nsco Si su cjIkvj 
esta a 200 pie debajo de la base de la roca en ese instante'. 
(.0 (Cuanto tiempo llene pan alejarse de la iravectona dé­
la roca ’ Ibl Si no se aleja de la irajcclon.i a tiempo , con 
que nipidez le golpear 111 roca'

I
' 2(KIpie

\ í 
I

\
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■42. Se |jn/d lina ptlnl.i xertiLjImenie hjua umbj con un.i 
vdoLidjil iniual de 40 pic/s desde un punlii u 20 pie del 
suelo (a) Si i pies por segundo es la vcloadad de la peló­
la suaiidii esta a i pies desde -u punió de lan/^icnin. 
expíese t en Idnninosde i (ti),Cuál es la velocidad de la 
pelota LUjiido esta a 16 pie del suelo y se eleva I

43. Se dispara un proyectil vemcalniLnie lucia amba con 
una velocidad iniual de ISO in/s desde un punto 2 m 
amba del suelo (u) .Si a metros es la altura del pruycctil 
desde el suelo a los / segundos, después de ser disparado, 
exprese s en términos de i bajo la suposición de que la 
única lucT/a que actúa sobre el proyectil es la atribuida a 
la aceleración debida a la gravedad (ii) (.Qué tan alto, 
desde el suelo, estará el proyectil 4 s después de ser dis- 
par.ido'’ (el ^.Cuanto tiempo tardará el proyectil en alean 
/ür una altura dc500iii desde el suelo'

44. Si un cohete se eleva desde el suelo con una aceleración 
consianie de 22 ni/s^ detcmiine (al la velocidad del cohete 
1(1 s después de que se lan/ó y tlil ,qué altura, desde el 
suelo, alcanrará el cúbete en ese tiempo''

45. Un iranslrordador espacial se eleva verticnimcntc con una 
acderacion consume de 1(1 yd/s* Si un radar a I 2(H1 yd 
de la platafurma de lan/amienlo lo sigue, ,qué tan rápido 
gira el radar 8 s después del lanramienlo'

■' !■-------  I éÜOyd

46. Si una pelota se rucdi a nivel del suelo con una vcIiKidad 
inicial de 20 pie/s, y vi la rapidez de la pelota disminuye a 
la lasa de 6 pic/s* debido a la fricción. ,qué distancia 
recorrerá la pelota ’

47. Si el conductor de un automóvil desea aumentar la rapidez 
de 40 a 11)0 kni/h mientras recorre una distancia de 
2(X) m., que acelcracum consiunie debe mantener ’

48. <Qué aceleración negativa y constante debe aplicar un 
conductor para disminuir la rapidez de 120 a 60 km/h 
cuando se recorre una distancia de 100 m'

49. Si se aplican los frenos de un automóvil que viaja a 
lüO km/h y los frenos pueden darle al automóvil un 
aceleración negativa y constante de 8 m¡i'. (a) cuánto 
lardará el automóvil en detenerse y Ih) ,que disioncu 
recorrerá el auiomov il antes de detenerse'’

50. Una pelota empezó a subir desde la base de un plano 
inclinado cun una vclixidaJ inicial de 6 pic/s Si hubo 
una aceleración contraria al ascenso de 4 pie/s^ (,qu¿ 
disuncia recomo la pelota en el plano antes de comenzar 
a rodar hacia abajo’’

51. Si los franos de un automóvil pueden darle una acelera 
Clon negativa y constante de 8 m/s^ ,.cual es la nuiinu 
rapidez a la que puede viajar si es necesono detener d 
automóvil en un intervalo de 25 m después de que te 
apliquen los famos ’

52. Un bloque de tuda se desliza por un conducto cun uiu 
aceleración constante de 1 m/s* El conducto mide 36 ra 
de longitud y se aquieten 4 s para que el bloque llegue 
hasta la pane mis baja (a) (.Cuál es la velocidad miciil 
dd bloijue de ludo ’ (b), Cual es la rapidez del bloque de 
hielo cuando ha recumdo 12 m ’ (c) tCuanio tiempo tar 
dara d bloque de hielo en recorrer 12 m ’

53. La ecuación j* = 4uv representa una familia de parábo­
las de un parámetro Determine otra familia de cunas de 
un pjTametm tal que en cualquier punto (r, v) exista uiu 
cuna de cada familia que pase por el y las rectas tan 
gentes a las dos cun as en ese punto sean perpcndinilam. 
Sugerencia pnmeru muestre que la pendiente de la recta 
tangente en cualquier punto (r. v). que no esté en d eje r, 
de la parábola de la familia dada que pasa por ese punió 
es 2v/t

54. Resuelva el ejercicio 53 si la familia de cunas de un 
parámetro tiene la ecuación + v •* =

55. Si una panícula ve mueve sobre una recta y se sabe qu 
la aceleración es una función del tiempo, «qué conJi 
Clones iniciales deben conocerse también para ohlencr 
una ecu.icion que exprese la distancia de la panícula de< 
de d ungen como una función dd tiempo' Explique 
cómo detemimana esta ecuación

4.4 AREA

HíiURA 1

Prubablemente Heno una idea mtuiUva do que oi urca do una figura got> 
mélricii os la modida que. en alguna furnia, proporciona ol tamaño do b 
rogtun encerrada por la figura Porojomplo, so sabe que el área do un rectángulo 
os ol producto de su largo j su ancho, y ol úrea de un (nangulu es la mitad d¿! 
producto do las longitudes de su base y do su altura El arca do un polígono 
puedo definirse como la suma do las áreas do los triángulos en que puede scf 
desuiinpuesio. y puede demostrarse que el área así obtenida es indepondjcn- 
ic do cómo se descompuso el polígono en tnangulos Observe la figura 1 

En esta sección, se define el área de una región en un plano si la región 
está limiluda por una cuna. Si desea saber por que so tratarán lulos áreas in
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respuesta es que se establecerán los fundamentos necesarios para motivar 
geométricamente la definición de inlcf'ral Jefinüla en la sección siguiente. 
Recuerde, se motivó geométricamente la definición de la derivada de una fun­
ción como la pendiente de la recta tangente a la gráfica de la función. Justo 
como con la derivada, después de haber establecido la integral definida verá 
que puede aplicarse la definición en una gran variedad de campus

En el estudio del área se tratarán suma.s de muchos términos.* de modo 
que se introduce una notación, llamada nolaaón rigmo. para facilitar la 
escritura de estas sumas. Esta notación requiere el uso del símbolo T. la letra 
.sigma mayúscula del alfabeto griego En el ejemplo ilustraliso siguiente se 
dan algunos ejemplos de la notación sigma

U EJEMPLO ILUSTRATIVO 1

Y, i- = 1- + 2- + .1' + 4- + 5=
1 = 1

2

Y + 2) = + 2) + |3(-n + 2} + 1.3 • 0 + 2) + |3 • 1 + 2| + (3 • 2 + 2)
( = -2

= í-4) + (-1) + 2 + .‘5 -1- 8

YP = l’ + 2^ + 3-'' + ,.. +
1

4.4.1 Definición de lq notación sigma
n
Y /'í'l = + 11 + 2) + .. . + F{n - 1) + Fin)
i=m

donde ni y /i son números enteros, y m S n.

El miembro derecho de la ecuación de la definición con.sisle de la suma 
de (« - ni + I) lénninos, el primero de los cuales se obtiene al sustituir i 
¡Hir ni en FU), el segundo se obtiene a! reemplazar i por ni + I en Fií>. y 
así sucesivamente, hasta que el último término se obtiene sustituyendo i por 
n en Fiíl.

El número ni .se denomina límite inferior de la suma, y n se demmiina 
límite superior de la suma. H1 símbolo i recibe el nombre de índice de la 
siimii. i^le es im símbolo "fiaicio" porque cualquier otra letra puede em­
plearse para este propósito Por ciemplo,

Yi- - P ^ ■>’ + í’
i I

es eipiivaleiile a

s
Y r' ‘ -I' ^
I I

^'•'1(1 j. III '•'I.n|I\||(.,i j iitr.li iliii ij.liic 11II «-il.u '.11111,11 Mi.'ti' (l.iiiiJi'1'1.1 •iiniiií.'ii..
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EJEMPLO ILUSTRATIVO 2 DciüdLnnicKm4 4 i.

^ + JL- + JíL. 4
» + I 3+1 4 + 1 5 + 1 6+1

I-.n ocasiones los términos Je una suma comicncn subíndices, como se 
muestra en el ejemplo ilustratisu siguiente

EJEMPLO ILUSTRATIVO 3

4, = + /ti + • • ''n
»-l

‘I
khi = 4/>j + 5b^ + 6/v. + 7/>7 + al)^^ + y/;.,

14
l
^ / (.i, I Ar = /(t() A\ + /(ti) Ar + /(V,) Ar + /(r4) At <
I I

Los teoremas siguientes tratan sobre el uso de la noiaeión sígma, son 
Utiles para ciertos cálculos y se demuestran fácilnienle

4.4.2 Teorema
fl
2] < = <71. donde r es cualquier constante 
I I

Demostración

^ t + < + . + <• (II términos)
I I

— iii ■

4.4.3 Teorema
ti n

= 1-^ F(i). donde <• es una constante 
I I I I

Demostración

n

f /-(I) = < F( 11 + f • /(2> + I • /■i3) + . . + <• • rtnl
. I

= <¡/‘(l» + /-(li + /(3) + .. + /mil

= < ]¿ F(i»
I I

4.4.4 Teorema
H 11 0
5^irtii + GtKi ^ X + Z 
> 1 <1 .1
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1.1 dcninstrauóri dd Icorcnia 4 4 4 se deja uimn cjcrciciu {refiérase al 
ejcrLicK) 43) 1:1 leoreiiia 4 4 4 puede exlender^e a la suma de cualquier mí- 
riiuTo Je lununnes

1 4.4.5 Teorema I

h li-i
I ru) = X Al - ,) (1)
i-'i T-«+r

y

h h-c
y Al) = y Al -1- r) (2)
I-a ( ,

La demostración del teorema 4 4 3 se deja tomo ejercicio (sea el ejerci­
cio 44) El ejemplo iluslraiiso siguiente muestra la aplicación de este leorema

EJEMPLO ILUSTRATIVO 4 De la ecuación (1) del leo
rema 4 4 5,

in 12 11 12
Xai) = X^<'--) > X- - X<| - D-
1 s l-S i=fi 1=7

De la ecuación (2) del teorema 4 4 5

m K 11 (1
X Al) = X Al + 2) y X- = X <' + 5)- ◄
1=^ 1-1 l=() 1 1

1 4.4.6 Teorema |

n

^ir(í) - ru ~ 1)1 = F(;j) - /{Oj
I 1

Demostración

II n r
5^[/'(I) - fu - i»i = S Hí) - X
ii 11 1-1

En el miembro dereeliu de esta ecuación se escnbe la primera suma en 
otra lumia, y se aplica la ecuación (2) del leorema 4 4 5. con c = I, a la se­
cunda suma Emuiu.es

II ,11-1 . II 1yin/) - ¡u - i)| = y ri/) ^ A/j) - 21 1]
1 I ,\ ' I 1-1

II-1 II I
= y ^" y ^ i'i

I I I n

II 1 / n -1 V
= y Ai) + /V») - (/•{O) ^ y nn)

- I (II) - rifi)
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^ EJBMPLO 1 Evalüt:

¿Í4' - 4'-')

1=1

Solución Dcl teorema 4.4 6. Jomlc F(M = 4‘, .se deduce que

^(4> _ 4»'l) = 4" - 4”
I-I

= 4" - 1 i

El teorema siguiente proporciona cuatro fónnula.s para el cálculo con la 
notación sigma Estas fórmulas pueden demostrarse mediante inducción 
matemática. También pueden demostrarse sin inducción matemática; vea Im 
ejercicios 4S-48.

4.4.7 Teorema

Si n es un número entero posiliso, entonces

^ . nilt + 1)

1-1 "
(Fórmula 1)

^ .1 n{n + ljí2« + 1)
n 6

(Fórmula 2)

y., irUi + \)-
h (Fórmula 3)

a «(n + 1)(2h + I)(3ii- + 3/i - 1) (Fórmula 4)
ití 30

>■ EJEMPLO 2 Calcule

y i(3i - 2)
.=1

Solución

y I(3i - 2) = y (3|2 - 2/)
r^¡ ri

= X (.■'»-)+ ¿(-2/)

I I

=3Í--2Í,

{por el teorema 4.4.4) 

(por el teorema 4 4 .M

= 3-gi"^if'.^"-2 ,p.,n»sróra,ui^

, ” !>-'
_ 2/r + 3/1- + n - 2n- - 2/i

-

_ 2/i' + n- - n A
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i

V ~l<\\

<1 u

fk;lr\ 2

Ames de csluüi.ir el .írca de una región plana, se indicará por que se uli- 
li/d l.i lerniinología "dwíIuIíi del área" La palabra medida se refiere a un 
numero íno se incluyen las unidades) Por ejemplo, si el arca de un triangulo 
es 20 ern-, se dice que la medida del arca del triángulo, en centímetros cua­
drados es 20 Cuando la palabra medu ion se aplica, se incluyen las unidades 
De este modo, la medición del área del triangulo es 20 cm‘

Aliora considere una región R del plano como muestra la figura 2 La 
región R está limitada por el eje r. las rectas x = ay x = h. y la cursa cuya 
ecuación es v = fix). donde/es una luncion continua en el intervalo cerrado 
[í/. h] Por simplicidad, se toma fix) > 0 para toda t en [«. h\ Se desea asig­
nar un numero /I a la medida del arca de R y utili/ar un proceso de limite 
semejante al empleado en la definición del área de un círculo El area de un 
círculo esta definida como el límite de las arcas de los polígonos regulares 
inscrmis cuando el numero de lados aumenta sm limite Iniuitivamenie se ve 
que cualquiera que baya sido el numero elegido para representar A, ese nu­
mero debe ser por lo menos tan grande como el area de cualquier región 
poligonal contenida en R, y no debe ser mayor que la medida dcl area de 
cualquier región poligonal que contenga a R

Primero se define una región poligonal contenida en R Se divide el in­
tervalo cerrado lo. h] en n subiniervalos Para simplificar se consideran estos 
subinlervalos de igual longitud, por ejemplo. A r Por tanto. A t = (/; - a)¡n 
Los extremos de estos submtervalos se denotan por tf|, \|. Cs • ’^a-l
c„. donde Vn = o. x [ = o + A r, , x, = o + /Ar
x„ I = o + til - 1) Ar, r„ = h El i-esimo subinlervalo se denotara por 
[v, [. t,l Como J es continua en el intervalo cerrado [o. /ij, es continua en 
cada subinlervalo Por el teorema del valor extremo, existe un numero en cada 
subinlervalo para el cual / tiene un valor mínimo absoluto En el ;-esi- 
mo subinlervalo sea «, este numero de modo que /(t,j es el valor mínimo 
absoluto de / en el subinlervalo lr,-i. x,l Considere los n rectángulos (o 
elementos de areal. cada uno de ancho Ar unidades y altura de J{i,) uni­
dades (refiérase a la figura 3) Sea S„ unidades cuadradas la suma de las arcas 
de estos n rectángulos, entonces

S„ = + /((slAx + -i-/(c,)-^^

o. con la notación sigma.

I I

H<U U\A

Ll miembro derecho de (3j proporciona la suma de las medidas de las 
areas de los n rectángulos insertos De este modo independientemente de 
como se defina debe ser tal que

A > ,V„

En la figur.i 3 la región sombreada tiene un .ireade S, unidades cuadradas 
A continuación se incrementara n Específicamente multiplique ii por 2 en­
tonces el numero de rectángulos es el doble, y el ancho de cada rectángulo 
se redujo a la imiad Lslo se ilustra en la figura 4, la cual muestra el doble dé­
los rectángulos de la figura .3 M comp.irar las dos figuras se observa que 
la región sombreada de la figuni 4 parece i]ue se aproxima mas a la legii'ii R 
que la reeion de la finura 3 \si, l.i sum t de las areas de los rectángulos de la 
figura 4 esta mas próxima al numero que se dese.i para representar l.i medida 

del area de la región R
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Conforme ii se incrementa, los valores de S„ determinados a partir de la 
ecuacidn (3) aumentan, y los valores .sucesivos de S„ difieren uno del otro en 
cantidades arbiiruríamcnle pcqueña.s. Esto .se demuestra en Cálculo avanza­
do mediante un teorema ijue establece que .si / es continua en [o, /;], en­
tonces conforme n crece .sin límite, el valor de S„ dado por (3) se aproxima 
ul límite. Este límite es el que se loma como dellntción de la medida del área 
de la región R.

4.4.8 Definición del área de uno región plana

Suponga que la función/es continua en el intervalo cerrado [a, /;), con 
f(x) ¿ 0 para toda .r en (o. ó|,y que íic& la región limitada por la curva 
y = ](x\, el eje x y las rectos x = a y x = h. Divida el intervalo (ü. f>l 
en ri subintervalos, cada uno de longitud A.r = {h - a)fn, y denote el 
i-csiino suhintervalo por [x,^\.x¡\. Entonces si/(c,) es el valor de fun­
ción mínimo absoluto en el i-ésimo subimervalo. la medida del úrea 
de lu región R está dada por

A
n

Iim_ ^ /ic,)Á
»-i

.r (4)

Esta eeuación significa que para cualquier € > 0 existe un número 
Ai > 0 tul que si n es un número entero positivo y

si n > N entonces Yj fíe,) A.t - A
(=1

< €

En lu discusión untenor pudieron haberse considerado rectángulos cir- 
cunsentos en lugar de rectángulos inscritos. En este ca.so, se toman como me­
didas de las alturas de los rectángulos los valores máximos absolutos de /en 
cada subimervalo. La existencia de un valor máximo absoluto de / en cada 
subimervalo está garami/aüu por el teorema del valor extremo. Las sumas 
correspondiemes de las medidas de las amos de los rectángulos circunscnlos 
son por lo menos tan grandes como la medida del área de la región R. y pue­
de demostrarse que el límite de estas sumxs conforme n crece sin límite es 
cxuctamenle el mismo que el límite de la suma de las áreas de los rectángulos 
insenlos, Esto también se demuestm en Cálculo avanzado. De esta manera, se 
puede definir la medida del lirea de la región R por

n
A = lím y/(</,) Ax (5)

dondees el valor máximo absoluto de/en |T,-|,.rJ.
La medida de la altura del rectángulo dcl (•cstmo subimervalo en rea­

lidad puede lomarse como el valor de la función de cualquier número del 
subinienalo. y el límite de la suma de las medidas de las áreas de los rectán­
gulos será el mismo sin importar que números se ha>an elegido. En la sección 
4 5 se extenderá la derimción de la medida del área de una región como d 
límiie de dicha suma.

^ EJEMPLO 3 Deierniinc el área de la región limitada por la
cunav = i;2. el cje.ry larccta X = 3 considerando rectángulos inscritos



4.4 ÁREA 335

I k;i k \ 5

Solución L.i fljiurj 5 inuL'siu la roí:i«)n > d i-csimo reuJiigulo mscnlo 
Aplit|Ui; la dcriDiunn 4 4 X \ ilisida d inlcrvalo (.errado 10. 3] en n subinler- 
\.dns cada uno de longUud Ar »„ = 0 T| = Ai. i-. = 2Ai. 
i, = lAi. . I = {/) - I) Al, i„ = ■? A'-í.

Av = y /<í) = »■

II

ConwJ es trteiente en (0. 1|. el \alnr mimmo ahsoiuio de/en e! subin- 
ter\alo )i,_,. r,|es/(r,.,) Por lanío, de (41

n
A = iim y /(i, ,)Ai (6)

* in
t I

Üebidoaqiie r,.| = 0 - l(At v yii) = i-.enionces 

/(r,.|) = [(/ - l)Ai]'

Por lanío.

£;n, |)Ai = - ii-(Ai)’

<1 >1

Pero Al = ."í/o. de modo que

¿/(i, ,lAi = ¿ü - I)’ ^

, I <-l "

n "
=

27
11 11 11

) al aplicar las formulas 2 y 1 \ d leorema 4 4 2 se obtiene

^ . . 27 \iiui + i)(2« + h , mil + h , 1
---------------------------- 2 +

lintoiiees, de (6), 

\ = [im 

0

27 2n^ + 3>r + ;i ~ bn~ - (vi + 6>i

y 2h- - ^11 + 1

y 2ii- - In + l

hm Í2 - - +
: r • ' II II-

.'(2 - o + 0)
= y

rotidibÚHK I-I áiea de la reeion es unidades cii.idiadas
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>, I 
■V =

ITGL'R/\ 6

l

nGl.R.\7

BJBMPLO 4 Calcule el área de la región del ejemplo 3 conti- 
derandu rcciángulos circunsentos

Solución Lii figura 6 muesira la región y el i-ésimo rectángulo circuns- 
cnto Con rectángulos circunsentos. la medida de la altura del í-ésimo rectán­
gulo es el valor máximo absoluto de/en el subintervalo x’,]. el cual es 

De (5) se tiene

A = Hm ^ fi.x,) áx (7)
(rl

Comox, = 1 A.r, entonces/(xj = (lAx)-.yasí 

¿/(.r,)Ax =

J 1

27 \nUt + IK2/I + 1)1
= ;:^L—6 J

9 2«- + 3n -I- I
2 ■ n-

Por tanto, de (7),

|.(2. UA)
2 ' H ;r ¡

= 9 (como en el ejemplo 3) ^

^ BJBÍAPLO 5 Aplique tu definición 4.4.K para calcular el área 
de la región irape/oidal limitada por las rectas x = 1 y x = 3. el eje x y la 
recta 2r + y = 8. Verifique la respuesta mediante la fórmula de geome­
tría plana para el área de un trapecio.

