
Python fácil
--Amoldo Pérez Co6tofto

000023592
33

É. CSZSJ1I33klfaomega ediciones técnicas

C'-. ' -'7 30 i o

06’

^V-|

Python fácil

6-.t^

,o7'

WERSIDAn TECNfCi OEl W)Wt I

biblioteca I
Ibarra - gcunnnr (

IINiVERSlDAO rcCMfCD n(l N0R7E
BIBLIOTECA
Ibarra - Ecuador

Python fácil
Arnaldo Pérez Castaño

UNIVERSIDAD TECNICA OEl NORTE

BIBLIOTECA

Vía de adquisición:
Documento No.Cfíír-ilí^-Víil^^y
Fe ch a:. A ---
Valor unitario:
Codito de Barras’-CLl^íJ^ÁS"-

Alfiaomega l^marcombo
ediciones tócnicas

DlscdodebaitaeniLADCYI/D^GM GRÁF/C
Dalos catalognífícos

Pírez, Arnaldo
P>thon fácil
Primera Edición

AlfaomcgaGrupoEdiior,SA deCV.México

ISBN 978 607-622-661-2

Fórmalo 17x23 cm Páginas 284

P>thon fácil
Amoldo Pérez Castaño
ISBN 978-84-267-2212 6, edición en español publicada por MARCOMBO, S A , Barcelona, España
Derechos rcserxados €> 2016 MARCOMBO, SA

Pnmera edición Alfaomega Grupo Editor, México, abnl 2016

© 2016 Aifaornega Grupo Editor, S A. de C.V.
Dr Isidoro 01\ era (Eje 2 sur) No 74, Col Doctores, 06720, Ciudad de México

Miembro de la Cámara Nacional de la Industria Ediional Mexicana
Registro No 2317

Pág Web http://mvw4iiraomegaxom.co
E-mail clIcntc@airaomcgacolombiana.com

ISBN: 978-958-778-221-9

Derechos reservados:
Esta obra es propiedad intelectual de su autor y los derechos de publicación en lengua
española han sido Icgalmcnic iransfcndos al editor Prohibida su reproducción parcial o total
por cualquier medio sin permiso por esento del propieiano de los derechos del cop> nght

Nota importante:
La información contenida en esta obra tiene un ñn exclusivamente didáctico y, por lo tanto,
no está prev isto su aprov echamiento a nn el profesional o industrial Los indicaciones técnicas
y programas incluidos, han sido elaborados con gran cuidado por el autor y reproducidos bajo
estnctas normas de control ALFAOMEGA GRUPO EDITOR, SA de C V no será
jurídicamente responsable por errores u omisiones, daños y peijuicios que se pudieran
atnbuir al uso de la información comprendida en este libro, ni por la utilización indebida que
pudiera dársele

Edición auionzada para v enta en Colombia y todo el continente omencono

Impreso en Colombia, noviembre de 2016. Printed in Colombia.

Empresas del grupo , ^
México* Alfaomega Grupo Editor, S A deCV - Dr Isidoro Olvera (Eje 2 sur) No 74, Col Doctores,
CP 06720 Del Cumihtémoc Gudad de México-TcL (52 55) 5575-5022-Fax (52-55)5575-2420/2490
Bíneoslo 01-800 020-4396-E mml alencionalciicntcfSalfaomegacommx

Colombia: Aifaornega Colombiana S A - Calle 62 No 20-46, Bamo Son Luis. Bogotá, Colombia,
Teis (57-1) 7460102/2I00I22-E mail clienlc@alfaamegacolombianacom

Chile* Alfaomega Grupo Editor, S A -Av Providencia 1443 Oficina 24, Santiago, Chile
Tel (56 2) 2235-4248 - Fax (^2) 2235 5786 - E mail ogeehilc®alfaomcgacl

Argentino* Alfaomega Grupo Editor Argcnuno.S A -Paraguay I307PD Of 11,CP 1057,BucnosAircs,
Argentina -Tel/Fax (54-ll)4811-0887 y48n 7183-E-mail vcnias@n]fnomegacdilorxomar