Solución En la figura 7 se presentan la región y el í-ésimo rectángulo 
tnscnlo. Se divide el intervalo cerrado [I, 3) en n subintervalos, cada uno
de longitud Ax: .r,j = 1. Xj = 1 Ax..............x, = I + iA.t. . . .

r„-l = I -f (n - l)Ar..t;, = 3.

Ai= ^ 
n

t
11

Al resolver la ecuación de la recta para y se obtiene y = -2x + S. Por 
l.inlo./(i) =í -2v + 8. y como/es decreuenle en |l, 31, el valor mímnio 
absoluto de / en c! i-ésimo subiniersalo |r,.]. i,] es/ti,). Debido a que 
.1, = 1 + lAi y /(xl = -2c -t- 8. entonces fix,} = -2(1 + íAx) + 8, cn 
dccir.yti,) = (> - 2iAc. De(4).

A = lim T/(.\, )Ax

lim i.b- 2i Al) Ac
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= lim y 16 At - 2(íAg-|
J ]

Del icorema 4.4 2 y de la fórmula I se llene

lim 12 8 lUn + !
7 "-;p-

= ^lím IH - ^ 

= 8
Conclusión; El área de la región os 8 unidades cuadradas

La fórmula de geometría plana para deienmnar el área de un irapccio es 

A = \l¡U)f + /h)

donde li, h\ y /m son, respectivamenie. el número de unid.ides de la longitud 
de la ahura y de las dos bases, las cuales, para el irapecio de la figura 7 son 
paralelasalejey.DeestafórmulaselienequeA = i(2)(6 + 2).estoes,A = 8. 
lo cual es acorde con el resultado obtenido antenormenle.

EJERCICIOS 4.4

11

¡2. Lüh ule la 1lUirui

/| 20
*• I '3, - 2)

< I
2. X (-5i + 4|

1 1

X''* ii
t 1

4.
Í« ^ |)=

l'l
5- - l)‘

1 1
(>.

III
17 -1)
I 1

7. y ' y '
. ' 1 Jh - 2)

■>. ¿SI
10. y '

,1,1 >
11. ¿'J'‘*'

í 1 ^ 12.
¿

12 ■* ^
Ut /,„
r*"i,i,./

a 2fl. cuilue la uinui utilizando lin

< 1
!4. y 3/lí- + 2)

¿(2* - -i'-i

1 1 1 16. ¿(H)"' - lO’l

{'). ¿4x’(i - l)

I I

20. ^ l(.r‘ - 3‘)’ - (3*'' - 3-‘-')-|
t I

Di /«s cyiTCn iin 2/ a 30. iin¡'U't el incloiloilc t Mu uxcKm ¡him 
iLivnimar d orm de lii u\;um iildu <■ rn r<;iie»/'o m'< ri/t". n 
csnmiM nl(i\. .u-gH/i w wdii/uc Ptmi uiJii lyiTi/ii<i dihuje imn 
fii’iini tjiic miicMrc la n f;¡on \ el i-cMimi reí fims'»/"-

21. 1.a región tirnil.id.i por i = r'. el eje v > la retía r = 2, 
reclaiigiilt's insenli".

22. I.a región del ejcreieiu 21. reelaiigulo-. tiruin'-enius

23. L.i reeion tobre el eje i J a la derecha de la recia » = ! 
limiuda porel eje i. tarcela i = Islacurvai = 4 - 
reU.ineulos niNcnio',

24. L.1 región del ejerucio 23; leelangulos circuiiMnlos

25. I..I región sobre el eje i \ a la i/quierda de la recia i = I 
hmilada por la uirsa > las redas del eiereiuo 2t. reeiaii- 
giilos ciruinsenios.

2(». La región del ejereieio 25. reei.ingiilos inserilos
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27. 1.1 rugcon IiiiiiIjlIj piir \ = tel cjc i y IjwvcIjs.t = -I 
yT - 2.rckljn(!ulcisin'-eritos 

2ü. I..1 rcjiión Jd ejL’rui.iii 27. rcLlángulos circunscrilos

29. Lj reglón liiiiitad.i por i = i' t, el eje c y Ia.s rcd.is
( ~ -2 y I I. rcklúngulos circunscnios

30. 1.J reglón (Jd cjcrucio 29. reilángiilos mscnins.

31. IjIiIicc d meliHiii de esU seeuóii para (.akular el úrea de 
un irapceio isósidcs eu>as h.ises tienen medidas h, y h¡ 
y eii) a altura tiene medida h

32. 1..1 gráfica de » = 4 - | »[ y el eje r desde ,r = -4 a 
I - 4 iornun un triángulo Hmplee el método de esta 
seeciiín para calcular d área de este mángulo.

I.n lii\ rjeriiiioi J3 a 30. lU■||■^llllU■ rl lirt u de lii rcgió/i ío- 
mando t orno medida de la alliira del l^i^umo rt cliiiinulo fUn, I. 
donde m, et el pumo medio del i-éonio uihimenalo Siii¿c- 
rriKiírm, = + a, |)

33. [.a reglón dd ejemplo 3

34. 1.a reglón dd cjercieio 22

35. 1.a a-gióin dd ejercicio 23.

36. La reguin dd cjerLicio 26

En tos ejereu un 37 a 42. ic propori hmwi iiiiii fwu lóii f v lo\ 
númenn n. a \ h. Apniume, ton uuiiro íifras deeiinales. el 
área de la reaii'm limiiada por la tuna » = /(t|. el eje x y 
la\ rrtUi\ x = a \ \ = h, realizando lo xn;uieiue dnida el 
inienalo \a. b\ en ii tulnmenalin. tuda uno de loiu¡iiud 
unidadei y iililue una laltidadora para obiener la uima de 
lux areat de lox reilani;ula\ iiiunim o iirciinteriun fsrgiíit 
.te indique) que llenen i uda uno un ant lio de A i unidadet.

yj. /<i) = i.ii s \,h = 3.II ^ 10. inscritos.

38. /(«) S5 -4.1' ~ 1.0 = 2.11 = 12,Lircunscrilos

39. fit) » scnt.ií = /i = Itr.n = S.arcunscnim

40. /Irj = cosjt.M = 0./> = \,n.n = fi.inscntos

41. /(t) = sen.t.« = ln,b = *ff.« = «.inscnios

42. /(XI a cos.t.rt = 0 /» = ^ff.M = 6.circunscritos

43. Demuestre d teorema 4 4 4

44. Demuestre el teorema 4 4 5

45. Demuestre l.i fórmula I del teorema 4 4 7 sin uiili/ar in­
ducción matemática' 5iigcrenr ui. escriba dos ecuaciones 
(i) Iguale la suma, en notación sigma. a I 2 «
(ri - 11 -f ri. (ii) Iguale la suma, en notación sigma. a b 
suma de (ii en orden inscrtido. Después sume las eciu- 
Clones, de (i) y lio. término a lérmino y disida los Jet 
miembros de la ecuación resultante entre 2

46. Demuestre la fónnula 2 del leorciiu 4.4.7 sin uiilirar in- 
duceión matemática Siiqereiiaa.

¿[i* - o - li'l = ¿(,3r - 3j I)
I I <1

Aplique el icoreiiu 4 4 6 en d imenihro i/quienJo de esta 
ccuaeión; y en cl miembro derecho aplique los teoremas 
4.4 2.4.4 3. 4 4 4 y la formula I dd teorema 4.4.7

47. Demuestre la fúrmula 3 dd lenrenu 4 4.7 5i<veremia 
r* - (I - It^ = 4r* - 6i- -i- 4i - I. y use un nieioJy 
semejante al uiiliraüo en dejeteicio46

48. Demuestre la lómiula 4 dd teorema 4 4 7 (Considere la 
sugerencia para los cjcrcieins 46 y 47).

49. l-Aplique la dellmdón 4.4 8 en palabras sin emplear la» 
palabras limiie o se uproximi a o los símbolos .V o f

4.5 INTEGRAL DEFINIDA
Hn lu sección 4.4. para llegar j lu definición de la medida del úrea de una 
reglón plana eomo

lim ^ í(r,)^t (1)
I

se dividió el m(er\alo cerr.ido {u. />) en ii suhinicrvalos. cada uno de longitud 
Ar, y se lunió c, eonui cl puiUu del i-(;siino sutiinienalo para el cual /'uenc 
un \alor niínumi absoluto. También .se restringieron los valores de función 
yt O a valores no negativos en lo. />) y se pidió que J fuese conlímia en |«r. />|. 
líl líniile en (11 es un caso especial de un "nuevo tipo” de pnieeso de lími­
te que conduce a la deUnieión de la inlt’qra/ definhUi. Ahora se diseulini este 
"nuevo tipo" de límite.

Seaf una función dellnida en c) intervalo cerrado |<i. h\. Divida este in­
tervalo en n Mihiniervalus eligiendo r iií(/c.r(/Hí('m n - I puntos intemiedios



4.5 INTEGRAL DEFÍNIDA 339

entre ii y h .Se.in r„ = </ j = h. y sc.in t|. ti. . r„.| los punios inter­
medios Je modo (|ue

»n < i| < ti < < t„.| < t„

Los punios t|. ti. . T„.|. x„ no son neeesjnumenic equidistantes Sea 
A|X l.i lonyiiud del primer suhinicrsalo de modo que A¡t = t| - r„ 
sea Ait l.i longitud del segundo suhiniervaio de modo que Ait = t-> - tj, 
y así sueesis amente de modo ijue la longitud del i-esimo subintenalo es 
A,».y

A,t = t, - t,_,

1

5

Al eunjunto de estos submtcnalos del intervalo (<j. h\ se le denomina par­
tición del intervalo |ti. h] Sea A dicha partición La figura I ilustra una de 
estas particiones A de |o. /;]

►
" *'ii ‘i ‘2 fi «„ I r„ = /i

rU.URA I

1 a partición A contiene n submtervalos Uno de estos submtervalos es 
el mas largo, sin embargo, puede haber mas de uno La longitud del subm- 
tervalo mas largo de la partición A se llama norma de la partición y se de­
nota por IIA II

niija un punto en cada suhinlervalo de la partición A sea U] el punto 
elegido en [ vo \ 11 de modo que tu <: u | < t| Sea n 2 punto elegido en 
(i|. \>| de modo que vj £ iti ^ '2 > •f'i' sucesivamente de modo que u, 
es el punto elegido en |t|_|, t,) > r, ] £ u, ¿ v, Considere

/(ii|)A|t + /|ii2)A2t + + /(u,)A,r -i- +

o bien

X /"I'LíA.v í2)
í = l

Esta ultim.i suma recibe el nombre de suma de Ricmunn, en honor al ma 
temático aleman Gcorg Fricdrich Bernhurd Rieniann í 1826 1866(

^ EJEMPLO ILUSTRATIVO 1 Suptingaque/(T)= lo-v-.

con 0 25 < r < 3 Se calculara la suma de Rtemann para la función f en 
[0 25. 3| para la siguiente partición A t(, = 0 25. t] = 1 v: = 1 -‘’- 
ti = I 75, 14 = 225. is = 3.yui = 05.i»2 == I 2í*.ui = I 75.uj = 2. 
u, = 2 75

l-i figura 2 muestra la gráfica de f en |0 25. 3] > los unco rectángulos, 
cujas arcMs son los términos de la suma de Riemann siguiente

/l»l)A|t -1- A«2)A2t -1- ^|ui)Ait + /(«alAav +/(us)Ast

-/<0 5h1 - 0 25) + /,! 25)(l 5 - h + ^(| 75jll 75 - 1.5) + /(2)(2 25 - I 7S) +/l2 75)t3 - 2 25) 

= 751(0 75) + f«4375](Ü5) + (69375)10 25) + í6)(05) + (243751(0 75)

= IH 09375
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1^ tiiinn.1 de lj paniuiin A es la longitud del subintcrvalo mas largo, en 
tnnsei.ueni.ia. ||a|| = 0 75 4

Un la deílmtión antcnor de I2) como una suma de Ríemann. los \alnres 
de funutm no se restringieron a valores no negativos Por tanto, algunos de 
los/(u,) podrún ser negativos En tal taso la mlcrpreiación geomttnta de h 
suma de Ríemann sería la suma de las medidas de las arcas de los rectángu­
los ijue están sobre el eje x ) los negativos de las medidas de las áreas de los 
rectángulos que se encuentran debajo del eje x Esta situación se ilustra en la 
figura 1 Aquí.

10
^ /(it,)A,r = A| + As ~ At - A4 - As + Af, + A? - A» - Ai, - Ak,

I I

porque /(ti i)./(iia> /(iis)./(“h)-/í“‘;I y /í*‘ ni> números negativos
Ahora suponga que para la función /en (2) existe un numero L tal que

n
I A,x - /.[ puede hacerse tan pequeño como se desee para todas

I I
las particiones A cujas normas sean suflcieniementc pequeñas, y para cual 
quier ir, en el intervalo terrado |q.|. r,l. / = I, 2, . n En tal taso st
dice que/ii¡U'i¡rtihli en (</ b\

M(.LIU3

4.5.1 D«finición de función integrable en un intervalo 
cerrado

Seu/una fimeion cu>o dominio contiene al intervalo cerrado [t/, /»] Se 
dice que / es íntugruhle en |(i. /»| si existe un numero l. que satisfa­
ce la condición de que. para cualquier € > 0. existe una ¿ > U tal que 
para toda panicion A pani la cual ||a|[ < <$. > para cualquier 11, del 
intervalocerTjdn(r,.(. qj.i = 1.2. .«.entonces

i II j
/(ii,) A.t - l. \ < e (3)

• 1 I

Esta situación se representa como

lím y /(ii,)A,i = l
IIMH' ,1

t4)
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EsUi dcllniuon establece que. para una fuiiuun f denmeJa en el inler- 
\.iU) cerradi) |(» /;|. se puede aproximar los valores de las sumas de Riemann 
a /, tanto como se desee tomando las normas |¡ A |¡ de todas las paniciones A 
de [íi. h\ suficientemente pequeñas para todas las posibles elecciones de los 
números u, para los cuales r,.| < u, s x,.i - 1,2. ,n

Observe que el príiceso de limite dado por (4) es diferente del que se 
estudio en el capitulo I De la definición 4^1 d numero L en (4) existe si 
para cada é > 0 existe una ó > í) tal que para toda partición A para la cual 
||a|| < ó. y para cualquier n, del intervalo cerrado |r, [, r,|. i = I. 
2. , n, entonces la desigualdad (1) se cumple

En la definición 1 5 1 se tuvo

luTi/íu = L (5)

SI para cualquier e > 0 existe una (5 > 0 tal que

si 0 < I \ - <i| < 5 enlonees \f{\) - L\ < €

En el proceso de limite (4). p.ira una 5 > 0 particular existe un numero in­
finito de particiones A que tienen norma ||a|¡ < 5 Esto es análogo al he­
cho de que en el proceso de limite (5). para una 6 > 0 dada existe un 
número infinito de valores de \ pani los cu des 0 < | v - o | < ¿ Sin em­
bargo. en el proceso de limite (4) para cada partición A existe un numero in­
finito de elecciones de u, Es en este aspecto en el que difieren los dos 
procesos de limite

El teorema 15 16. demostrado en la sección suplementaria I 5. esta­
blece que SI el numero L en el proceso de limite (5) existe, entonces es único 
De manera semejante se puede demostrar que si existe un numero L que sa­
tisfaga la definición 4 5 1, entonces es único Ahora puede definirse la 
inltfiral (¡efunda

4»5.2 Definícién de integral definida
Si/es una función definida en el mienalo cerrado [o. h\. entonces la 
integral definida de/de a a h denotada por J[x) dx, esta dada por

rl< n
AU</v = lim y /(ii,)A,\ (6)

J„ ll'll■'>;l

SI el limite existe

Observe que la oración “la luncion I es integrable en el intervalo 
cerr.ido |d. />)' equivale a la oración ‘la integral dcfinid.i de y de d a h 
existe ■

1-n la nol.icion de l.i integral definida I, J{\) dx,Jix) es el integrando, 
d es el limite inferior, v h es el limite superior. L! símbolo j es el signo de 
integración. El signo de integr.icion se p.irece a la letra mayúscula .V, el cu.ii 
es apropi.ido porque la integral defiiiKl.i es el limite de una suma Es el mi nio 
símbolo i|ue se ha utih/ado p.ira indicar la operación .mtiderivacion La r.i/on 
para emple.ir el mismo símbolo se debe a que un teorema (4 7 2) llamado 
Menudo tiunmo Jiindtitmiiial dil Culi ido. permite cvalu.ir ini.i integral de­
finida mediante una antidcrivada nambicii denomm.ida integra! indefinida)

I I teorciii.i siguiente proporciona condiciones que g.iranti/an el hecho 
de que una luncion es iniegnible en un interv.ilo ceirado d.ido



342 CAPÍTULO 4 tNTEGRAl DEFINIDA E INTEGRACIÓN

4.5.3 Teorema
Si unii fum.H)n es (.onimua en el mlenalo cerrad» |<(. h\, entonces es 
integrable en (a. /*)

La (leinostrjLion de este teorema está mas alia del alcance de este libnj 
y puede encontrarse en textos de Cálculo asan/ado La condición de que/ 
es continua en [o. h\, es suricienic para garantizar que/es integrable en (a. /i) 
mas no es una condición necesaria para la existencia de la integral deflnidi 
bsio es, una función puede ser integrable en un intervalo cernido aunque no 
sea continua en ese intervalo Cuando estudie uunfralfs mipmpius en el 
capítulo 7, encontrara algunas funciones de este tipo En el comienzo de esta 
sección se dijo que el límite empleado en la definición 4 4 8 para dcllnir U 
medida del área de una región es un caso especial del límile utilizado en 
la definición 4 5 2 para dellmr la integral definida En el estudio de arca, 
en mtenaio |ii. />| se dividió en n subintervalos de igual longitud Tal poi 
tición del intervalo [o. /){ se llama partición rc'gulur Si Ar es la longitud d¿ 
cada subinicrvalo de una panition regular, entonces cada \x = At. > la 
norma de la partición es Ax Al sustituir esto en (6) se obtiene

rh /I
f(x)(lx = ¿'1*1, Z 171

J„ ' x-l

Ademas,

Al y II = h - ti 
Al

Así,

lim Al 0 s lim n = -i-oon-.*~ ^ ll-.ll

La razón de que = +w es que /i > u y Ai se aproxima a cero a
través de valores positivos iporque Ai > 0» A partir de estos limites se 
concluye que

Al -V 0 es equivalente a ii —» +co 

De modo que de este enunciado y de (7). se tiene

fl< n
f(x)dx = lint ^ /■<h,)Ai |8t

Ja ‘I

Si sc compara el linule de la definición 4 4 8 con el limite del miembro 
derecho de tS). se tiene el primer caso

IJ
lim y /■((,» Al (91

donde/(c,) es el valor de función mínimo absoluto en (i,.,. i,) hn el se­
gundo caso se tiene

n
I'»’ ^/(u,)Ai (101

” 1 I

donde u, es cualquier numero del intervalo |i, |, ij



4.5 INTEGRAL DEFINIDA 343

Si la intLyral dcílnid.i f{x) d\ cxislc es ti limile de Kidas las sumas 
dt Riemann de f en [«. /)| iiKliiyeiido las de d)} v (lOi Üthido j csin. se rede- 
llnc el arca de una re¡:um de manera mas -leneral

4«5,4 Definición del áreo d» Una.i^gfón plana
Sea I una ¡unción umiinua en |</. h\ > /(i| > 0 para inda \ en 

h\ Sea R la región liinilada por la cursa \ = /ni. el eje x y las 
recias r = « > i = /i Imlnnces la medida \ del úrea de la repión 
R esla dad.i pnr

' /lu

Á = lim y /(u,l 
ll'll-'i ,1

fix)dx

De esla dcllniuón. si/es umlinua en !>\ j /(c) > 0 para toda s en 
|fí. />|. enlnnces la integral definida /n) dx puede interpretarse guimeln- 
camente umin la medida del arca de la regían R mostrada en la figura 4

h

1 k;i r\4

13 t|

/IW X

IK.UUS

* \ } '} 1

EJEMPLO ILUSTRATIVO 2 Fn el ejemplo ^ de la sec­
ción 4 4, se mostró tpie el area de la región limitada por la griillca de 
/(i) = \-. el eje r y la recta i = es y unidades euadr.idas Como /(tj > 0 
p.ira toda i en |(). “íl. se eoneluye que

^ EJEMPLO 1 Calcule el \alor de cada una de las siguientes
integrales defiiiidas interpretándolas como la medida del area de una región

plan.i (a) í^j* \ d\. (li) di. (c( {/, (2 - | 11 i dr

Solución
(til Con /(v) = r. la figura 5 muestra la región triangular limitada supenor- 

nienie por la gráfica de f. inleriomienle por el e|c i \ por la üereeiia por 
la recta v = 4 De la lormula p.ira el area de un triangulo, el numero 
de unidades cuadradas del área es Por tanto.

(1)1 U mlegrando de la integral definida dada es vel ui il se denota
por eíu I a grafieadeg es una semieircuntereneia con centro en el origen 
\ radio 3 Li figura ó muestra la región limitada por arriba por esla 
semicircunlerencia \ por debajo por el eje \. en el intersalo |-3. 3] El 
arca de esta región es la mitad del .irea de la región encerrada por la 
circunlereneia completa Como el area de la región circular esla dada por 

;r; se tiene

iH.nuó
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(c) Q)ti//(rj = 2 - I t|. se dibuja Ij gráfica de/i en el intervalo (-2.2|y 
se obtiene la figura 7 Observe que la región limitada por la gráficadeÁ 
y el eje r es un tnangulo de base 4 y altura 2 Como el numero de unida 
desmadradas del área de esta reglón triangular es i(4j{2j = 4. seiiení

i

MU 2-1*1 

H(.URy\7

De Igual forma en que la mayoría de lo-s groficadoras pueden aproo 
mar valores de denvadas numdncas, también pueden aproximar valores d¿ 
integrales definidas Para obtener estas aproximaciones se aplican vanoi 
técnicas numéricas Aprenderá algunas de estos técnicas en la sección 7 6 Se 
representara una aproximación de la integral definida jj’/ít) <¿r. obtenida es 
la graficadora, mediante la notación

NlNT(/(t). a.h)

Debido a las diferentes técnicas utilizados poro aproximar integrales defim 
das. los valores de NINTt/(x), a, b) pueden variar dependiendo de la grafía 
dora y de la tolerancia especificada Pero generalmente, las respuestas dadO) 
por la mayoría de las graneadoras serán acordes al menos con cinco dígi 
tus significativos Se usara una tolerancia de I0~^ y se expresaran las res 
pueslas con seis dígitos significativos a menos que otra cosa se indique S; 
empleara el signo igual. **=". en dichos cálculos para expresar aproxinu 
(¡amiiilí if’iuil íon sux xi(;i¡ijlcati\ns Consulte el manual del usmno
sobre como obtener NINTí /(vj. a, fe) en su graficadora particular

EJEMPLO ILUSTRATIVO 3 Para obtener una aproxima
Clon de la integral definida del ejemplo ilustrativo 2, se calcula en h gre 
ficadora

NINTt t*. 0.3) = 9ÜÜ00Ü

lo cual es acorde con la respuesta del ejemplo ilustrativo 2 ^

EJEMPLO ILUSTRATIVO 4 En el ejemplo l|b>scoblii
vo el valor exacto jírdela integral definida j.j dr Eníagrafiu
dora se obtiene

NINTt V9 - i' -3.3) = 14 1372

Debido a que ¡/r « 14 1372 esta respuesta es acorde con la respuesta dd 
ejemplo l(b) ^

^ BJBMPLO 2 Obtenga una aproximación de /j* sen x 
caLulando NlNTtsen t. 0.2;i) Interprete la respuesta en términos de arca

Solución En la graficadora NlNTtsen x. 0,2n) = 0 Asi

sen i í/t = 0
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La gráfica de la función seno de 0 a 2n se muestra en la figura 8 Sean 
Ai unidades cuadradas y Á2 unidades cuadradas las áreas de las regiones li- 
iniudas por la curva senoidal y el eje t en los intervalos f(). ;r| y [rr, 2n\. 
respeclivanientc. Entonces, como4, y 4, son iguales, se tiene

sen.ví/.t = Ai ~ /li
Jo

= 0

En la definición 4 5 2. como se ha dado el intenalo |íi. h\. se supone que 
ít < h. Pañi determinar la integral definida de una función/de ti a h. cuando 
a > /i, o cuando « = />. se tienen las definiciones siguientes

4.5.5 Definición de f{x) dxst a> b

Si a > b y exisití.cnionccs

f
f{x)dx = - f(x) Jx

EJEMPLO ILUSTRATIVO 5 Del ejemplo ilustrativo 2.
iJx-Ja = y por tanto,

! 4.5.6 Definición de /* f{x) dx

Si fia) existe, entonces

f(\)tlx = Ü

EJEMPLO ILUSTRATIVO 6

Í x-clx = o
I
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1:1 proceso puní culcular el valor cxaclo Je una inlegrjl definida a panir 
de la dellnición determinando el límite de una suma, como se lit/o en la sec­
ción 4 4 para obtener áreas de regiones planas, es demasiado tedioso y casi 
imposible .Sin embargo, los dos teoremas fundamentales del Cálculo, presen­
tados en la sección 4.7. proporcionan un método más consenienie para este 
cálculo. Para demostrar estos dos teoremas importantes se necesitan ulguna.s 
propiedades de la integral definida, las cuales se estudian en el resto de estj 
sección y en la sección 4 6.

Primero se presentarán los dos teoremas siguientes acerca de las sumas 
de Riemann

4.5.7 Teorema

Si A es una partición del intervalo cerrado [ti. /)], entonces

lim T A,' 
lUlH" ,H

(I

Demostración

A,.t - l/> - (I) = (/> - a) - [h - (II

En consecuencia, para cualquier € > 0. cualquier elección de ¿) > 0 ga­
rantiza que

si IIAII < ó entonces 

Así. por la definición 4 5 1.

lint > A, r = /) - n
Hül-o ,tí

^ A,t - I/; - (1) I < e

4.5.8 Teorema

Si/está definida en el intersalo eemido [o. />|. y si

n
lint

Ilall-ii I-I

existe, donde A es cualquier partición de |ii, />]. entonces si k es cual­
quier constante.

La demostración de este leomnia se deja como ejercicio (sea el ejer­
cicio 541.

I Ka'KA •)
EJEMPLO ILUSTRATIVO 7 Kellérase a la figura ó Si

k > (J, la integral definida f’ k tl\ prsiporciona la medida del área del n.'C-
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l.iiigiild Luyjs dmiiMisiiincs son k imid.idfs y (h - ti) uindidts 1 mu fn-Jio 
es una mierpreijuinn genini.lrii..i dd kurema siguienlc uiando k > 0 y 
h > a

4.5;9 T«or«ma
Si k es cualquier uinstanle. enlontcs 

rh
I kdx = Al/» - a)

J»

Demostración De la ddlniuon 4 5 2, si/» > o enionces

i: f{x)j\ = lim y fin.) A,\ 
IIi.-"

Si/(\) = A para tndiM en |(i./»] de la ecuaticm amennr se tiene

•/' ti

1 A tl\ = lim y A A,r 
Vi , I

= A lim y A, \
IMl-ii , I

= Al/» - (I)

(por el leorema 4 5 Si 

(por el leorema 4 S 7|

El teorema lainbien es salido si a > h Se le pedirá que demuestre esu» en 
el ejerciuo 5.^ ■

► EJEMPLO 3 E\ alue

í: 4</i

Solución Al aplicar el leorema 4 5 se nene 

• s
4r/v = 4|5 - (--^>1í

= 4(S> 
= 12

4.5.10 Toorema
Si la ninuon t i-’s integrable en el intervalo cerrado |<i. />|. > m A es cual­
quier constante entonces

kfi\)il\ -í
Ja

n\)í¡\

II

Demostración Como / es inteurable en l«i /»] ^ bui y ftH|)A,t 

existe de modo i]ue por el teorema l ^ S, ‘ '

n
iim y A/lu,iA,\ 

ihii-"

n
k Ittn y /(«,>A,v

ihli-», I
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Ptir lanío, 

•/»í kf(x)í¡x = ^ í 

Ja Ja

4*5.11 Teorema
Si las funcionas f y n son inicgrabics en (ü. b\, entonces/ + ^' es inte­
grable en [a, /;| y

íh rh rh
l/í') + gítllt/r = I /írWr + I

Ja Jii

üi (lemuslración de este teorema se presenta en et suplemento de c%ü 
sección. Observe la semejanza del teorema 4.5 11 y el teorema de límites 4 
íl.5.5). el límite de la suma de dos funciones. La demostración de los inv 
rema.s son similares.

El signo más en el enunciado del teorema 4.5 11 puede reemplazarse {X’r 
un signo menos aplicando el teorema 4 5.10 con L = -I.

El leorema 4 5.11 puede extenderse a /i funciones Esto es. si Ixs funcin-
"‘•'''/l•/2..........fn integrables en |«. />). entonces (/( ± /s ± . . . ± /„)
es integrable en («, íj| y

|/i(.t) ± /2(t) ± - i Ux)]tlx

í /|fi)d.r ± í /2(.t)d.v ±

Ja Ja

± f fjxidx

^ EJBMPLG 4 Utilice los resultados del ejemplo ilustraiivo 2. 
ejemplo lía), y propiedades de la integral definida para calcui.tr el salor exac­
to de

i; (4j:‘ - 2.x 5) il.x

Solución En el ejemplo ilustrativo 2 y en el ejemplo l(a) se moslniquc

= y J r

Jo Jo
.X d.\

De las propiedades de la integral definida, se tiene

Í (4v- - 2v + 5)í/.í = Í A.x'dx - Í 2w/i + í $d\

Jit Ji\ Jo Jo

= 4 í x'd\ “ - í xdx + ■*' Í d\

Jo Jo Jo

4(‘)l - 2t'!» + 5(.l - 0) 
42 4
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o

I yiu

I Ha KUO

! EJEMPLO ILUSTRATIVO 8 rm la figura lo se presenta

una interprelaeiiin geomeirita del teorema 4 5 12 el cual se presenta a 
conlinuaeión. donde ytt) £: 0 P.ira inda \ en \a h\, la medida del area de 
la región limilada por la cursa s = /Is) > ü eje s de o a h, es igual a la suma 
de las medidas de las arcas de las regiones de <i a i > de t a b ^

4.5.12 Teorema

Si la función/es integrable en los intervalos terrados \a. />}. jri <| > 
[í./jj. entonces

J }\\)t¡\ = J Hx)t¡\ + J /ir) i/i

donde a < i < h

Para la demostración de este teorema rellerase al suplemento de esta 
Sección I:n la hipótesis del teorema o < i < b Sin embargo la conclusión 
del teorema es verdadera para cualquier orden de los números a. ¡> \ < Este 
hecho se estahiece tn el teorema siguiente, en tuva demostración se utili/a 
el teorema 4 5 12

445.13:T«ofmo

Si y es integrable en un intervalo cerrado que contiene tos tres números 
a. h \ t. entonces

J /ivjiA = J* yuií/v + J Mui/i (llt

sin importar el orden de a. h v i

Demostración Si <i, h \ i son dilerenies. entonces eusien seis ordenes 
posibles de estos tres luimeros o < h < i u < i < h, h < a < t. 
h < f < (I. I < (I < h \ I < h < a L1 segundo orden, o < i < /*. 
conesponde al teorema 4^12 Se aplica este teorema a tlii de demostrar que 
la ecuación (11) se cumple para los otros ordenes

Suponga i|ue <1 < h < i. entonces por d teorema 4 5 12

/(U f/v + /(v) </t (12)

De la del'micion 4 .5 3

li\)il\ = J /lUí/l

Al siisiiimr de esta ecuación en 112) se obtiene

/(V)(/l - /Mll/t
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De donJe

^ ^ f{x)dx + J
fix)dx

lo cual es el resultado deseado
L.IS demustrauunes para los otros cuatro casos son semejantes y se 

dejan como ejercicios Refiera-se a los ejercicios 43 a 46
Otra posibilidad consiste en que dos números sean iguales, por ejem­

plo. a =■ c < b Entonces

JiX
j{\)d\ = f{x)dx

= 11 {por la dcflniuón 4 S 6)

También, como <í = r.

Í f{x)dx = Í j{x)dx 
Je Ja

Por tanto.

J /((/1 + J fíxt í/1 = Ü +
Ax)dx

el cual es el resultado deseado ■

EJERCICIOS 4.5
hi lin fjcnuiiif I t$ 6 udcule la \wiui de Rienuiiui la 
fiinui'ii en el iiUtrudo utilizando la panuion 4 \ lo\ \ato 
fi» diidox di iir Ihhiije la grafua di la función cu el inlenalo 
diiilo « imi( orí lof rií uíiif!idi>t iimit nudidai de arem naii 
lili u riiunoi I n la iiinia de Huniaim Coiisidh ti ejemplo iliii 
iranio I s Iajh;iira2

1. /(»! = 0 s .t s 1. íi t„ = (I. »j » 0 S. »2 » I 25.
t, ' 2 2*5. r, = í u, = 0 25. h, = I. = I S.

= 25
2. f{xí = xK (I S r S í. ^ = 0 », = 0 75.

x¡ = I 25. = 2. t4 = 2 75. xs = .5. «| = 0 5
*»2 = I. w I * I 75,1*4 = 2 25. u, = 2 75

3. = I/*. I s V á 3. 4 t„ = I. Tj s I f>7.
Tj = 2 25, I, = 2 <>7. t4 = 3. H| = 1 25. = 2.
II1 = 2 5,1*4 = 2 75

4. ^11) l/(t + 2|. -I s T S 3. A i„ = -I. t| = -0 25.
t- I) «, 0 5. t4 = I 25. r, = 2. = 2 25.
t 2 75. ,, . 3. II, = -0 7.5. uj = 0. ti, = 0 25.
«4 1 u« 1 5,1*,, = 2.117 = 2 5. «^ = 3

5. M*) sen i 0 s t s nr. A t,, = 0, i, = Jff 
«• \jt *, = -ff. »4 = 4 r. I, = ;r. 111 = J_/r 
II, - ’/r.u,» \¡i 11^ - 4/r.*ij= ^;r

(1. fin 3 tos I « -ff S « S ff. A T|, - -K. »| = - 1 

cs - I, j/r 14 ” I, = íT III = ^^/r
Ui = II, s¡ 0. «4 = 'ff = *,?

En loi ejercicioi 7a 10. aproxime el xalorde la integraldrímidi 
tu doi fonnax (al utdue una ru/iHÍiit/on; para obtener ton 
luatro afrax deiimalcx las sumai de Kiemami lorreipon 
ditiilei a una pana ion regular de n odim/eníj/or v it, 
el txlremo iztpaenlo o deretlio (según se indujuel de euJj 
xidniitenalo, (hf emplee NINT tn la enifífoi/oro Compare 
lox rexiiltadox

7.

y.

II).

I ,— J\, n =
X

e fix
I scc t J r. H

J-JC/I

r»''
I ese r dx. 11

4»,ti

y. i», es el eslreino dcaTiho 

10. II, es el estremo i/quierdo

= K. ii,cs ti csircmo irquicrdo 

= 6, u,cs el csla*m<idea'chu

Ln lox ijtriicioi II a 2b (al determine el salar exaito Je U 
integral defauda intirprítandola ionio la niidiJa del area Jt 
una región plana (hi A¡H>\e la rt ipui itadelmtisolaluulnan 
do MNT en la gratlcadnra

{X - l)l/l (t + 2)Jt
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I»

15 I i./i

|" 4 f r/l 14. J" . 1() - í' l/l

J l(/l 1^'- J

p |" ,S - IH. j I2( +

m J ¡,| ./, 21). J I I - »| ,/í

21 j" ( n *■ 11 V 22. j I j i - 21 -

n |" (li - I i - 2 I J i/» 24. J" (T + I i + 4 [) (/1

lí. 2t - i' </r 2fi. J .5 i

27. ^ Lii\ul\ 2H. J

1u)S-»í/t 41. J (LOS í +4j-f/x

(•'Cn » - 2»*//r

Lii h'\ I jin u lili 43 n 4H um. >t u nrtina 4 5 12 ¡nini <!i iiuis- 
iror (¡m «/ lumina 4 5 I f f\ \iiliiln ¡Hirn h/\ (/m/ih/i-i iinínn v 
ih a hy t

43. Ii < II < L 

45. h < I < a 

47. II - h < I

44. I < a < h

46. L < h < a 

48. II < I = h

4V. Fxprcsi; tomo un.i imi-vrjl tlcfiniJa lim
I,

Simiriiiiui considere Id tuntion/p.irj la tual/t»i = >•

50. n^presf tomo una inlt'ijrjl definida liin ¿—!—

5m,vr< III iii considere la lunLum t para la cual 

Jl\) = ienll.2)

51. htprese tomo una mlCilfal det'iiiida liin ^----- !—r

• «?/:
28. I seilw/r 

Ifl

ín lili tjiiiii ii's 2‘i \ «> lí/d/i/m iluiinnui f’l U ¡uini tU- 
I ininuril uilnn \iiihnlt ht inU-itnil difiiiiihi

2‘l. tal j l,/i lili j 7,lx (el J <l\

*ü, ‘*0 6i/ (li) j 5 il\ (el itx

/'I/rn rycri (((in II ii 42 fnl d/iroumi duihiriU lu iiiu i;riil 
'l<l¡'Ui!ii miiliiwu NlNl m lu liriifii luloni Ihl Cnnfiniu lii 
’f'l'Ui Uiiil, I lili i\o lu) i,lililí,iiuliifl uiliir í un luih lu iiiU-i;rul 
‘IrfiniJii I liliifloi Al Wí/W(/<n

fiiei’n’iirni umsidere la luntnmJ para la cual 

fiT) = 4r cnll.2)

52. Demutslre i|ue si/es toniinua en |-1.2| tmonees

JlxUh + /Hlí/( + /u|di - IIMilx = 0

/ ‘ ' 'I sen- w/i = [

” -I' t 5i,/i 32. J (8 - «-|i/«

" Í| ' J '

■/
J, '' " l)./i 38. j Vlt 4|i/»

/, - Itost +

sentí/» = 2 53. Deniuesire que si/es continua tii |-\ 4] enJoiKCs

4» - 111/1

J ' 11 i/' 36. I 1.5»* - ' 1 - ‘ ) i/i

yiud» +J^ f(\ll/l +j íl\ll/l -r J flUl/t = o

54. Demuestre ti leorema 4 5 8

55. Demuestre el icoa’ina 4 5 0 si ij a l<

56. .Suponea que f c\ inle^raOle en el mitrtaloterr.ido 1-r. r) 
demuestre que
(.1) si f es una luneion par, entontes ' , /itI tlx = 

2 nxulx.

(1)1 SI I es un i lunuon imp.if tnionces M»ii/» = 0

57. .Supunuaque! iluncion/esconiinuaenehnier»aloterr.ido
(íí. /i| ,fcn que condiciones ti sator de la inie^ral detlnida 
de I en |n. /»| fs ieii.il al .irea de una rceion plaiu que m 
cliisa la erafica de / en |ir. /') tomo un limite * l:»plique 
cu.iiidii ti \alor de l.i mieer.il delinida no ts ijiu il ,i la me­
dida dtl atea de diJi i reitum pl.m i
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4.6 TEOREMA DEL VALOR MEDIO PARA INTEGRALES
En cst.1 sección se conlinuj el estudio de propiedades de la integral deriniila El 
teorema clave de la sección es el teorema del \alor miJio para iiiief¡ralei 
el cual juega un papel importante en la demostrauon del primtr teorema 
fimdamciilul dcl Cálculo en la siguiente secuon

EJEMPLO ILUSTRATIVO 1 Eniangum i./(r)¿gíT)> 
o para toda X en [« h] La integral definida t/r proporciona la medida 
del área de la región limitada por la gráfica de/. el eje x y las rectas r = e 
yx = h. mientras que í* gfrj dr da la medida del arca de la región limitada 
por la gráfica de g y las mismas rectas En la figura se observa que la pnmen 
arca es mayor que la segunda Este hecho ofrece una interpretación gcomé 
Inca dcl teorema siguiente cuando/(r) y g(c) son no negativas en [a. b\ ^

HGLRA I 4.6.1 Teorema

Si las funciones / y ij son integrables en el intervalo cerrado |íi. /i) 
yst/(r) s g(x) para toda r en [a. ft], entonces

í f(x)dx ^ í 

J,i Ja
g(t)dt

Demostración Como / y g son integrables en la. h], entonces por el 
teorema 4 5 11 con el signo menos en lugar del signo más.

í ftx)dx - Í g(t)í/t = j* |/(r) - g<x)\dx 

Ja Ja Ja

Sea h la funuon definida por 

/i(r) = f(x) - f-(x)

Entonces li{x} 2: 0 para toda v en {a. /;) ja que/(r) S: gíct para toda x en |a b] 
Se desea demostrar que [['hixtdx s 0 Como

J"Jl¡
h(x)dx = lim y lilw,)A,x

ii-vti-ü ,4} ' '

suponga que

lim y /i(u,)íi,t = ¿ < 0
llanto

Entonces por la definición 4 5 1 p.u-a € = existe una i5 > 0 tal que

SI IIAII < 5 entonces 

Pero como

n
y /dn,) A,í - ¿ S 
I I

y /Ku,) A,x - L

y /i(M,) A,r - /.

< -1.
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üc (2) se tiene

n
M ||AÍ| < 5 entontes - L < -L

I I 

n
SI ||a1| < 6 entontes ^/j(u,)A,r < 0

I I

Pero este enunciado es imposible, porque tada Mu,) es no nejialiso > cada 
A,t > 0. de modo ([ue se tiene una tonlradittion a la supositiun (1) Por 
tanto (1) es falsa, y

t- h

Como /íí X) 

•/.

lím y /i(h,) A.c > 0

f'
Mx)íix>0 

Jü

/(x) - í-ÍT). se tiene 

l/ít) - Jx > 0

/(\)Jx- f’íx)t/x>()

f(x)(lx > e(i)t/x

EJEMPLO ILUSTRATIVO 2 En u figura 2. ;(t> > o
para toda x en [o. h]. y m y A/ son. respetiisainente. los valores mínimo ab­
soluto y máximo absoluto de/en |íi. h\ La integral \[ f(\) <l\ proporcio­

na la medida del area de la región limitada por la turva v = jix). el eje \ y 
las rectas \ = a y x = h Esta area es mavor que la del rectángulo cu>as 
dimensiones son iii \ h - a, y es menor que el area del rectángulo cusas di 
mensiones son A/y/> - o Decstamanera.sctieneunaintcrprelaciongeome- 
tnca del siguiente teorema si_/(r) > 0 para toda \ en [o./i) ^

4.6.2 Teorema
Suponga que la luncion / es continua en el intervalo terrado lo. h\ 
Si in > M son. respectivamente, los valores de tuncion mínimo absolu­
to > máximo absoluto deJ en |i/. /»! de modo que

/;!<;/(»)< A/ 

entonces

para toda </ < i < /'

iMh - ííl < ^ *'/(/; - (I)

Demostración Como fes continua ui [o />] el teorein i del v.ilor extre 
mo L’ar.inli/a la existencia de i?i \ A/
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Ptir d teorema 4 5 y. 

h
m ilx — m(h - (i)

Mdx - Mih ~ u)

Debido a que/es tontmua en |<i, h], del teorema 4 5 se deduce que/nit 
legrable en («. h] Entonces, tomo/(i) a ni para toda x en [a. /^l. se iicrt 
por el teorema 4 6 1.

I f(x)ilx a I mdx 

Ja Ja

de donde, al sustituir de (3l, se obtiene

f(x)dx a m(¿ - II) (Ft
J,t

De manera semejante, tomo A/ a /(\) para toda x en [a. b\, del tcortira 
4 6 1 se deduce (|ue

Jú Jti
f(x)dx

de donde, al sustituir de (4). se tiene
•/i

M(h - a) a I f{x)dx
Ja

Si se combina esta desigualdad ton (5) se obtiene
rb

m(fr - a) < f(x)dx S A/(ft - a)
Ja

^ BJEMPLO 1 Aplique el teorema 4 6 2 para determinar u 
mienalo cerrado que contenga el valor de - 6r- + ‘Jt + lid'-
Utilice los resultados del ejemplo I de la sección 3 4

Solución Sea

/{t» = t' - 6r- + 9v + I

Entonces del ejemplo 1 de la sección 3 4,/tiene un Valor mínimo relati""*- 
Un r = 3 y un valor m.himo relativo de 5 cii V = I Al calcular los vaio-r 
de la Tuntion en los extremos del interv.ilo iO 5 4], se obtiene fiO 5| = 4 I- 
y/(4) = 5 Portanto.el valorminimn .ibsolutode/'cn |() 5,41 es 1, V cito!''» 
nÚMino absoluto es 5 Con m = I > A/ = 5 en el teorema 4 6 2. se tiene

Il4 - 05) ^ j* <r' - 6r- + ‘Jv + |),/v S 5(4 - 05)

Jiis

35 < (v^ - (n- + 9t + h./v á 17 5
Jos
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Hii cnnsL-cucnvia. el inierv.ilo cerrado |3 5, 17.5) contiene el valor de la in­
tegral dellnida ^

ün el ejeinplo ilustrativo 4 de la sección 4 7, se mostró que el valor 
exacto de la integral definida del ejemplo anterior es » 1061

^ EJEMPLO 2 Aplique el teorema 4 6.2 para determinar un 
intervalocerradoquecontengaelvalorde -.sen t <Jx Apoje larespuesia 
utili/undo NINT en la graficadora

Solución Si/(v) = sen .r, entonces

/"(O
eos .\ 

2'. sen r

Para .x en li;r. j;r)./(n = 0 cuando r = .t Como f'(x) > 0 cuan­
do < v < y f'(x\ < 0 cuando í;r < .v < ^/r. se concluye que / 
tiene un valor mínimo relativo en 1 ;r: y y(!;r) = 1 Además, 
/(i^) = -. 2 /•. 2 = 0.841, y/(’;ri = 0 841 Así. en [ ^ ;r. ^rr) el valor 
mínimo absoluto de/es 0.841 y el valor máximo absoluto es I De esta ma-
ñera, con m = 0.841 y,)/ = 1 en el teorema 4 6 2

I* t,-r,'4
0.841 [ > - {;rl < vsen .r í/r á l| j/r -

Jn;4

0 420;r í:
r t.T/4

'.sen X tiX < tí.5n
J.t/4

1 32 5
r.v,7/4

ssen .V </\ 1.57
J.7/4

Por tanto, el valor de la integral definida está en el intervalo cerrado 
(1..32, 1 57)

Rn la graficadora se tiene

.MINTl sen .V . iz¡A. ^n|A) = I 48861

V íll)

•ICI n\,\

lo cual .ipoya la respuesta ^

Ahora esta preparado para estudiar el teorema del valor medio para 
miegr.iles Se inicia con un ejemplo ilustrativo que ofrece una interpretación 
gcoiiiélrica del teorema

EJEMPLO ILUSTRATIVO 3 Considere /m > o para
l(ulo> los valores de \ en [fi /'| Entonces l|’ l{\) íI\ proporciona el arca de 
lü región limil.ida por la curva cuya ecuación es V = /t v). el e|C \ y las rectas 
\ zT ti s \ - h Consulte la figura .3 El teorema del valor medio p.ira mie- 
"ral.'s aiirma que existe un numero < en [o, h\ tal vine el .irea del rcci.ingulo 
\U H de aliur.i /u } unid.iitcs y ancho t/» - <i) unidades es igual al .ire.i de hi 
iLgion .\/Jf/í ^
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4.6.3 T«or«ma del valor medio poro ínt«grales

.Si 1.1 funcum Acs coniinua en cl inicrvalo cerradu (</ h], entonces existe 
un numero t en [u. h\ tal que

r f(x)tíx = f((){h - a)

Demostración Como/es continua en |u, ¿>], por el teorema del salor 
extremo./tiene un valor máximo relativo y un valor mínimo relativo en (o,!)| 

Sea »í el valor mínimo relativo que ocurre en T = r,„ Así.

/ír„,> = m <1 £ r„ £ b (6)

Sea A/cl valor máximo relativo que ocurre en j: = T«r Entonces

/(ri/) = A/ o £ r„ £ h (7)

Por tanto.

III £ /(t) £ A/ para todo vcnlu,/;J 

Por el teorema 4 6 2

f*’
iiiib - «) £ /ír)t/t £ Mfh - o)

Jii

Al dividir entre h — ti y observando que b - a es positivo, puesto quí 
b > a, se obtiene

m £ r f(X)Jx

£ A/
b - ir

Pero de (6) y (7). ni = /(i„,) > M

rJíi
f{X)(Jx

ftx„) £ £ A'o)

/(Xy). por lo que se tiene

De esta ultima desigualdad y del teorema del valor intermedio existe un 
numero ( en un inlen.ilo cerrado que contiene a > x^¡ tal que

/tí)

<=> /<t)í/r

f /(x)t/v

h - a

funb - II) <1 £ { £ 6

M valor de i en el teorema de) valor medio para integrales no es nece­
sariamente único El teorem.i no proporciona un metodo p.ira obtener i pen* 
afinna que un valor de t existe. > este hecho se ulili/a p.ira demostrar iHn« 
teoremas En algunos casos particulares se puede dclcnmnar el vah'r de i g'i 
rumi/ado por el teorema como se muestra en el ejemplo siguiente
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^ EJEMPL0 3 Si/(t)= determine el \dlor dt ccon jproxi-
mjuón de ccntésiiiios t.il i|uc 

= fk)0 - 1)

AproMiue el v jlor de Ij inletjrdl definida empleando NINT en la grallcadora 

Solución Se calcula 

NINT(i% l,.1) = «667 

Por tanto, se desea obtener t tal que 

= 8 667

esto es,

í' = 4 33.^
«• = ±2 08

Se reclia/a -2 08 porcjue no esta en el iniersalo [ I. 3|. y se tiene 

3
ftxidx = /■(2 08)(3 - Ii <1

Kl \:ilor fU) dado por el teorema del \al<'r medn» para integrales se 
denomina snliir promedio (o \alor medio) de / en el intersalo (o. h] Es una 
gcnerali/acion de la media animuica de un conjunto finito de números Es 
decir. SI |/<ti)./(i2). . • /í'nM os un conjunto de ii números, entonces la
media arilmetica de estos mlmeros esl.í dada por

Í/(M

t I_____
it

Para generalizar esta dcfimcutii. ctiiisidere una pamcion regular del iniersa- 
lo cerrado lo. 6|. el cual 'C divide en ii subinlenalos de longitud igual a 
Al = (h - (lílii .Sea u, cualquier número dcl l•esmlo subinlervalo Conside­
re la suma

I I_______
II

Este cociente corresponde a la media aritmética de ii números Como 
.\v s= (/» - íii/m se nene

„ = lyi
Al

Si se sustiluje de (’J) en («I se obtiene

/I »

Al
h - o
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Al tomar el límite í-uando/j -♦ +oo (oAr Oj se tiene si el límite existe,

Ifm
i:

h - a b - a

Este resultado conduce a la siguiente üerinicinn

4.6.4 Definición del valor promedio de uno función

Si la función/es integrable en el intervalo cernido [a b\ entonces el 
valor promedio de/en [«. h\ es

Í f(\)dx 

Jii_______
b - (I

IK.ÜUA-1

^ EJEMPLO A Si/(r)= r-, determine el valor promedio de/ 
en el intervalo [I 3] e interprete geomeincamcnte el resultado

Solución En el ejemplo 3. se obtuvo NINTív*. I 3) = 8 667 Utilizan 
do este numero como el valor de la integral definida se tiene

V
T* í/r = 8 667

De modo que SI V P es el valor promedio de/en ¡1 3] entonces

V P 8 667 
3 - 1

= 4 33

En el ejemplo 3. se obtuvo para esta función 

/t2 08) = 4 33

Por tanto el valor promedio de f ocurre en v = 2 08 L-i tigura 4 muestra la 
grafiea de f en [ 1. 3| y d segmento de recta desde el punto £(2 08. 0) en d 
eje r. hasta el punto £(2 08. 4 33) de la gráfica de J El urea del aetangulo 
AGflli que tiene altura 4 33 y ancho 2. es igual al area de lu región \CPB 
Fn consecuencia el area de la región sombreada CCF es igual al area de la 
región sombreada / DH ^

l'na aplicación del valor promedio de una función se presenta en Ifsita 
e ingeniería en relación al concepto de muro ih discutido en el
capitulo 6
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ITÍERCICIOS 4.6
l„ l.n / o / iJ' h iiri HUI ■! h 1 para di li r í-5
rirjr lililí di 1"' Minhi'li‘\ & o ■-' \e di he mu riar i ii el a- 23. ''dx 24. (r' - hdx

(Mil Wrr'ii" r wui dr\ii;iuildiid iiirriiiii ,\pii\f ■lii
ji,ip.ii sí.i iiidriiiido NINT<»i Iti línifhiidorti

f' C' 25. 1 (t- + 4r + S),/» 26. I tt* + t - (i)d\
J, (r* - ii)dt Jl J„

27.
í (t' -e l)í/r 28. [' x^ dx

“i i .x~2dx J s J-2

f-* ' i.
}. sen*v«/i---------- 1 tos’ t </r J, r- - 3

l, e.f

Ji-i •''í/a
rr.l r '"f'

4. í eos \ dx----------í sen r r/i 31. lantí/r 32. I eol V dx
J„ J„ •'n'i

Di Itn ejiTiiiim .f.í a 40 aplu¡ue el han nía dil miar media
hn lux rjtriiiiiix 5 ii 20. iipliipir i 1 u <ir< HUI 16 2 pura diU r para init i'ratex luira nrahur la deuciialdiid
r.i’iiiriiii iiiUTudo 11 rnidn ipu’ i iniliiii'a el udor de lii iiilei;r<il
*.'«/ínii/j /l/»m« Iti /i'ipiiíMn tinpluiiulii NINT en lit 4,’rq/í- 33. Í ' ,f. - 1
¡..•lililí Jii f + 4

r" ' C ’ e r,f> í"5. I V • (/1 fi. x'dx 35. eos x-dx <, — 36. sen . V </v á ,T
J,i j US J SI.

J.I

j .2 + xi¡x 8. j (r -t- 1 )■!' d X 37. i

f”' r 2-n f 1
‘I- I senu/r I». \ eos i d\ 38. . 2 fi ‘ dx 2 2

J
r-

"• J |r - 2| dx 12. j '. r’ + 5 dx 39. (1 £ I sen 1 ;rr</c S 2 
-'u

rilZ
n r'' i I V ' r" 40. 0 S i cus nxdx S i\ I lv'-r'+ x-)dx 14. (r-3v''’)«/r

2il

- t- ,/v líl.

í, , ! :

I U tus’ t - y til-, i) </i
I

p-,
J '•irii'w/i

» % 3 - » ilx

Vi.

21).

>in 21II J2, tiihiili ii>n iipnniiiuiiii'ii di nnu-
l'üri \iilisjiii;ii il liiiuwa lili uiliir liltdiii

‘I'«tur di lii iiiUi;iid dillnidii ludin
''"‘‘I vniliuii¡„,„

r>^
22. j i-d\

* ^ •
41. I)jdi»qiiL- 1*1 xih = c.i!lu1c el salor promedio de la 

lunuon ideniidad en el inlenalo [-1. 2] También deler* 
mine el \alor de t en lI ijue se obtiene el sal«ir promedio 
Desenba la inleqireüeión ^eométnea de los resultados

42. Obienea el \alor pninudio de la funeion/definida por 
/ít) = t’enel inlenalo |-l. 2] dado que í*j %• d\ = 3 

I amblen detenimie el valor de x en el cual ocurre el valor 
promedio Uesenba la imerpreucum eeomeinea de los 
ic'ull.idos

43. Dado que sen I,,’ i dx = 2. e.ilcule el valor promedio de 
la funuon seno en el míen alo (0. ;r| También determine el 
menor valor de r en el que se obtiene el v.dor promedio 
Describa la imerprelacion jieomeirica de los resultados

44. Oblenla el valor promedio de la lunuon / definida por 
Hx) ~ sec- t en el inlervalo |0. 2/r) dado que

sce* V (/» = I También deiemiine el v.ilor de ren el 

que ouinc el valor promedio Desenba la mterprel.iuon 
peonie'inea de los resultado'



360 CAPÍTUIO 4 INHORAL DEFINIDA E INTEGRACiÓN

45. Supong.1 se deja caer una pckitii y después de / sc>
{■undciv su sclotidad es i pies pur sepundo Sin considerar 
la rcsisicnoa dil aire, csptrsc i en Itmiinos de / como 
> /(f) y cakule U valor promedio de/en [O 2| Siise-
rriuiíi Lakule el valor de la ink^ral definida inicrprc* 
landoli) como el valor del arca de una rcfidn limitada por 
un inanpulo

46. IXicnnine el valor promedio de la funcidn/definida por

/(i) _ 49 - r* «.n el inicnalo |0. 7| Dihuje una fi-
(!ura Suqcrcnaa takule el valor de la inicgnil definida 
mierpreiandiilo como el valor del urea de una rcgiun li* 
mitada por un cuarto de circunrercncia y lus ejes coor* 
derudos

47. Determine el valor pmmedio de la funcidn/definida por 

/ít) = s Ifi - en el mlervalo [-4. 4| Dihuje una fi­
gura ^iii^erfmla calcule el valor de la integral definida 
inicrprUandoto como el v alur del arca de una región limi­
tada por una semicircunferencia

52. El teorema siguiente es una gcncnli/aciiin dcl icoccnu ikl 
valor medio para integrales Si / y g son dos funciorw 
continuas en el intervalo cerrado |tr, h] y si gfx) > 0 para 
toda X dcl intervalo abierto (a. b), entonces existe un nu 
memt en ia,b] tal que

r/(j)g(xJ </j = /(<•» I fiU) üx

Demuestre este Icnrema mediante un método semejante al 
empleado en la demostración dcl teorema 4 6 3 obtenga 
la desigualdad m £ fix) £ M y después concluya que 

S f(x)Rlx) £ Mr(.x), aplique el teorema 461 y 
proceda como en la demostración dcl teorema 4 6 3

53. Demuestre que cuando gfa:) = I, el teorema dcl cjcici 
CIO 52 se convierte en el teorema del valor medio para 
integrales

En los ejeraans 54 a 5ff iiiilice e¡ teorema del ejercicio 52 
paro compnibar la deuRualJaJ

48. Suponga que /es integrable en [-4, 7) Si el valor pro­
medio de f en el intervalo (-4. 7) es 4 25, calcule

49. IX'inuestre que Ij x Jx i: t* dx y que |j x üx S
.1 ,
jl* X- dx No evalúe las integrales Jelinidas

50. Si/csuiminua ui |o. f'l demuestre que

S J |/(v)| dx

SiiRertiuiti - l/(r) S /UJ S |/(ri|

51. Si/es continua en (o./>| y í|’/(i)(/r = 0. demuestre que 
existe al menos un numero i ui |ii />) l.ilquc/(c) = 0

j fixUlx

54. r -4--— < f xdx J,i + 2 Jn

55.
J-i \ t* + 4 J-i

56. I i sen xJx £ I xdx
Jn Jn

■ii:

\cn‘rrxco'x tixdx ^ I cosffri/j

58. r ,/t s r xdx
Jo •»* + 1 Jn

í'
J.in

4.7 TEOREMAS FUNDAMENTALES DEL CÁLCULO

Aluira que posee los elementos necesarios, en esia sección se establecerán y 
demostrarán los dos teoremas rundameniales del Calcutn, los cuates son la 
conexión entre el C«f/rn/w üiferencutí y el Calculo Integra!

Históricamente, los conceptos básteos de la inicgral definida fueron utili 
/ados por los antiguos gnegos, pnncipalinente Arejuímedes (287 212 aC). 
hace más de 2 (XH) afios Eso <Kumo muchos años antes de que tuese descU 
bierio el Calculo Diferencial en el siglo WIl cuando Nettton > Leibmz. casi 
al mismo tiempo pero trabajando en forma independiente, mostraron como 
determinar el área de una fcgion luiiilada por una cursa o un conjunto de cui* 
\a.s aplicando la aniidenvación para csaluar una integral definida Cstc 
priKcdiniiento condujo a los destacados teoremas fundamentales del Calculo 
Se inicia el estudio de estos teoremas considerando integrales definidas que 
tienen una sanable como límite supenur

Sea / una luncion continua en el inicrsalo cerrado |<i. b\ Entonces el 
valor de la integral definida </t dep n 'e sólo de/ s de los numerosa y b 
y no del símbolo x. utilizado aquí como la sanable inde|)endiente Se pudo
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hahur empicado cualquier oirn símbolo en lugar de x. por ejemplo del resul­
tado del ejemplo dusirativo 2 de la sección 4 5

\ t~dt = 9 Í lí-í/ií = 9 f r-(lr = 9
J(i Jo Jo

V -/lo

Ahora considere que el símbolo x representa un numero del intenalo 
cerrado \a, h] Entonces, como /es continua en [o. b\. es continua en [a, t) 
En consecuencia, por el teorema 4 5 3. /J/(n di existe Ademas, esta m 
tegral definida es un numero único cuyo valor depende de t Por tanto.

f(t) di define una función F que tiene como dominio al intervalo [a, h] y 
cuyo valor de función en cualquier numero x de [o, h\ esta dado por

Ht) = f fU)di (1)
Jl\

Como observación acerca de la notacmn si los limites de una integral 
definida son variables entonces se ulili/an símbolos diferentes para dichos 
limites y la sanable independiente del integrando En consecuencia en (I) 
como V es el límite superior, se emplea la letra r como la sanable indepen­
diente del integrando

Si. en (I)./”(/) 2 0 para todos los valores de r en [<i h\ entonces el valor 
de función Fix) puede interpretarse geomclncamente como la medida del 
arca de la región R limitada por la curva cuya ecuación es \ = f(n el eje / y 
las rectas ! ^ o ) i = x Consulte la figura 1 Observe que Fia) = jU) di. 
lo cual, por la definición 4 5 6. es igual a 0 En el ejemplo ilustrativo siguien­
te se muestra como avance la importancia del prinur iconimi fiinduniuilal 
dil Calculo al aplicar esta interpretación geomctnca en un caso particular

EJEMPLO ILUSTRATIVO 1 Sea

riv) = f- di
Jo

I I

I h;lra 2
La figura 2 muestra la región cuyos límites son por amba la gráfica de 
\ = r, por abajo, el eje /, y por los lados, el eje v y la recta t = \ Como la 
medida del área de esta región es fU). puede determinarse Fw] calculando 
el area como el límite de una suma de Riemann

Se toma una partición regular del intervalo |() \) y se elige ii, como el 
extremo derecho del i-esimo siibintcnalo Por tanto, so están empleando 
rectángulos circunscritos como se muestra en la figura 3

n

Fix) = lim T /(ii,) Ai

Como/tn = i‘ y u, = íA/.

n
Flxí = lim y [i- |An-] Ai 

«-•

V / n
= lim y r (A/)^

ririGUK\3
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Aiiur.1 stí susiiui^c Ai por xjir 

Fix) =

=,, II,„ "I" * II

= iin, * ''

lim
2 ^ 3 ^ J-

H ___IJ~

3

ComoFíx) = \x^.F(x) = i^csloes.

Se h.i mnstr.iiJii entontes que, en este easo particular, cuando /(/) = r*) 
ü = 0

la cual es la cxuaciOn cruciul del enunciad» del primer teorema tundamcniol 
del Cálculo ^

Ahora se establecerá y demostrará el primer teorema fundamental Jel 
Calculo, que proporciona la densada de una lunctún considerada como una 
integral definida que tiene un Ifmile supenor sanable

4.7.1 Primer teorema fundamental del Cálculo

Sea/una función continua en el miersalo cerrado \a, /;) y sea x cual­
quier número de {<j. b| Si Fes la función definida por

entonces

F(a) = /ít> (2)

/(n</f=/(t) (3)
(Si t = <7. la derivada en (2) puede ser una denvada por la derecha. > 
si t = />. puede ser una derivada por la i/quicrda )
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Demostración Considere dos números t| y.t] + A.r en [«,/;| Hmonecs

i: fduli

p, *At

if(.t| + A.v) 

do modo que

F(.r| + A.tj - /•■(.»])

/(/) itl

rt, ‘.\i

Ja Jii

Por el teorema 4 5 13.

lU)(Ji

entonces

r rii * Al + A»
fU)J¡ + fu)t¡i =

Jii J\, Jii

i-i,-^Ai p, pi*A>
fínJi - /(ndi = fínJi

Al sustituir de esta ecuación en (4) se tiene

ii ♦ A«
F(.t| + A.r) - F(.t|> r fiiull

Por el teorema del valor medio para integrales, existe algún número c 
en el inténs alo cerrado limitado por ,\| y r| + A nal que

í
i, ♦ Al

fUuli = /(c*)Aa

De esta ecuación y (5) se obtiene 

ftxi + A.r) - r(t|) = /(t')Ar

/(<■)

Al tomar el límite cuando A.i se aproxima a 0 se tiene

n.v\ + A-v) - r(.t|)
A.V

lím
.SwD

/•l.ri + A.v) - F( V|) liin /(f)
Al—II

El miembro i/quierdo de (6) es n.\]) Para determinar ^lin^/(t). recuerde 

que residen el intervalo cerrado limitado por.xi y .ii + A.v, y como

lim .vj = .V| y “ '■I

se deduce del teorema de estricción (I.IO.h que Jiin r = A|. Así. se tiene 
lím fie) = lim fie). Debido a que f es continua en A|. liin/(rl = /(v|);

Ai-Ii t-i, '""‘I
por loque ^litn^/(r) =/iv,). y de (6) se obtiene 

Fía,) = /(.V,) (7)
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V y
[-6,Íj)por[-1.7| 

/<») = r

FJCJUIU4

FICL'lt\5

Si Iu función / no eslá definida para valores de .t menores que a peni 
es continua por la derecha en a, entonces en el argumento anterior, si X] = g 
en (6). A.r debe aproximarse a 0 por la derecha Por tanto, el miembro «. 
quierdo de (7j será F' + (X|). De manera semejante, sí/no está definida {«fj 
valores de x mayores que h pero es continua por la izquierda en h, cmoiKcsii 
Xj = h en (6). Ax debe aproximarse a 0 por la izquierda. En consecueacu. 
se tiene F'_ fX|J en el miembro izquierdo de (7j.

ComoX[ es cualquier número de (o. b], la ecuación (7) establece lo qa 
se deseaba. i

Recuerde que el primer teorema fundamental del Cálculo afirma q« 
la integral definida f(l) dt con límite supenor x es una antidencada d: 
/si/es continua. Este hecho se muestra gráficamente en el ejemplo ilustra­
tivo siguiente para la función del ejemplo ilustrativo 1

EJEMPLO ILUSTRATIVO 2 Larigura4mucslralagrária
de /del ejemplo ilustrativo I. definida por/(t) = x*. tra/..ida en el rectán­
gulo de inspección de 1-6. 6] por [-1. 7). La figura 5 presenta la gráfica i 
NDERíNlNTír-. 0, x), t) trazada en el mismo rectángulo de mspeccioi 
Estas gráficas parecen idéntica.s. lo cual apoya el hecho de que ij r* d\ ci 
una antiderivada de /. 4

W EJEMPLO 7 Calcule las derivadas siguientes:

i i 7^1'“ Í¡,

Solución
(a) De(3)con/(r) = —.setiene

/’ + I
4f' > I

J, r^ + I x’ + 1

(b) Conii = X-en la regla de la cadena se obtiene

írl

Del3)con/(r) = eosr y como ~ = 2.t, se tiene
d.x

%cos/dr= ^cns^í(2x^

= 2.\ \ eos x‘

Ahora se aplicar.! el pnmer teorema fundamental del Cálculo para 
mostrar el u-gii/it/o icoremu ftiiuliimciiiul del Cáluilo.

4.7.2 Segundo teorema fundamental del Cálculo
Sea/una función continua en el intervalo cerrado />) j sea ? uw 
función tal que

g’fx) = fit) (SI
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parj lod.i T en |fi. h\ Knlontcs

/(O = Kih} - ^(a)

(Si .r = a. ia denvada en (8) puede ser una derisada pur la derecha, >
M r = h, la derivada en (8) puede ser una denvada por la i/quierda )

Demostración Si/es conimua en iodos los números de [o, h\, se sabe, 
por el primer icorema fundamental dcl Calculo, que la integral definida 
(' }{i) (¡I, con límite superior variable x. define una función F cuja den- 
vadu en (</. !>\ es / Como por hipótesis i; í t) = f{x). se deduce por el teore­
ma 4 1 2 que

í,-(r) = /(o t/í + A
donde k es alguna constante Al considerar x = b y x = a. succsis amente 
en esta ecuación se obtiene

f(i)i¡i + k

y
-r

Ja
fiUi) = fin til + k 

Jt

De (9) y (10),

= Í /Íí)í/í - í f(i)‘l¡

Ja Ja

Pero por la definición 4 5 6, íft = 0. por lo que

(10)

i;(/») - [>(0) = J(l) (ll

c|ue es lo que se deseaba demoslr.ir
Siy noesla dellnida para \ alores de x majores que/> pero es coniimi.i por 

l.t i/quierd.i en />, entonces la derisadaen (Síes unadcm.ida por la i/quierda \ 
se tiene i*' (/») = / (hU de donde se deduce (9) 1 n lorina similar. si / no 
esta definid.i p.ira \alores de i menores i|iie a pero es continua por la derecha 
en o, entonces la densadii en (S) es una dcns.ida por 11 dcrcch.i \ se tiene 
i,''.([i) = / (o) de donde se conclusc (lOt •

Almi.i se puede obtener el salor exacto de un.i integral dellnida apli­
cando el segundo teorema lundanicnl.il dJ l .ilciilo I n el c ileulo se denota



366 CAPITULO 4 INTEGRAL DEFINIDA E INTEGRACION

í EJEMPLO ILUSTRATIVO 3 Evalúe

Cunui una antiüerivaüa de r** es x“'l5, por d segundo Ceorcma fundamenul 
dd Cakulo se (lenc

Debido a la relación entre integrales definidas y derivados se utilizad 
símbolo integral j en la notación J/(t) Jx para una ontidenvoda Haga caso 
omiso de la lennmologfa de antidenvadas y de antidenvacion y comience a 
llamar a j/lx) üx Integral Indefinida. El proceso de evaluación de una in­
tegral indefinida o una integral definida se denomina ínlcgracíún.

La diferencia entre una integral indefinida y una integral definida debe 
enfali/jrse La integral indefinida j/(x) dx representa a todas las funciones 
cuja denvada es /(t) Sin embargo, la integral definida í*/í-«r) dx es un 
numero cuyo valor depende de la función/y de los números ay b.y está de 
finido como el límite de una suma de Riemann La definición de la inlcgd 
definida no hace referencia a la diferenciación

1^ integral indefinida implica una constante arbitraria, por ejemplo

Esta constante arbitraria C recibe el nombm de constante de integración En 
la aplicación del segundo teorema fundamental para evaluar una inlcgml de 
finida, no fue necesano incluir la constante arbitraria C en la expresión para 
g(rl porque el teorema permite elegir ciialt¡iiicr anlidenvada, inelujendo 
aquella en la que C = 0

EJEMPLO ILUSTRATIVO 4 De la propiedad aditiva de
las integrales definidas, establecida en el teorema 4 5 11 y el segundo tcore 
ma fundamental, se nene

í, fc^ - ín- + 9t -i- I) f/t
x-dx + 9

Jl/2 Jl/J

■I ’ 2 j.

J\n Jiiz

(64 - 128 + 72 + 4) - - i f ■' + 1)

h'V
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I;n el cjem|iln I de la ‘.etuon 4 6. se imislm que el valor de esta integral 
definiila esta en el intervalo [T 5 I7 *>| lo que esta de acuerdo con el resul­
tado obtenido en el ejemplo ya que I06I M

Los ejemplos siguientes muestran la aplicación del segundo teorema 
lundamental Por supuesto, las respuestas pueden apoyarse empleando NINT 
en la graficadora

► EJEMPLO 2 Evalué

í
1

I
(v‘/’ -f- 4i''^)Jv

Solución

+ 4v'/’i,/v = + 4 ^

= ] + i - i-: + M

<

► EJEMPLO 3 Evalué

2i- v' + 1 </v

Solución

2\- V* + 1 (Ik
’í'"'

+ I

: (\' -I-11' •

1

‘ts I h’’ - .;(ii t- !'■ 

!t27 h

► EJEMPLO 4 Ivaitu

ti \ il\

Solución l'oi «v.ilu.o h iiKieial nulelino' \ .1 ' ' "
t i>ii i>l> la
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Al su'ilKuir se tiene

J V ■Tx íir = J (lí- - I )u(2tt í/iij

J2 {«■* - irfdii

§1/5 - §1/' + C
|(1 + tj5/2 - §(1 + X}^l- + C

Por tanto, la intcgrj! definida es 

•3f .r Vm dx = §0 + x)5/2 _ 2(1 + 
Jfi

§(4)5/2 _ 5(4)’/2 - §{1)5/2+ §(1)3/2

~ 3 J 5 3= 1^ i

Otro método para evaluar la integral definida del ejemplo 4 consiste en 
considerar la formula que se deduce del segundo teorema fundamental} de U 
regla de la cadena para la antidenvación (4 2 1) De estos teoremas, si Fa 
una antidcnvada de /,

‘h -i/i/(g(t))g(t)í/r = FígU))
Ja

/(g(t))g(t)rfr = F(g(fe)) - F(gia))

■IKIÍ»)
fíS(x))fiix)dx = Fík)

Jjrtü»

I J
•'ítol

fUi)du

Con el objeto de aplicar (11). cambie las vanubics de la integral dada cnnsiik 
randoH = g(r) Entonces dw = g'(t)d\ Después cambie los limites y) í» 
relativos a r, por los límites relativos a » los cuales son glüj y g(/))

EJEMPLO ILUSTRATIVO 5 para evaluar la integral tkl
ejemplo 4. sea II = -s \ + x. x = u- - [ y dx = 2u dii Además cuanJf 
X = O.H = 1 y cuando V = 3. ii = 2 De modo que. de (11) se tiene

\ * X dx r («■’ - ir)du

§.r5 -

y - _ 2 4. 2
3 3 5 1
Mf.
15

4
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► EJEMPLO 5
•nl2

scu'.r eos ,r </x

Ev.ilúe

Solución Sc:in

¡I = sen X y lili = eos xdx 
CuanJo X = 0. ii = 0, cuando r = \n. ¡i - Por lunlo.

x/2
sen^ tcosxí/.r (/’ dii

► EJEMPLO 6 Es alúe

Solución

|.v + 2|

Deí teorema 4.5 13.

■4

I r + 2 I í/

-r - 2 si \ S -2
1+2 si -2 < .t

r*
í-.r - 2)í/

l-t

T*-2tl
J-1

= K-2 + 4) - + 6)1 * [t.S + S) - )2 - 4)1
= 1 + 18

^ EJEMPLO 7 En un circuito eléctrico. /: \olts es la fuer/a 
eleciromotri/ a los i segundos y

E = 2 sen ^ n¡
Determine la fuer/a electromotn/ promedio de 0 s a 4 s

Solución Se calcula el valor promediode/: en 10.4] Si V P esesle valor 
promedio, de la detlnieión 4.6.4 se tiene

I r'
V i’- = -t-St

-í - J„ ^
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4;r\ 2 

= OT58

('oncliishín; Ld lucr/d cIcUromutn/ promedio de 0 s a 4 s es 0 358 volts

EJERCICIOS 4.7
Cn Un cjen.ii.un I ¡i U, maliic la uiUfiral ¡Ufinula Di Un 
eje/TiLiin I aU \ 29a 34 <;/wv( la ri'tpiie\hi impUaiulu NINT 
rn la prafii adora

25. + 2) T + t dx

1. Ox' - 4x i- \}dx 2.

T (2 + x)dx

-í:
3. J ír= - 2t),/r

7. I . dz
Ju CJ + ll'

rw
9. J v5x - 1 dx

rti   f \
11. lis </.« 12. ------í---- r

J-2 J I (V + 2)'

13. í scn2idv 14. í

Jo Jll

15. J r ■//' + 1 .// lü.

,7. f
Jo ' + 3\- + 4

C (t' - T* + l)dv 

Jn

4. J (3r + ‘ir - Ddí 

(i. j (s ’ -

"• í,

r 
/:2(í. (t + 11 . t + 3 dr

r^ -

¡\l- + 1 di

cus Ixdr

Ji <3r- - I)'

I ■■■ J, 3rí
5i>;eirc/uiü di\ kJj el numerador entre d ücnommaünr

3», f.

Jn

31. I’

Jo

r

i;
r''‘

.34. J scc’ r ;tí ijd 1 m di 

EiiUnejeniiiin 15 o 44 óblenla la Jcnxada

t \ I + r^ t </r

sen tos nx dx 

•d<’
32. I (sen2v + cos3t)dx 

•»/4

33. I 3i.*.c-2»</r
lltlH

i " d r
J2 « Jo + drj„ dvj.

20. j x' -Jx - 4 dx 21. .37.
d f' ,
~ 1 \ -.en t dt .38. - rdt J,

22. 23. - r dr 39. 1dv J . 3 + /- 4ü. drj .

24. J 3 + 1 11 d l 41. Tx], 42.

* lldl

<t‘ + I
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j r J___— f* h diimJi./L\c<>minuai.n|lJ A|>/ít) +/ík - x) * Osircsu

J I + / ' Ji I / ^ ui (I) A) (j) D.muf'iri. i|UL / - Sííi^t'rt/iíií» camba.
11 \ in ihlc cíH 12) cniisidcranJii (/ = / - r y muestre que

lili MjiKO"" 11 \tiliir proiihítiinli hifiin
(I i/(/J </"ií‘|u ^'1 III linijiruiuis-iS \ 46 ilíhmii 
rr ihíi!'"'i‘" </'/"< 11 uilnr ¡inmii i/ni lu iim \ iltHrilui 
¡j i"¡‘ n ''

r fik ~ III
/un -r Jll ~ III lili (13)

JS

jri

J7

4S

( ll 0 1 |o h] |l) 3|

((<) - Ki |o h] = 10 4|

O'I Ir - 10 Ul h\ = |4 S|

/ti) = 1 1-3 |u //] = |7 I2|

Cimba h V mahlv en 113) a r y muestre qu 2/ - A 
fb) Uliliee el resultado del muso (i) pan demostnr que

Sen r
Sen r + eos i

lix

VI Tara il eiruiilo eleUrieii dei ejemplo 7. deleniiita la raí/ 
cuadrad I del s ilor promedio de / ’ de / = 0 i r = l 
Si/sir"i‘"r u'iliee la identidad sen’t = J (I - eos2r)

*(J Si /ti) see t delenniiie el valor promedio de / en el 
inkivalol '^n 'j/rl

<1 Se deja caer un i pelota y después de t sepundus su velo 
eidadesi pa por sepiitido Sin eonsiderir 11 resistencia 
il I aire demuestre (|iie 11 veliaid id promedio diir ink los 
primeros \ I se nudos es un tiruo de 11 veliaidad pro 
liadlo dur inte los su mentes ' 7 sepundos

55 Sel

A(vl í —. It 4 í —1- ,/í
J 14-/ ), I + /

dondu V 3= Ü Deiiui stre <¡ue r es eo ist míe eii los mier 
V dos {-co 10 y tu -*eci Sijetruiuj muestre s]Ue 

7 (\) II par 1 toda t ar 0

1 nuaiilre uní Iuikkii / tal qie pan eualquar nunar\> 
re ll X

^2 S. 1111/1 un I pieün li aia ihi|o eon un i velocidad iniu il 
de i|, pas por se( Iludo No eoiisidere la resistenui del 
Ufe 11) [Kmuesin qia si i pas por sepunJo es la velo 
ul d de h padn de pías de que ele s pies etiloraes 

ii ' 2(,u (lo Determine 11 veloud al promedio 

durante I ) prime tos 10(1 pa de e iid i si 11 Veliaitl ul mi 
' lal I s de f (1 pa/s (1 oiiie i, 12 pa /s’ > 11 se iitiilo po 

ilivo lii 11 ih 1)0 )

'' Si iiji j II|„ ¡iiiidiiu mil le s .1 im I t is 1 de* lOOit/)*

I ">l III Un t iiiiiiiiii,iiiuiiit dm míe uii ja laklo de / uios 
e h lisi di Híleles piiiillullo lOO/U/V dlll Hile 

^ Ul is isi 1 ili iiiiiij I ]i, f

el^S I 
1 ♦ \

II ( ma ll el mala eo leis mami re s J. Ii
eellKle'll

^7. Si (II y »i son mim u's eiiliie s ja'ilive s d iiiias't. qu 

i ti ll /v I » (I u Vj wl ll D I

I si i mlivni sim » eu ipla aioii. s d Pie ( duli!i ( 
\U disis eombm te llel \ lee lll elialu l de 1 l llUtell I

/.(/1 lUUll

I'IIIIK IK qm

Kih
I **

**Uiliu I XIIJ I/, 1/) I,))/(/,//,r |,(K< SI 1 1 de Imielel

lll' Ul h ........
.'I

r /(i)
/(u I ni

(12)

‘IS Se l fmi I lui'e) II eliv l el m I I I < ese 'Illil U 1 e l I ' 
i líenle el V ite'l | le Ule elle' el I I jS t ll lile el I llevl I t ll 
1 e lite el 1 1 1 I lile l ele / ill | (| V et lili l lUiel\ el 1
e le ll e i)MU lile I ele I le lili I I <

a'> l'cleiimu
1/' 1 (' I 11 '•]

i 1

(lO t.l) Sel M\> V Sell l lllee l's lllleis ele ' V 
NDl KtMNit’U’ (' D x)eiie misiui' leei m itl' el 
ms|eeeli'll ' imK'tle eJO lis ) I lile es 'elO lis UOMll is 
til) líe l'll 1 e I Ule |s l 1) ee II I l I OI I ih '11

I ' l Ul Q'l b l'U ' *’ >' 'I’"' >'
I IS niel Ost 1) V lio I Spll pie Mllee] l e ) I

rd l \| lililí I >'l 'l'le e ul I lOUele'll 11 UlUlU I ll l'e l l el IMl 
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4.8 AREA DE UNA REGION PLANA

y
*

En la scccirtn 4.4 se definió el área de una región plana como el limiiedí 
una suma de Riemann. y en la sección 4.5 .se dijo que dicho límite es unj 
iniegral Ahora que ha aprendido algunas técnicas para calcular intégralo 
definidas, se considerarán más problemas que implican áreas de rcEÍo- 
nos planas.

En los ejemplos que se presentan a continuación, se empieza expre­
sando el área requerida como el límite de una suma de Riemann. a fin de 
reafirmar el procedimiento ulili/ado en la expresión de dichas sumas pm 
aplicaciones posteriores en las secciones 4 9 y 4.10 y el capítulo 6

^ EJEMPL0 1 Calcule el área de la región del pnmer cuadnna 
limitada por la curs'u

y = .t, r- + 5 

el eje x y la recta t = 2.

Solución La figura 1 muestra la región junto con uno de los elementen 
rectangulares de área

Considere una partición del mlers'alo (0. 2). El ancho del /-ésinio rec­
tángulo es A, r unidades, y la altura es wy. »,* 5 unidades, donde n, o
cualquier número del f-ésimo subinlervulo. Por tanto, el área del elemento 
rectangular es iv,f 5 A, t. La suma de las medidas de Ixs áreas de 
los it rectángulos como éste es

ir

X .“'i'
. I

la cual es una suma de Riemann. El límite de esta suma cuando j]A|| sc 
aprnsinij a 0 proporciona la medida del área deseada. El límite de la sunu 
Riemann es una integral definida que se evalúa mediante el segundo ici'rt- 
ma lundumental del Cálculo. Sean A unidades cuadradas el área de la regait- 
enionces

= í .1 1 - 5 í/.i

Jo

= T í \ r- -1- ,‘i (2.1 ilx)

" Jii

lii
= ;

= (27 - .t-.S)

5.27

ContlUiUia; fcl área de la región es i27 - .‘¡..si unidades aiadra*L'-^ 
aproximadamente 5.27 unidades cuadrudas. ^
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llasci cslf mnnicntn se lia cnnsidcrudo el área de una regidn para lu 
cual los valores de liinción en |</, h\ son no nejialivos Suponga ahora cjue 
Jl.x) < 0 para toda r en |í/,/j] Entonces cada/(ve,) es un número ncgalivo; 
por lo que se define el número de unidades cuadradas del área de la región 
limitada por y =el eje .c y las rectas .v = a y x = h.como

lim
lia II-.')

lo cual es igual a

/( V) (¡X

( - -t' -4 t

FKJIIRA 2

r EJEMPLO 2 Calcule el área de la reglón limitada por la curva 

y = V- - 4.t

el eje .r y las rectas X = 1 y x = 3

Solución En la figura 2 se presenta la región y un elemento rectangular 
de área.

Se loma una partición del intervalo [I. 3|. el ancho del í-ésimo rectán­
gulo es A,x Como x- - 4x < 0 en (1. 3], la altura del i-ésimo rectángulo 
es - 4u',) = 4u', - H',-. En con.secuencia. la suma de la.s medida.s
de las área.s de lo.s ii rectángulos está dada por

(4u-, - »',*) A,r
I 1

La medida del área deseada e.s proporcionada por el límite de esta suma 
cuando || A || se aproxima a 0. de modo que si A unidades cuadradas es el 
área de la región, entonces

A = lim y (4u', -u',‘)A,x 
IUII-"

(4x - X-) üx

-

— }

rondiisíón; El área de la región es " unidades cuadradas. A

^ EJEMPLO 3 Deleniune el líroa de la región limitada por la curva 

V = X-’ - 2x- - .‘’.v + Íí 

el eje X y las rectas X = -1 y x = 2.

Solución La reglón se muestra en la figura 3. Sea 

/(\) = x’ - 2x- - 5x + ó
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Como f{\) £ 0 cuando r cslá en el mlervalcí cerrado [-i. I| y fix) s 0 
cuandti r esta en el inlervalo cerrado (1.2). se separa la región en dos panes 
Sea /\] el numero de unidades cuadradas del area de la región cuando resü 
en [-1. 11. y sea A-y el numero de unidades cuadradas del área de la rcgiun 
cuando r esia en 11,2| Hnionces

= ilm y A,x
IlAll .1) “

í: fix) t¡x

(r’ - 2r- - 5r + 6)</t

y
Al = Hm y|-/<»M)A,t 

II sil-»

r -(t^ - 2r- - 5r + 6) rir

Si /\ unidades cuadradas es el area de la región complela. entonces

A /t| + Al

í;- 2r* - 51 + 6){/t -f- 2t- - 5t + 6j Jx

-[(4 - - 10 + 12) - - 4 - ; +6ll
- - I-

M(.l K\4

Conclusión; Cl arca de la región es unidades cuadradas ^

Ahora considere dos tunciones/> g continuas en el intervalo cerrada 
(>t,/r) tales que/~(x) & g(r) para toda x en (ri./>) Se desea calcular el ama de 
la región limitada por las dos curvas v = y(t) y v = g(i) y las dos reda' 
X = <1 j r = /> lista situación se ilustra en la figura 4

Tome una p.irlicion del intervalo |ri. /i|, de modo que el i-esimo rcs 
tangulo tenga un ancho de A,\ En cada suhintervalo elija un numero u. 
Considere cl rectángulo que tiene altura l/(»i,) ~ i¡(u,l) unidades v ancho 
A,x unidades En la figura 4 se muestra este rectángulo Se tienen n rcc 
tangidos como éste, uno asociado con cada siibiniervalo La suma de U' 
medidas de las arcas de estos ii rectángulos esta determinada por la suiiu 
de Riciminn siguiente

- s'(«.)|A,x
i

Isla suma de Kiemanii es una aprosimauon a lo que intuitiv.imenU’ 'C 
piensa como el numero que representa la "medida del .irea" de la región
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Einirc in.is pc<iucfio scj el \j|or de || A ||. mejor será est.i üproximjción 
Si i\ unid.ides tu.idr.id.is es el área de la región, se dellne

il ”

I 1.

V-

Oil I f li 

lili I

ik;i'u\5

Cnino/y g son conlinuas en [íí./j], liimbien lo es/- g: por lanío, el 
líinile en (1) exisie y es igual a la inlegral delimda

f lyiO - .gívllr/í 

Jit

^ EJEMPLO 4 Calcule el area de la región limilada por las 
curvase = »- y v = -r' + 4\

Solución Para determinar los punios de iniersecuon de las dos eurs'as 
se resuelsen las ecuaciones simulláneamenle j se obiienen los punios (0, D) 
y (2. 4) La figura 5 muesira la región 

Sean

- -X' + 4t y = r-

Ohserse ipie en el intersalo |0. 2] la cursa \ = /(t) está por arnba de 
la cursa s = gis) Se dibuja un elemenlo rectangular sertical de área, cuya 
altura es de |/(»»,) - unidades y cuyo ancho es de A,\ unidades
La medida del área de este rectángulo eslá dada por (/(»•,) - víUiJlíiji La 
suma de las medidas de las áreas de ii rectángulos como este está determi­
nada por la suma de Riemann

^l/lu,) - chi,)) A,»
• 1

.Si /\ unidades cuadrad.is es el área de la reglón, entonces

/\ 5= iiiii y [/tu,) - g(»i,)] A,»
II S|i .n

y el limite de la suma de Riemann es una integral definida fin consecuencia

=i; [ /I s) - vH)l il\

[(- s’ + 4sl - i'l <l\

+ 4\></s

- • »' + ir

f S - II

◄('omliisiiin: hl áie.i de la región es unidades cu.idradas
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>• ««II

/,(.i - - 2

/.«I» = -V2T- 2 

v«o = t - 5

fk;uil\6

/i«U = v2i - 2 

/,(l) a -y2í - 2

itUI = í - 5 

FIGUILV 7

V

/,i«l -.21 - 2

/i«i» -.21-2

«10 =1-5 

hKiURAH

^ EJEMPL0 5 Calcule el ¡írea de la región limilada por la pa­
rábola y~ = 2.r - 2 y 1j recta y = .t — 5

Solución Las dos curvas se intcrsccian en los puntos (3,-2j y (9,4) 
La región se muestra en la figura 6.

La ecuación v‘ = 2x - 2 es equivalente a las dos ecuaciones

y = - 2 y y = -%'2x - 2

de modo que la primera ecuación proporciona la parte superior de la pa­
rábola mientras que la segunda ecuación da la parte inferior. Si

/,(.r) = sf2x - 2 y f2(x) = -s2T- 2

la ecuación de la parte supenor de la parábola es y = /|(JC). y la ecuacióa 
de la parte inferior es y = /jír). Si se considera que gíx) = jr - 5. enton­
ces la ecuación de la recta es y = g(.r).

En la figura 7 se aprecian dos elementos rectangulares verticales de 
área. Cada rectángulo tiene su base superior sobre la curva y = /ifx). Como 
la base inferior del pnmer rectángulo está sobre la curva y = f2(x). su al­
tura es í/i(h',) - /sf»',)] unidades Debido a que la base inferior del segun­
do rectángulo está sobre la curva y = g(.r) . su altura es I/|(u',) - g(iv,)l 
unidades. Si se desea resolver este problema utilizando elementos rectan­
gulares verticales de área, se debe dividir la región en dos regiones sepan- 
das, por ejemplo, /?| y /?2. donde R\ es la región limitada por las curvas 
y = /|(x), y = /^(x) y la recta .t == 3. y es la región limitada por las cur­
vas y = /|(.r)y.v = g{t)y la recta-t = 3 (consulte la figura 8).

Si Al unidades cuadradas es el área de la región R\, entonces

l/i(.vl - /.wi dx 

K'2j- 2 -h ^2x-~2]dx

= 2j ^I2T^2 dx

= ?(2.t-2)^^^]^

_ ^6

Si unidades cuadradas es el área de la región R^.

■f'

llii'-o

|/l(.r) - Jí(v))í/.r

f [^2J: - 2 - (.t - 5))(£t
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= Í2\ - 2)^/2 - < + 5tj''

= I'; - V + 451 - i; - ■' + I5|

_ 3*

lEnlonccs /\| + = ![' +

C(H ili- t 2i

I - Alíi C'«mcliisi<ífi; □ área de ia rcyiún coinplclj es dtí 18 unidades cuadradas A

^ EJEMPLO Ó Calcule el área de la reglón del ejemplos conside­
rando elementos rectangulares hon/ontales de área

Solución La figura 9 muestra la región con un elemento rectangular 
lion/ontai de área.

Si las ecuaciones de la parábola y de la recta se resuelven para .r se 
obtiene

t = + 2) .r = y + 5

Si se considera ^(j) = 1(\2 + 2) y Ah) = v + 5, la ecuación de 
MGLIL\9 la parábola puede escribirse como r = ¿(v) y la ecuación de la recta

como X = A( \). Tenga en cuenta el intervalo cerrado [-2. 4] sobre el eje y, 
y lome una partición de este inlen'alo El i-ésimo subintervalo tendrá una 
longitud de A,\. En el i-ésimo subintcnalo [ v,_i, v,l se elige un número u-, 
Entonces la longitud del i-ésimo elemento rectangulares de |A(u,) - 4>(u',)j 
unidades y su ancho es de A,y unidades. La medida del área de la región 
puede aproximarse mediante la suma de Rtemann

^(A(i«j - 4>(w,)\Á,v
I I

Si a unidades cuadradas es el área de la región, entonces

A = lim TlAh»,)- (¿h»,))A,v
liAiUi.

Como A y son continuas en |-2.4). también lo es A - y el límite de 
la suma de Riemann es una integral definida

■í: |A(v) - <¿(y))í/v

|(y + 5) - |(y- + 2)1 í/y 

ij" -I- 2\ + 8)í/v

= 1 (,_ + jf> + 32) - (j + 4 - 16»)

= 18

Esta respuesta es acorde con la solución del ejemplo 3
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/II) I ' • íu til 

i;(U 1- ' íi

Al comparar las soluciones de los ejemplos 5 y 6 se obsersa que en el 
primer caso se tienen dos integrales definidus para es aluar. mientras que en 
el segundo caso se tiene sólo una. I;n general, m es posible, los elementos de 
área deben construirse de modo que se obtenga sólo una integral definida 
líl ejemplo siguiente presenta una situación donde son necesarias dos in­
tegrales definidas

r EJEMPLO 7 Calcule el área de la región limitada por las dm 
cursas V = - ó.i* -f 8t j y = r* - 4.t.

Solución Los puntos de intersección de las dos curvas son (0.0), 
(.1. -3l y (4.0). En la figura 10 se muestra la región.

Sean

fix) = .f’ - 6r- + Hr y g(.r) = t- - 4t

En el intcrsalo |0. .3] la cuna y = /(t) está por arriba de la cuna \ = glí). 
y en el inicn'alo |3.4) la cuna y = g(x) se encuentra por arriba de la cuna 
y = /(tr)- Así, la reglón debe dnidine en dos regiones separadas R\ y fl; 
donde /?| es la región acotada por las dos cunas en el mienalo [0. ,3|. \ 
l<2 es la región limitada por las dos cunas en el intcrsalo (.3.4| Si A[ es ct 
área de Rf y .A; es el área de R¡, entonces

l-ICLKA 10
''i = ■* ‘•’liv.iu.i

As = ¿ic'(ii',í -

A| -1- .As
fl(r' - 
Jll

6.x- 8.x) - (X- - 4x)l tlx

+ J |(x- - 4i) - (i' - 6r- + Sxlldt 

= J ti' - 7t- + I2xl</x t- j* t-x W 7x- - I2xli/x

Concltisíiín; El área requerida es ¿ unidades cuadradas.

En los ejemplo 4 a 7. se calculimin las coordenadas de los puntos de 
intersección al lesoixer simulláneamcnte las ecuaciones de las cunas En 
el ejemplo siguiente no pueden deierinmarse los puntos de mieiseceion 
láulmente

^ EJEMPLO 8 Calcule el área de la región aeot.ida por las grá­
ficas de y = v- \ V = sen X.
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Solución RcricMsc d Id fijiiird I ]. Id fUdI mucsird Lis dos grdílcds trj- 
/ailds cu d rcUdugulit de inspctuón de I-"^. 3] por |-2, 2| y que se intersec* 
lan en el origen y en otro pumo dei primer cuadrante Se denota con [o. f>\ 
el inlersalo en el que se caltuljrá el área, además se sabe que a = 0 No se 
puede delermimir h algebraicamente, sin embargo, puede obtenerse un valor 
aproximado de h empleando los procesos de intersección (in/enct/j o ras­
treo Uniri) y aumenlo (zooin iii} de la graficadora. Con cuatro dígitos sig­
nificativos se obtiene= 0K767 Si/(»j = seni.g(i) = r- y 4 unidades 
cuadradas es el área requerida de la región en el intervalo (0.0 8767). 
entonces

^(IH7í.7
= l (sen t - \~)iU

Jo
Esta integral se calcula mediante NINT en la graficadora obteniéndose 

con cuatro dígitos significamos

/II» ’.cn« 

el») - t’

I i(U HA M

A = 0 1357

Conclusión; Con cuatro dígitos significalivos. el área es 0 1357 unidades 
cuadradas ^

EJERCICIOS 4.8
/'I ¡ii\ tjiii II un I ii JH. uiliiilf íl tin-ii Je lii renuiii auiuiJii 
I rlüiiiirun Ln uiJii t/criiuii luif;<i lo \ii;iiicnle (ti) Jiliii- 
I> “lioli^urii f/iic imunin la rfgít»n v un lUnunlo ricuint;iilar 
''' urui, ih) í'i/>mc ti tinii Je la nf;tiiii aiwo una uiiiui Jt 
Ifiinumn it) íaltiili i¡ liiiiili Jil uHiw (h) ineiluintc il re* 
•■Mulit I, un nía funJainenial Je! Ciihulo 

I » = 4 - í*. eje r

-• ' = (• - 21 + 1. eje r. T = -2 v - I 

' 4x - i-.cje r. i = 1. T = 3 
4 > . f) _ , _ ,

- r + I .cjc «.eje V. t - 8

7 , 

H. V 

■í. V

l't . 

II. 1

lí. . 

n.

1
, - «.eje «, « ss

I •

'* + t - 12,eje « 

'■ <>v + S, ejet
•en «. eje «.« ^

sil. «. eje «, eje v. « 

sve- «, eje i,eje \. 

sse* « eje i. t 

-V. V - -4

«
I

I

2,«

t
I
I,

IT. l

= 1

-2.1 4

' + « • 4 I), ; r. -H CirnsuLte lo^ elemeiilns de
‘'V.I IK'q)emlitul.ires .il «.je \
I.' iiii‘.|ii.i legión que en el «.jereieio 15 Considere lo' 
s^||1enl(l^de .iie.i p.ir.ilclo\ al eje v

17. «- - « + 1 = 0. « - \ 4 I = 0 Considere los ele­
mentos de area perpcndieulares .il eje «

IH. La misma región ijue en el ejerciuo 17 Considere los 
elemenlos de atea panilelus al eje x

19. t’ = 2«^« = O.v = -2

20. V ‘ = 4«. r * (>. t = -2

21. \ = 2 - t’.v = -t 22. V = i^v = «^

2.3. «- = i - I.« = 3

24. « = r- = IH - V

25. V = \ «: V = V'

26. I = 4 - V ^ « = 4 - 4«

27. \' = v^« - 3« 4 4 = 0

28.
29.

30.

31.

32.

3.3.

.34.

35.

36. 

.37.

38.

u-

r =

« - 

3\ = 

\

\ - 

\ •- 

« = 

\

\ =

= >’ - I, i = l.v = I. V = 4

V - - 2. V = 6 - V*

«* - \.v = V - V
2v’ - 3«- - 9v.v = V*

- «' - 2v- - i5«; V = v' 

«' ♦ 3«- 4 2i.\ = 2v- 

I r - Ij 4 .3.« ■(».« = 

eos I sen «. « = 0. v = 

sen i, V ■ -'•en i. v

- 2i- - 3,

- 4v- - llv 4 

4 4l

-2. « - 4

0

.7: V I .7

I « I « «' l. « 1; i - I

II • 1 I ' 11 I. V 0. « 2 i 3

30



380 capítulo 4 INTEGRAL PEflNlDA E INTEGRACIÓN

En lot ejerticiot J‘f n -ífi. niiroMiiic cnri iwiiro dff¡iiitt tignifi- 
caiiM>\ rl tirt-ü ili- In rvnión liiiulaila per luf f¡ri¡/iicif tle las 
fiUíii iiiiu-\ thiíla\ uiiliunutii lo siauirnif (a) Irati- las urtíji- 
íiis (71 un retu¡H);ulii ile tnspeitli'm uimenienlf ) ilelermine 
las puntos tle mlcrseniim rnipleaiulo los procesos ile ínter- 
sección fintenecti o rastreo (trace) y aumento (zinim tn) ile la 
snifuaJora. Ih) exprese el área de la reKián como el límite de 
una sama de Riemaiiii; (i) aprinime el límite del inciso (b) 
utdizando NINT en la ¡¡raficadora.

39. y = - 2.V = X*

4». y = x^; y = 4 -

41. y a X* - 1. y = sen’x

42. y = x’:y = cosx

43. y = x^;y = 4 - t*;clcjcy

44. V = x^;y = 4 - x’.cicje.r

45. y « x*:y = lan'x - 3.0 S x 5

46. V = 2 - x'*.y = scc* v

47. Determine medíame integración el área Je la región aco­
lada por el triángulo cuyos sdrliccs son (5. I). (I. 3) y 
(-1.-2).

4H. Determine medíame integración el área de la región li­
mitada por el tnángulu cuyos vórtices son (3, 4), <2. U) 
y(0, i).

En los ejercicios 49 a 57, delenniiie el área exacta de la 
regiáii descrita.

57. E.a reglón acotada por las dos parábolas y* s ip¡ 
yx* = 4/jy

58. Determine la tasa de variación de la medida del área ild 
ejercicio 56 con respecto ap cuando/> = j.

59. Calcule la la.sa de variación de la medida de) área dd 
ejcracio 57 Clin respecto a pcuandop = 3

6U. Dciemune m de modo que la región por arriba de la rccu 
V = mx y debajo de la parábola y = 2x - tenp la 
área de 36 unidades cuadradas

61. Determine in de modo que la región por ambu de la curva 
y s mi^ (m > Oj. a la derecha del eje y. y debajo de b 
rectay = rn tenga un área de A'unidades cuadradas, donde 
A' > 0

62. Si a unidades cuadradas es el área de la región Iimiudi 
por la parábola y * = 4t y la recta y = inx {m > 0). 
determine la (asa dcsanación de/I con respecto a m

63. Para acelerar la evaporación de un líquido, se coloca en 
disco circular de radio r unidades en el líquido y despuív 
se gira lentamenic, como se ilustra en In figura adjunta. La 
distancia dcl centro del disco a la superficie dcl líquido es 
b uniebdes Los ejes coordenados se colocan de modo que 
el ongen está en cl centro dcl disco, deje y es paralelo ab 
superficie dcl liquido y cl sentido positivo dcl ejexesu 
hacia abajo fu) Demuestre que si /Ufi) unidades cuadra­
das es cl área de la región mojada expuesta, entonces

A(h) 55 rr’ - nh- ~ ~ j - x* dx

49. La reglón acotada por la recta x = 4. y la curva 
r* - T* +■ 2xy - y* = fi.Su/:erencia resuelva la ecua­
ción cuadrática en y para y en lórminos de x y exprese 
y como dos funciones de x.

5U. La reglón limitada por las tres curvas y =5 x*. 
X = v"* y X + y = 2.

51. Lj reglón aeoiada por las tres eurvas y = t^. 
y = 8 - x= y 4t - y + 12 = 0

52. La reglón limitada por el trapecio cuyos vórtices son 
f-L-l>.(2.2).(6.2)y(7.-l).

53. La reglón acotada por la cursa y s sen t, la recta y s I 
y el eje v, ubicada a la deredi.i del eje v.

54. La reglón limitada por las dos curvas y s sen x y 
y = cus X entre dos puntos de intersección consecutivos.

y determine cl dominio de A |h) Demuestra que para iiu- 
ximiur el área de la región mojada expuesto, h debe se 
Igual a r/ VI + rr* Sugerencia, para calcular /l'(6) i#' 
que cl pnmer teorema fundamental dcl Cálculo.

55. La reglón acotada por la curva y = tan* r, cl eje x y la 
recta X =

56. l-a región limitada por la parábola r* 4py y üeniru del 
triángulo formado por cl eje x y las rectas 
V = r + 8p y V = -T + 8p. donde/i > ü

64. Cuando se calcula cl área de una región plana por medí'' 
de inicgraciún, ¿en quó circunsiancia.s es má.s conveniente 
utiliur (n) elementos rectangulares verticales de atea) 
(b) elementos rectangulares honrontales de área’’
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4 9 VOLUMENES DE SOLIDOS MEDIANTE LOS MÉTODOS DE
REBANADO, DE DISCOS Y DE ARANDELAS

H,

R

IKU'KA I

i lU UA 2

I t(.l t( \ t

/-

I..Í denniciói) dcl árcj de una región plana cundujo a la dcnnicion de l.i uno- 
í’fid du-riiuda. I:n cslc prin-csu se enipleu l.i tonniila de la geometría plana 
para el área de un reclánguin Ahora se iilili/ara un pri>í.e'0 seinejame eon 
el prnpósiui de obtener solunieiies de algunos tipos partieulares de solidos 
Uno de estos sóltdos es el i ihiiilrn rcuit.

Se dice que un sólido es un cilindro recto si esta limitado por dos regio­
nes planas congruentes > /ís que perlencsen a dos planos paralelos j por 
una siiperllcie lateral generada por un segmento rectilíneo, que tiene sus 
extremos en las fronteras o limites de /í| \ ffs. el cual se ilespla/a siempre 
en torma perpendicular a los planos de /^| > I a figura I muestra un cilin­
dro recto 1.a nlliira del cilindro es la distancia perpendicular entre los pla­
nos de /í[ y A’s. j la base dol cilindro es o As Si la base de! cilindro recto 
es una región limiliula por un rectángulo, se tiene un paralelepípedo 
rectangular, el cual se muesiia en la figura 2. \ si |j base es una región acó- 
talla por una etrciinlcreiiciJ. se tiene un eilindro circular recto, como sc 
ilustra cu t.i ligiira t

Si el arca de la base de un cilituiro revio es \ uimiades eiudradas \ su 
altura es l¡ unul.ides j si \' unidades cubicas es sii solumen, entonces

V = Mi

Se iilih/.ira esta toiniul.i a Im de obtener un método spie pr>'pori.ione l.i 
meüid.i del soliiineii de un solido p.ii.i el sii.d el .ire.i de ui.dqmer \<. i í.'.’i 
lihiiiii (lepion plana lomuda poi t.i inieiseLCioii de im pl.ino \ el solido» 
perpendiciil.ir ,i un e|e es mu tiimioii de l.i tlisi.inuj pcipendieulai de la 
scvcmii pl.in.i slcsilc un pitillo tqo del eie I a ligui.i J muesti.i uno de estos 
solidos S que esl.i enlie los pl.iiios peipemluiil.iu s ,d e|c i en o \ h Se.i 
.\ (\l iinid.ides ciuili.id.is el .luu de 11 ses. ion pl.nu de s peipeiKlKulai .i! 
e|e i en \ Se leqiiiue que ,\ mm lonliniu en |ii /•!

Sea mu (Uilieion del miéis alo i eii.ulo j.;, /•] sl.id.i poi

il S,| • l| • v„ /•

I iiloiiies existen ii siibmleisalos »le l.i lomu h, j. i 1. donde i i. 
’ . II. donde la loumiuil dil i ssnim submteis.ilo \ s i \ ,
I li|.i I lulqiiiei mmieio ii, lon i, | • u, en ».idi 'ubmteis.do s
loiisliiis.i los I iliiidios ii«it's de .ilim.is \ s luud.ides s .iie.is de -eiv'O 
lie. pl.iius dt !lu,» unid,ules uudi.ulas I a In-uu ' imi.viu el .■ cmiim vi 
Imdiii u,io il iiiil iMibe el noinbie de eliiiieiito de solmmn. Ni \\ 
uiiidatli * ubi. .1.1 M I solnmeii del j . smu<. lemeul.' enion.. s

lili I \,\ llu,i \ I

I IM l(\ I I I .linu d. |,t . tui did I d. lo . •! > b MU U|0 . . .

S \ l N ti>. I \ > <!’
1

liiii.d. mil lililí d. tti, niiim I n .imn . s uiM ii'.osoo u lou ó.-'o ' 
liiluiliwmu Iil< I'I II mío, . Oiim el mmi. 1.-d. imid .1, , Ubu o d, 1 so i e-, i 
,1. I ..illdo I 11 IMIIMM > i-..|ii.ni , lom. 11 M.-uoi ’\ delipoo.-ov U'U.I 
....... ,,.i miso. . I s do. d. . .1. modo mu d..b» .po-Mmu..' iI ll.l MN 1
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cerca del número V'' que deseamos asignar a la medida del volumen. Por 
UnU). se define V como el Ifmtle de la suma de Ricmann en (1) cuando 
IIA ¡¡ se uprostma a cero Este límite existe porque A es cominuj en 

(<i, h\ Entonces se tiene la siguiente definición

4.9.1 Definición del volumen de un sólido
Sea S un sólido tal que S esld entre dos planos perpendiculares a] eje 
r en a y h. Si la medida del área de la sección plana 5, perpendicular 
al eje x en .i. está dada por/Ur), donde A es continua en |o, h]. enton­
ces la medida del volumen de S está dado por

V = lim y /Ku.) A.t

r A{x)dx

El término rebanado se utilira cuando se aplica esta definición para 
calcular el volumen de un sólido. El proceso es semejante al rebanado di 
una hoga/a de pan en muchas porciones muy dclgada.s de modo que todas 
las porciones juntas constituye la hogaza completa. En el ejemplo ilustra­
tivo siguiente se muestra que la definición 4.9.1 es consistente con la fór­
mula de la geometría sólida para el volumen de un cilindro circular recto.

V

EJEMPLO ILUSTRATIVO 1 La figura 6 presenta un cilin­
dro circular recto, que tiene una altura de li unidades y un radio de la base de 
r unidades, con los ejes coordenados dispuestos de modo que el origen está 
en el centro de una ba.se y su altura se mide a lo largo dcl lado positivo dd 
eje .X. Una seceión plana a una distancia de .t unidades del origen tiene un área 
de T) unidades cuadradas, donde

4(r) = nr-

Un elemento de volumen, mostrado en la figura 6. es un cilindro recto 
con un área de la base de /U»’,) unidades cuadradas y espesor de 
unidades. De este modo, si V unidades cúbicas es el volumen del cilimlio 
circular recto, entonces

l' = lim Y /-Uif, i A, X

A(r) ilx

¡tr~ dx

Jl)
- jir-h Á

En la definición 4.9 1 se puede sustituir t pory En tal caso. 5 es un só­
lido que está entre planos perpendiculares al eje y en c y d.y la medida del 
úrea de la sección plana de S pcrpendiciilur al eje y en y está dada por Adl-
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i'i h)

|(l M

(I

l l(,LK\ 7

IIC.LRA8

dónele /\ e*. Lonimiia en [t, ü\ finloiKcs la nu-dida del \olunieii de i está 
dada por

^ EJEMPL0 1 Utilice el método de rebanado para calcular el 
\olumcti de una pir.imide cu>a altura es de li unidades v cuya base es un cua 
drado de lado de r unidades

Solución La ligura 7 muestra la pirámide > los ejes coordenados dis­
puestos de modo que el centro de la base esta en el origen ) la altura se mide 
a lo largo del lado positno del eje \ La sección plana de la pirámide per­
pendicular al eje ^ en (0. t) es un cuadrado Si la longitud del lado de este 
cuadrado mide : unidades, entonces por triángulos semejantes (consulte la 
l'igura 8)

h

Por tanto, si .Ut) unidades cuadradas es el urea de la sección plana, entonces

/UO = - ')-

La figura 9 muestra un elemento de \olumen el cual es un cilindro recto de 
area /Uu,) unidades cuadradas j de un espesor de unidades De manera 
que SI unidades cubicas es el \ olumen de la pirámide, entonces

V = lim y /Un,) .i,'

/U\)<A

I, ,

(/; -

= \s-h 4

Ahora se mostrara como apltcar la definición 4 9 I .i fin de calcular el 
solumen de un sólido de resolución, el cual es un solido que se obtiene al 
girar una reeion de un plano alrededor de una recta del plano, llamada eje 
ríe resolución, el cual puede mlerscctar o no la región Por ejemplo, si la 
región limitada por una semicircunferencia ) su diámetro se gira alrededor
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FIGURA Ul

(Icl diúmciro, se (¡enera una esfera (refiérase a la ni¡uni 10). Si la rcfiiín limi- 
lada pur un irián(¡ulo rcciángulo se gira alrededor de uno de sus cálelos, se 
ohliene un cuno circular recio (consulte la figura 11)

Considere primero el caso en que el eje de revolución es un límite Je 
la reglón que se girará Sea / la función continua en el intervalo cerrado 
!<i. b\, y suponga que f<x} ¿ 0 para luda .i en (<r. h]. Sea R la región limi­
tada por la curva y = f{x), el eje x y las rectas .r = « y .t = /í Lai figura 12 
muestra la región /? y el ;-ésimo rcciángulo. Cuandu el i-ésimo rectángulo 
se gira alrededor del eje x se obtiene un elemento de volumen el cual es un 
disco cuya base es un círculo de radio /(u'|) unidades y cuya allura mide 
A,.t unidades, como se muesiru en la figura 1.^ Si unidades cúbicas es 
el volumen de este disco, entonces

nGL’RA II

o.,/oi,i U'/io

</ A«
•f, .

FIGURA 12

Fl(;iR\ 13

= ;rl/(iv,)l-A,a:

Como e\isten n rectángulos, se obtienen n discos de esta manera, y la suma 
de las medidas de los volúmenes de estos ii discos es

¿ A,l' = ¿ ;r[/(u',)]- A,r
I I •‘-I

Esta e.s una suma de Riemann de la forma (It donde A(u,) = ;r(/(ii,)l‘ 
Por tanto, si unidades cúbica.s es el volumen del sólido de revolución, 
se deduce de la definición 4.9.1 que V es el límite de esta suma de Riemann 
cuando ||a¡| se aproxima a cero Este límite existe porque y - es continua 
en [<i. />). ya que se supuso que /es continua en ese intervalo. Entonces se 
tiene el siguiente teorema

4.9.2 Teorema

Sea /una función continua en el intervalo cerrado |«, />]. y suponga 
que f(x) S 0 para toda x en [<i. /j) Si S es el sólido de revolución ob­
tenido al girar alrededor del eje .r la región limitada por la cuna 
y = fix). el eje x y las rectas .r = u y .r = h, y si U unidades cúbi­
cas es el volumen de S, entonces

V lim T ¡rl/tii, l]-A,t

n i: (/(v)J^/r

í'' EJEMPLO ILUSTRATIVO 2 Calcule el volumen del sólido 

de revolución generado cuando la región acotada por la curva v = v% el eje t 
y las rectas t = 1 v .t = 2 se gira alrededor del eje v Reliérasc a la figura 
14. la cual muestra la región > un elemento rectangular de arca. La figura 1? 
presenta el sólido de revolución y un elemento de votumen La medida dd 
volumen del disco está dado por

A,r = ;r(M,'i-A,i 
= ;rii'/ A,t
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V - lim y ;r»i i'* ¿i, x
1^11-...;“

'i'’"'

=

('otKliisíón; El volumen del solido de revoliiLion es V íTunidades cubicas

A lin de apoj.ir la csaluacmn analilica de la integral delniida se calcula 
en la jjrallcadora

NlNTín^r’. 1.2) = 19 477X7445

el cual es el inisnm valor, con die/ díanos smnificalivos que el valor e\aclo 
de l.i respuesM .inierior

Cuando el eje de revolución > una Ironlera de la reeion girada son 
eje V o cualquier recia paralela al eje r o al eje v, se aplica un teorema se­
mejante al teorcin.i 4 9 2

I K.l U\ 15

^ EJEMPL0 2 Calcule el volumen del solido de revolución ge* 
ner.ido .il gir.ir alrededor de la recia t = I la región limitada por la curva

íi - I)- = 20 - 4v

y las rectas V = l.v = l.v = 1 v a la dercelu de x

Solución La t'igura 16 muestra la región v un elemento rceiangular 
de arca El solido de revolución > un elemenio de volumen se presentan en 
la figura 17

Al resolver l.i ecuación de la curva par.i i se obtiene 

V = 20 - 4v + l

Sea = 20 - 4\ + I Se loma una partición del intervalo ¡1.
del eje \ Si A,l'unid.ides cubicas es el volumen del i-esimo disco, entonces

íi,l’ = - l|-A,\

= 20 - 4ii, + 1) - I]-A,v

= ;rl20 - 4u,) A,\

Si ruindades cubicas es el volumen del solido de revolución, entonces

I liin ^ ;r(2(l - 4ii|) A,i
. I

i20 - 4v) Jv

= .•r[2()v -2i-J,

= ,T|I60 - IS) - (20 
^ 24 .T16
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1

MGIIIU 17

ht(;UK.\ IK

roiiclustóri! H volumen del sólido de revolución es 24;r unidailes
LUblLUS i

AIiom supongj que el eje de revolución no es una frontera de la regmn 
que se girara Sean f y f¡ dos funciones continuas en («. I>\ tales que 
/Ir) ¿ glr) ¿ Ü para toda r en [u. h\ Sea R la región limitada por las cur­
vas \ = /Ir) > V = gíx) y las rectas r = o y or = /» I-a región /í ) el 
i ésiino rectángulo se muestran en la figura 18. y el solido de rcvolutifm 
se presenta en la tígura M) Cuando el i-ésimo rectángulo se gira alrcdciji>r 
del eje r. se obtiene un anillo circular como el de la figura 20 La difcren 
cía de las .áreas de las dos regiones circulares es (;rl/(u,))' - /r(g(u,)l*i 
unidades cuadradas y el espesor es de unidades Si unidades cubi 
cas es el volumen de la arandela, entonces

= ír<(/0t,)|- - («(n,)|-)A,r

La suma de las medidas de los volúmenes de las arandelas generadas al 
girar los elementos rectangulares de arca alrededor del eje x es

<1 II

Esta es una suma de Rieinann de la forma (1). donde (Au,) = 7T(/tu,)|* - 
(‘t definición 4 9 I. el numero de unidades cubicas del vulu 

men del solido de revolución es el límite de esta suma de Kiemann cuamlo 
IIAII se aproxima a cero El limite existe puesto que/- - g* es continua en 
|(j. />! ya que/y g son confinuxs en ese intervalo En consecuencia, se tiene 
el teorema siguiente

4.9.3 Teorema
Sean/y g dos funciones continuas en el intervalo cerrado |u. h] talc*s 
que f{\) ¿ g(r) ¿ ü para toda r en Ui. /i| Si V unidades cubicas 
es el volumen del solido de revolución generado al ginu* alrededor 
del eje <r la región limitada por las curvas v = /(t) y v = git) y las 
rectas t = « y t = h. entonces

V lint
IIAII-*" , I

(|;(r)l- - |g(t)l2),/t

Como antes, cuando el eje de revolución es el eje v o cualquier risU 
paralela al eje \ o al eje v. se aplica un teorema semejante al anterior

^ EJEMPLO 3 C.ilcule el volumen del solido generado al girar 
.lircdedor del eje t la región acotada por l.i parabola v = i- + I 
y la recta v = t +

Solución Los puntos de intersección de las dos curvas son t-L 2)' 
<2. 5) l .1 figura 21 muestra la regum y un clemenltt rectangular de arfJ 
11 solido de revolución y un elemento de volumen se presentan cti U 
figura 22

Siftu = t + ty g(\» = V- -1- 1, entonces la mcdid.i del vohmic'iulc
la arandela circular es

iK.l'IUlO A,l ffll ftu,)|- - A,i
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(II,.

O

' iT. “i ''

/lU l • ’
1,1 U r- I

I ir;i'H.\ 21

Si V unid.idcs túbicas es el volumen del si'ilido. entonees

lUII-*" ,,

= ;rj ([/(i}p - K-uji-x/t

n\ ¡(i + 3)‘ - (r + \i-\tlx

= - X- + 6r + 8)i/v

,3 ;r|- ; r' - ; i’ + + Kt|:,

= n-K- ’í - ^ + 12 + If-) - (1 + 1 + - S)1

- r-

C’oncliisliín: Kl volumen del sólido de resolución es unidades
cúbicas. ^

^ EJEMPLO 4 Calcule el solumen del solido generado al girar 
alrededor de la recia i = -4 la región limilada por las dos parábolas 
.1 = V - s- y i = - 3.

Solución Las curvas se inlcrseelan en los puntos (-2.-1) \ (-J, j) l.a 
reglón y un elememn reclangular de área se muestran en la figura 23 La fi­
gura 24 présenla el sólido de resolución así como un elemento de solumen, 
el cual es una arandela

Sean F( \) = v - v- y L’(s I = ~ 3 Hl miiiiero de unidades cú­
bicas del solumen de la arandela circular es

- ;r([4 -1 /lu,»[’ [4 4 (;(u',ll').i,s

Por lanb'.

I k;i I(\ 22

/l.l

l' - lim y ;rl|l + /o*,)]' 1-1 f (;iu,i|-l \,s
II sil •" ^

V2
- n\ [(4 I V s’)' I-I t '■ ib’li/s 

'/2
( 2i ' ‘ix-‘ t ,Si I |s),b

l

' l ‘ <s ' . h ' '

('oiii-tiisióm II soliiim-n ilel .olido de lesolucioii es 
s ubh a

unid ules
A

' /II .

I H.l l(\ .'I

I o i'ieiiiplo. aiiMious sv* li.iii pi.''ciil ulo a pio|'*'silo, \lc mod>> «iu> 
,i . al. ido pned.i .‘li.liiu e l,i. ilmeni.' .i iiuiio 1 ii il siciiiplo sunneiil.-
I|U. lio l OI 11' III'lid. .11 .le i ,ISO. M' ll.’i ■ sll.ll.l 1,1 ;'| .iIk utol.l
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1

. - • 4 ;

' ' •"Ir

iI(a'K\24

kI

l-ft «>)p<ir|-4 4| 

/II) ven . I" ♦ 4 

4 i-

25

^ EJEMPLO 5 Calcule con cujiro dí¡!itos significulivos el vu-
Imneii del sólido de resolución generado al girar alrededor del eje r la región 
acolada por las grálicus de

/(r) = sen . i* + 4 y s= 4 - t-

Solucíón Se ira/an las gráficas de las dos ecuaciones en el rectángulo 
de inspección de |-6. ó] por |-4.4j. como se muestra en la figura 25. Debi­
do a la simetría con respecto al eje v. se obtendrá un medio del volumen 
re(|uerido al girar alrededor del eje r la región limitada por las cursas en ut 
primer cuadrante Se necesita tomar una partición del intervalo (0, b\, domle 
h es la coordenada x del punto de intersección de las dos curvas en el pnmer 
cuadrante Se obtiene h empleando el proceso de intersección (inlfnccn o 
rastreo unnr) > aumento (zoom in) de In graficadora. resultando, con cua­
tro dígitos significativos,/> = I 905

Cada elemento de volumen es una arandela Si unidades cúbicas es 
el volumen requerido, entonces

lim y rt([K()i,il- - |/(u,)|->A,v
!i-\ii-" tr,

;rt|g(U|- - [/(r)l-)í/r

||4 - r-)- - sen- . t- -f 4 | J.r

Al evaluar la integral definida medíanle NINT en la graílcadoni se obtiene 

ffN'lNT((4 - r^)- - sen- . v- f 4j.O, 1 905) = 50.129 

[•monees

i = 50 129 

V = 1IX)20

t'oncliisliin; 1:1 volumen del sólido de revolución, con cuatro digiU" 
significativos, es KIÜ..T unidades cúbicas ^

»

Como se ha visto, la obtención de volúmenes mediante los métoJi" 
de discos y de arandelas son casos especiales del cálculo de volúmenes del 
mclodo de rebanado. .-\ continuación se dará otro ejemplo de delemiinacion 
de un volumen por medio del iiuModo de rebanado.

J

Mía UA 2(1

^ EJEMPLO 6 Se corta una cuña de un cilindro circular recto 
cuyo radio es r centímetros, medíame dos planos, uno perpendicular al eje del 
cilindro y el otro imersccta al jinmem a lo largo de un diámetro de la sección 
pl.ma Circular toimando un ángulo de óíf Calcule el volumen de la cuña

Solución La cuña se muestra en la figura 26 1:1 plano tv se considera 
como el plano |K‘rpendicular al eje del cilindro y el origen está en el punto 
de perpendicularidad lintonces. una ecuación de la sección plana circular 
es t- + V- = r- Toda sección plana de la cuña, perpendicular al C|e T. 
un tnaneuln rectángulo Un cleincnlo de volumen es un eilindo* recti» que
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Nene iitui alliir.i de ii,i cenlimeiros. y el área de su hase csiá dada por 
\ eeniímelros cuadrados, donde f(\} se obtiene al resolver la

ecuaeión de la cireunleicneu para _v y considerando y = /(r). Por tanto, se 
tiene/(») = r- - i- . Así. sj l'eentíniciro'. cúbicos es el solumen de la 
cuña, entonces

l' lim £ .Kf- - u.-tA,- 
ll.sli •'» f-; *

: )</l-

('iitidiisión; 1:1 soluineit de la cuna es • .Ir'cni^ <

i•J3iSííeíOS’4á9 ^■ree asiiafpw

l'i li'\ l■|tlllll<‘\ I i 2. iliiUiTiit lii fi'nniihi i’iini il uitiiiiii’ii 
•!i I \'ilnli¡ ir.i ¡lioiili 11 nii li'Jii ili’ n híiiuiil"

!■ I 11.1 esfera de radiii r tJiiidadv''

2. t'ii u>nii circular redo de altura li unidades s radio de la 
base de <r unidades

iJetermine el suluinen del solido de resoluemn "enerado 
cuandii la reemn limiuda por la cursa s = iel cie i \ 
la. léelas t = | y c s- 2, se itira alrededor del eje i.

■I. rakiile el soluinen del sólido de resolución yener.ido 
aliando la rejrnni .icotada por la cursa s = »’ * |. el eje 

«> las teclas» = 2>A = .1. se gira .dreJedor del eje i 

l.n !ii\ (jtriiiim ^ n 12 laliiilr fl uiliwun Jcl u'IiiIk iIc 
ri.''^(in!n i-eiifriid'i iiiíuuIí' hi n‘f;ii'n Je Ui fn:uiti ve croi 

I Jf< ih tU>r df lii n I Ui tiidii tidii l huí i»ii<ii lun di la i un a di- 
l|||l.■lll|| I» »- ^ , *

alrededor del eje » 

if\( .ilrededor lie la reda/K'

<>\( alrededor de l.i recta/<r 
**• alrededor del eje s 

‘dl( alteiledor del eje »
*"• <llí(' alrededor de la recta U(

"l¡< .liiididiirde 1.1 leUa.tr 
!-• 'J/ralrededor del eje.»

^“ I"' I¡I 1,11 ii,\ 11 ,1 ¡f,_ ,,ih „l, , I \ ,duiiuii di I •■i’lidii di rr 
'"hiiimi (■,71,,il idiididiir Je la ruta mdiiaJii hi 

"miada [mr la I una \ - i.fliji \\lariita\ ~ 4

' ■•rvcl.n 1 J4. l lejcM

"s-je» H,. |.,iecla» - 2

íll'leiiga la loiiniila del soliiinen de una estera .il gir.ir 
alrededor del eje \ I.» región hmilad.i por la uicunteren- 

ua V + j.| j

IK. Dedu/ca la lonmila para el volumen de un cono ciruil.ir 
recto de altura de li unidades \ cuso radio de la base mide 
a uiiidade'. al girar la regii'm liniilada por un in.ingulu 
rectángulo alrededor de uno de sus catetos.

]'>. Obtenga la formula para el '.olumen de un cono circular 
recto mineado que sc obtiene al girar el segmento recti­
líneo que \a Je ti), /il a Oi.ai alrededor del eje c.

2I>. Calcule medíanle el método Je rebanado el solumcn de 
un letraeüro »|ue tiene ire-- caras mutuamente perpen* 
ilieul.ires) tres .instas miiiuamentc perpendiculares cuyas 
longilutles son de 4 s 7 pule, rcspecmamenie

21. I..I reglón aeolaJ.i por la cursa v = see \. el eje s el eje » 
s 1.1 recta » = ^ ;r. se- gira a!i .lediir de! eje t. Calcule el 
soliiinen del sohJn generado

22. Calcule el solunieii del solido de resolución generad.» 
cuando l.i región limil.ida por lacursa» = csev.elcjeis 
las reei.is \ = 11:\ v = ' rr. 'C gira alredc*dor del eje ».

2.1. Ohienga el suliimen de! solido de rcsoliieion generado si
1.1 legión acolada por un .itvo de la cursa senoidal se gira 
alrededor del eje Siuti rciu la emplee la identidad 
seir » - I ■ eos2u.

24. 1..1 reglón limitada por el eje s s las cursas v = sen i s 
» - eos » par.i N -v » •< J ;t. se gir.i alrededor »iel 
eje i ('.dude el sidumen del solido generado S.ici/■«»(• 
,(,/ utilice 1.1 klenlul.idcos-^t sen’» = eos2».

25. Dtlerimne el soluinen del míIhIo genera»lo si la región 
del eiereicui 21 se gii.i .dieiledi>r»le la lecla s I.

2íi. Obtenga el solumeii del '<dido geiier.ido si la legiiui 
de! ejereieio 24 se gir.i .iliededor de la recta » - l.

27. I .1 reglón aeoi.id.i por la cursa v = col x. la recta 
» - ' .T y el eje » se gir.i .ilrededor del eje » Calcule 
el soluinen del solido generado

2S. 1.1 región limiud.i por l.i .-ursa v - tan ». I.i ree-
1.1 i = ' .7\ el eje s 'C gira aiieiledor del eje » Deter­
mine el s oluiiieii del solido generado
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2V. Oblcii{!a el \oluincn del solido generado al girar ulredcdor 
de la recta r = -4 la regidn limitada por esa misma recta 
y laparahola x = 4 + fn - 2>’

.^n. Calcule el volumen del sólido generado al girar alrededor 
del eje X la región acotada por la parábola = 4x y 
la recta v s r

31. Obtenga el volumen del sólido generado ol girar la región 
del cjercic'o 10 alrededor de la recta r = 4

32. DcicnninL el volumen del solido generado al girar alre­
dedor del eje y la región aculada por la recta que pasa por 
los puntos ll,3| y (1.7) y las rectos v s 3. > = 7 >
t = 0

33. Calcule el volumen dcl solido generado al girar alrededor 
de la recta v - -3 ta región limitada por las dos parabolas 
yax’yvssl + r-x*

34. Obtenga el v olumcii dcl sólido generado al girar alrededor 
del eje x la región acotada por el lazo (o bucle) de la 
curvacuya ecuación es 3>* = x(x* - 4)

35. Determine el volumen del sólido generado cuando la re­
gión iimilada por el bucle lo lazo) de la curva que tiene 
la ecuación » (x* - '))(! - x*). se gira alrededor 
del eje i

36. Un tanque pciroletu nene lu rumia de una esfera con un 
diámetro de 6() pie , Cuánto petróleo contiene el tanque si 
la pnifundidad dcl petróleo es de 25 pie’’

37. La región acolada por la curva v = ese r y las rectas 
y K 2. T s ;r y X = ^ 'C gira alrededor del eje x•- b' fi ■ ®
Calcule el volumen dcl solido generad»

38. 1.a reglón del primer cuadrante limitada por la curva 
V 3 scc r. el eje V y l.i recta v = 2. se gira alrededor dcl 
eje t Determine el volumen del solido generado

3'J. Al girar alrededor dcl eje t la región limitada por 
1a curva > a v 21 + 4. el eje x, el eje v v la recta v « c 
(< > 0), se generó un sólido de revolución (Para quá 
valor de < el volumen dcl sólido será de I2ff unidades 
cubicas'

41). 1 a reglón del primer cuadrante acotada por los ejes 
coordenados, la recta v = 1 y la cuna v = col i. se 
gira alicdcdor dcl eje v Obtenga el snlumcn dcl sólido 
generado

/ /I /»o iJritKiiix 4/ II 5(1. uliliif lii ifnijiiiuloni ¡mm uihtildr 
el \ oliimen tirl uilido t,f»r'n¡ln til mriir la tciiiiin ilaJa aln Je- 
Jar ilel eje iiuluaJo l xprexe la rrtpiiefia con ttiiiiro Jii¡iii>x 
MUnífit aiiM'x

41. 1.a legión Imiil.ida por la gráfica üc v ^ * i' « 4. el
eje X. el eje y > la recta i 2. alrededor dcl eje t

42. 1.a reglón iicoiiid.i por la grafiva de v « 1, el
eje X y las rectas \ - 2 y t - 1. alrededor del eje r

4.1. [.a reglón limitada {mh I.v gráfica tle v ! t' 4. el 
eje V) l.i tixia v - 1. aliedcdordci eje v

44. lai legión acolada poi la grálica de v = ! - .s. ci
eje X. el eje v > la recta v ' 4. alrededor del eje v

45. La región limitada por la gráfica de y s scnx\clcje>) 
larcctay = l.six S |0, -'ff/2j.alrcdedordclcjex

46. La reglón acolada por la gráfica de v = tan x'. el eje i 
ylarcciay = l.six S 10. ^/r/2|, alrededor de larctti
V = I

47. Lj rcgiun del ejercicio 45 .alrededor de la recta v s 2

48. La región dcl ejercicio 46 alrededor de la recta V - -1

49. La reglón acolada por las gráficas de y = sen x -f 2.
V s tan X. y el eje y. alrededor dcl eje x

5ft. La reglón limitada por las gráficas de v = r - I 
y V = cos(x* 2). alrededor del eje X

51. La base de un solido es la región acotada por una elipse 
que tiene la ecuación Ir* -i- v* - 6 Calcule el \o!u 
men del sólido si todas las secciones planas perpea 
diculores al eje x son cuadrados

52. La base de un solido es la repon liiniiada por la liipetbnli 
25t* - 4v- s l()0 > la recta r = 4 Calcule el voluirco 
del solido SI todas las secciones planas pcrpcndiculorcv il 
eje V son cuadrados

53. La base de un solido es la región acotada por una cl^unf^ 
rencia que tiene un radio de 7 cm Calcule cl vülumcnik! 
solido si todas las scxcioncs planas perpendiculares a ua 
diameim fijo de la base son Inangulos cquilaicrus

W. La base de un sólido es la región del ejercicio .*>2 CaLulr 
el volumen dcl solido si todas las secciones planas perpen 
dicularcs al eje t son tnongulus equiláteros

55. Ij b.isc de un solido es la regum del ejeicicio '1 Calculí 
el volumen dcl solido si tudas las scsstoncs pionas |x.rpcn- 
dicubres a un diámetro fijo de la base son inangulos iv<v- 
celes cuya altura es igual a la distanvia de la sección pIo>u 
al centro de la circunferencia F1 lado que cvü M»bre U 
b.ise dcl solido no es uno de los lados iguales del tnaiigub

56. La base de un solido es la región limitada por tina vit 
cunfcrencia con un radio de r umd.vdes. y todas las scvvio' 
nes planas pcrjicnUicuIures a un diaiiieiio fijo Je la Nisc 
son triángulos rectángulos isósceles que tienen la hip«*<f 
misa cnel plano de la base CaUuk-cl volumen Jelsv'lis^'
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57. Ko'UlI\.i lI i icrtiuii ^6 m ln>. iri.int;iiliis rctungulos isú-,- 
laiicn un ijlciu en il pl.inu tie l.i h.ise

<S I J Kise Ji. un Milidii 11 regiiit) limil.ulj por uiu etr- 
..iinkrenei.i euii un r.nliu >le •! piiig, y eud.i secucin pijtu 
¡atpenJK-uljr .i un ili.mielni lijo de í.i tuse es un iri.ingiilii 

i|us IieiiL un I .illurj ik 10 pulg y euyj tuse es 
uiu i.ui.id.1 de lj <.iruinlerenu.i

«9. L.1 tuse de un solido L^ l.i regnm .luil.idj por l.i eurs.i 
1 = 2 \ ) la. ruet.u I -I- I - 0 y \ = ') f.lkule el
uilumen di.1 solido si toda, lis setuimes planas pequii- 
diLulare' al eje v sim lu idrados ijul nene una dugoiia! 
eon un evirenio en la retía i + i = 0 y el uiro etlruno 
en la tun a t = 2 _ \

(.11. [)iis tilindrus eireulaícs reeUu. eada uno de radio de r 
uiiiJade'. llenen eje' ipit son perpenditulares Cakule el 
\oIuiiii.n d. la pon ion común de los dos cilindros

Dio uliiiilrio liilcivii>.iiiii di. I<>' Liliiulni'

l>\. Ik un solido i|ue llene lortn.i de cilindro circular redo 
de r ceiilíineirus de radio se corta una cuña nieilunie un

plano tjtie pasa por iin diámeiro de la base del cilindro 
y ipic forma un ángulo de 45'' um el plano de la base 
Calcule el volumen de la tuna

■'■AS' , 
j

I
¡

62. De un solido que liene fimiKi de cono circular redo cuyo 
radio de la base es de 5 pie y cuya abura mide 20 pie. se 
corta una cuña medíanle dos semiplamis que pas.m por el 
eje del tono Fl ángulo fnmiadu por los dos semiplanus 
mide 10 Cakule el \ olumen de la cuña

6.1. Al girar la parabola = 4px alrededor de! eje t se 
obtiene un paraboloide de revolución Cakule el volu­
men del solido limiladn por un paraboloide de revolución 
y un plano perpendicular a su eje si el plano esta a 10 cni 
dcl vcdice. \ s| |j sección pl.ui.i de mlersección es un 
circulo que liene un radio de 6 cm

64. Explique la relación entre calculo de vulumciics mediante 
el iiiclndo de rcbanadn y calculo de volúmenes por medio 
de los mLlodos de discos y de arandelas

4.10 VOLÚMENES DE SÓLIDOS MEDIANTE EL METODO DE 
CAPAS CILINDRICAS

Hn 1.1 seccinn aincrmr su üclcTmmú el vulumen de un solido de revolución 
loin.indo [os elementos redaiigulares ile .írea perpendiculares al e|e de revo- 
lucii'in. y los elemenlos de voltiinen obtenidos fueron discos o arandelas Para 
algunos solidos de revolución esie inelodo puede no ser laclihie Por ejem­
plo suponga que se desea caleiii.ir el volumen evado del solido de revolu­
ción oblenido al gir.ir .ilrededor del eje \ la región limitada por la grátlea 
de V = ^ \ - Vel eje \ y l.i reda v = 2 Ksla región se muestra en la fi- 
gur.i I Si un eleiiienlo de .íre.i e's perpendicular al eje \ como se presenta 
en la lleur.i. el elemenlo de volumen es un disco, y deteniimar el volumen 
del solido de revolución implica una integral de la torm.i h M \ I il\ Pero 
p.ir.i obtener un.i loriiuila de /UM w necesita resolver la ecuación cubica 
\ - - Xpara V en icrminosdclo cual es una larca muy l.iboriosa De
modo que abora se estmliar.i un procediimemo allcrn.ilivo p.ira calcular el 
volumen de un solido de revoiueion. el uul es mas iacil de aplic.tr en éste 
y algunos otros casos

1:1 mdodo implica considerar los elemenlos rcdaiigulares de arca 
paralelos .il eje de revolución. Después, cuando un eleiiiento de .irea se 
gira alrededor del e|c de revolución se obtiene una uliiulrna Una
capa dlíiidricn es un solido contenido entre dos cilindros que tienen elI h;i iu i
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inismi) centro y el mismo eje En I:i tlgura 2 se muestra una capa cilindrica 
de éstas

Si la capa uimdrica tiene un radio interior de r| unidades, un radtu 
cMerior de n unidades y una altura de It unidades, entonces su volumen I' 
unidades cúbicas está dado por

l' = «rs-Zi - ;rf|-/i til

Sea K la regu'in limitada por la curva y = f(x). el eje x y las rcctat 
r = <; y .t = h. donde / es continua en (o./>] y /(v) & 0 para toda r en 
l<i. /»]; además, suponga que o i 0 La región R se muestra en la llgura 3 
Si K se gira alrededor del eje v. se genera un sólido de revolución S. Diihi 
sólido se muestra en la figura 4. Para calcular el volumen de S cuando s« 
toman los elementos rectangulares de área paralelos al eje y. se procede en 
la siguiente manera

Sea A una partición del intervalo cerrado |o. h\ dada por

Á t = h

K

" .1 />

IKUIRAJ

II = »„ < r, < rs < < < r„ = h

Sea /II, el punto medio del i-ésimo suhintervalo i i,. i. r,| Entonces s< 
tiene que m, = <1^-1 + Considere el rectángulo cu>a altura es/im,i 
unidades y cu)o anclto es de A,i unidades Si este rectángulo se gira alre­
dedor del eje se obtiene una capa cilindrica La figura 4 muestra la capa 
cilindrica generada por el elemento rectangular de área.

Si proporciona la medida del volumen de esta capa cilíndnca, co­
tonees .se tiene de la fórmula <l). donde r¡ = .r,.|. fs “ •'« > = /l"i,L
de modo que

A,V = n\,-fuii,) ~

- .v,.|’»r(/;i,)

A,l' = rrí.v, - + .t,_ij/(iii,)

Como X, - v,.| = A,v. y puesto que x, + .», , = 2m,. entonces al sus­
tituir en la ecuación anterior se tiene

A,l' = 2orm,/t«i, I A,t

Si lus II elemeiilos rectangulares de área se giran alrededor del eje 
y. se obtienen ii capas cilindricas La suma de las medidas de sus volú­
menes es

¿A,\’ = ^2;t/ii,/Ih;,iA,\

• •1 I I

I'Híl KA 4 la cual es una suma Je Riemann El limite de esta suma de kiemann cuan­
do 11A11 se aproMiiia a cero existe porque/es coniinu.i en ¡o. /i], de modo 
t|ue tuinbiéii lo es la luneión cujos valores son 2;rt/(t). El limite es la in­
tegral definida 2/r\/u) i/t, y proporciona el volumen del sólido de «- 
\ olución Este resultado se resume en el teorema siguiente.

4.10.1 Teorema
Sea / una lunción continua en el intervalo cerrado [u. /i|. donde 
(/ a 0. Suponga que /(.t) S 0 p.ira toda .\ en j/i. //I Si R es la región 
limitada por la curva v = /u). el eje r y las recitus x ~ u y x = />.
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II

t ICt R \ 5

I

I K.l lU (•

SI S es el solido de revolución i|ue se obtiene al girar í< alrededor del 
L‘je y SI U unidades cubicas es el volumen de S cntrnices

V= lini y 2;thi,/'(«i, j A, r
' •" rt

('•
= 2n xj(x) il\

Ja

Aunque la valide/ de esie teorema puede resultar obvia debido a las 
explicaciones anteriores la demostrauón requiere probar que se obtie­
ne el mismo volumen mediante el mciodo de discos del teorema 4 9 2 En 
el numero de febrero de 19X4 de la revista Anum im Mailumaiiuil Mnttllih 
(Vol 91. No 2;. Clmrles Cable de Alleghenv Cullege proporciona una 
demostración utilizando iniegracmn por partes lema de la sección 7 1

La tormula de la medida del volumen de una capa cilindrica es tacii 
de recordar observando que 2;r»i,, Uní,} v A,i son. respectivamente, las 
medidas de la circunterencia que tiene como radio el promedio de los ra­
dios inierno y externo (o radio medio) de la capa, la altura de la capa y el 
espesor de la cap.i De este modo el v olunien de la capa es

2/rtradio medioKalturaHespeson

^ EJEMPL0 1 La reglón limitada por la curva v ~ r- el eje v 
y la recta v = 2 se gira alrededor del eje v Calcule el volumen del solido 
generado Considere los elemuilos de area paralelos .d eje de revolución

Solución La figura ^ muestra la región y un elemento rectangular de 
área La figura 6 muestra el solido de revolución y la capa cilindrica obte- 

' nida al girar el elemento rectangular de area alrededor del eje \
Ll elemento de volumen es una capa cilindrica cuyo volumen es

A,r = 2;r»i,(m,'> A,v 
= 2;r/;i,^ íi,v

De este modo

l' - lim y 2r«i,’ A|V

II volumen del solido de revolución es de S;r unidades

Ln el Mulliente ejemplo se calcula el voliimeii del solido de revolución 

discutido .d principio de esta seecion

^ 2rr{' 

= S/T

roncliisión;
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FIOLRA 7

A

<r

^ EJEMPLO 2 DclL*rmmc d volumen dd sólido de revolucuih 
¿enerado al girar alrededor del eje y la región limitada por la grállea 
y = 3r - r’. d eje y y la recta V = 2.

Solución Sea/(t) = 3.r - La figura 7 muestra la región y unde- 
menlu rectangular de área paralelo al eje y El sólido de revolución v urj 
capa cilindrica, demento de volumen, se presentan en la figura 8. El q¿o 
medio de la capa cilindrica es m, unidades, la altura es (2 - f(m, t] unidadr. 
y d espesor es A,v unidades Por tanto, si AiV unidades cúbicas es el volu­
men de la capa cilindrica, entonces

A/V = 2nin,[2 - fUn,)]A,x

De modo que si l'uniüades cúbicas es el volumen del sólido de revnIucioT 
entonces

V' = lim y 2/r«i,|2 - /(/n,i)A,t 
lUI -u “

r= 2;r -v|2-/U)]i/v

í
2n l2r - 3\- 

Jo

2n- I v(2 - 3r -h r’)(/r 

*■ r‘‘|í/x

nnuRA 8 = 2nd - 1 + 1)

1-2

Cnnchisión; R1 volumen dd sólido es = ;r unidades cúbicas

r EJEMPLO 3 La región limitada por la curva v = i* v L- 
rectas v = I > t = 2 se gira alrededor de la recta v = -3 Obicr;- 
el volumen dd sólido generado al considerar los elementos reciangulairs A: 
área paralelos al eje de revolución

Solución La región y un elemento rectangular de arca se muestran e* 
la figura ó

La ecuación de la curva es v = .r-. Al resolver esta ecuación para» 
se obtiene v = ± , \. Como i > 0 para la región dada, entonces i ‘

El sólido de revolución y una capa citindnca. elemento de volumen.'^ 
tiuiesiraii en la figura II) El radio exterior de la capa cilindnca es (», * - 
unidades, mientras que d radio intenor es t v,.| -i- 3» unidades En svos.*- 
cueneia. el radio medio es t/ii, + 3) unidades Como la altura y el espes' 
de la capa cilindrica son, respectivamente. t2 - ) unidades v A'
unidades, entonces

Fl(;i'R\9 A,V - 2m/»i, + 31(2 - ,^111, )A,v