http://mvw4iiraomegaxom.co
mailto:clIcntc@airaomcgacolombiana.com

CONTENIDO

CAPÍTULO 1. Introducción...1

1 1 Instalando Python ...1

1 2 Características ... 3

1 3 La Maquina virtual .. 5

14 Entornos de Desarrollo Integrado5

15 Sintaxis básica ... 7

1 6 Módulos 7
161 Sentenaa import ... 7

1 7 Modo intérprete vs modo script 9

18 Diferentes versiones 9

19 Relación con otros lenguajes 10
191 PHP 10

192 Java ... 10

193 CSharp 11

110 Implementaciones del lenguaje 12

Ejercicios del capítulo 12

CAPÍTULO 2. Elementos del lenguaje.. 13

2 1 Estructura léxica 13

2 11 Identación . 13
212 Tokens 14

213 Identificadores 14

214 Literales • ••• 13

2 15 Delimitadores ■ • • 13
216 Sentencias .15

217 Palabras claves .. . 16

2 2 Variables 16

221 Venables de enlomo 17

2 3 Tipos de datos19

23 1 Secuencias .. 19

23 11 Cadenas19

UNIVERSIDAD TFCNírr OEi vnsJi-

BIBLIOTECA
Ibarra • Ecuador

Python fácil

2.3.1,2. Listas.. 21
2 3 1,3. Tupias.................. 22

2 3.2. Diccionanos................................... 22
2 3.3. Numéricos...23

2.3.4. A/one...25
2.3.5. Booleanos.... .. 25
2 3.6. Conjuntos.......... .. 26

2.4. Operadores de comparación................. 26

2.5. Operadores aritméticos.. 27

2 6. Operadores lógicos.............................. 29

2.7. Operadores sobre bits.. 30

2.8. Operadores de asignación.............................. 33

2.9. Otros operadores.. 34

2.10. Operaciones... 35

2 10.1. Tipos numéricos.. 35

2 10.2. Secuencias....................................... 35

2.10.3. Diccionarios.. 40

2.11. Objetos............ .. 41

2.11.1. Todo es un objeto en Python..42

2.12. Funciones.. 42

2.12.1. Argumentos.................... 42
2 12.2. Funciones anidadas.......................... 44

2.12.3 Generadores...................................... 45
2.12.4. Recursión...................................... 46
2.12 5. Funciones nativas......................... 46

2.13. Clases 49

2.14. Estructuras de control51

2.14.1. Sentencia for.. 52

2.14.2. Sentencia while.. 54

2 14.3. Sentencia if... 55

2.15. Funciones de entrada/salida 56

2.15.1 'Hola Mundo'en Python... 57

Ejercicios del capítulo......................... 58

CAPÍTULO 3. Paradigmas de programación.. 59

3 1 El paradigma orientado a objetos 59

3 11 Objetos 59
3 12 Herencia 60

3 12 1 Herencia diamante 65
3 13 Polimorfismo 66

3 14 Encepsulación 67

3 15 Instancia de una clase 70

3 1 6 Método _init()_ 71

3 17 Argumento self 72
318 Sobrecarga de operadores 72

3 19 Propiedades 75
3 1 10 Métodos estáticos y de clase 77

3 111 POO y la reusabilidad 78

3 1 12 Módulos vs Clases SO

3 113 Extensión de tipos SO

3 113 1 Subclassing 81

3 1 14 Clases de “Nuevo Estilo S3

3 1 15 Atnbutos pnvados S3

3 2 El paradigma funcional 84

32 1 Expresiones lambda S5

322 Función map () 8®

3 23 Función reduce() 87
324 Función filter() 88
325 Función zip 89
326 Listas por comprensión 89
32 7 Funciones de orden supenor 90

Ejercicios del capítulo

CAPÍTULO 4. Iteradores y Generadores...93

41 Obteniendo un iterador • 93

4 2 Ordenando una secuencia 95

4 3 Generando la secuencia de Fibonacci 96

4 4 Mezclando secuencias ordenadas 97

6.3. Procesamiento de texto plano...........................
6.3. f Leyendo un fichero de texto con fonneto CSV.
6.3.2 Escribiendo a un fichero de texto...................

6.4. Procesamiento de CSV.....................................

6.5. Procesamiento de ficheros comprimidos..........
6.5.1. Archivos Zip...
6.5.2. Archivos Tar...

Ejercicios del capítulo..

CAPÍTULO 7. Estructuras de datos y algoritmos

7.1. Estructuras de datos....................................

71.1. Pilas..... ..
7.1.2. Colas........ ..
7.1.3. Listas enlazadas..................................
7.1.4. Listas ordenadas....................................
7.1.5. Árboles... .

7.1.5.1. Binarios de Búsqueda..................
7.1.5.2. AVL..
7.1.5.3. Rojo negro..................................
7.1.5.4. Trie..
7.1.5.5. Quad Tree..................

7.1.6 Grafos...
7.1.6.1. Dígrafos......................................

7.2. Algoritmos...

7.2.1. Pnieba de primelidad.............................

7.2.2. Ordenamiento..
7.2.2.1. Mínimos sucesivos......................
7.2.2.2. InsertlonSort...............................
7.2.2.3. Quicksort...................................
7.2.2.4. MergeSort...................................

7.2.3. Potenciación binada.........................
7.2.4 Grafos...

7.2.4.1. DFS..........................
7.2.4.2. BFS..

ÍM/ERSIOúD TFCNfCC OEI,
biblioteca

~ Ibarra - Bcuaaor

141
145
146

148

149
150
154

,158

,161

,161

, 161
. 165
.174
. 162
. 164
.194
.206
.219
.233
.239
. 244
.247

.249

.251

.253

.254

.255

.257

.259
,262
. 263

.263

.266

Python fácil

7.2.4.S. k-coloración .. 266

Ejercicios... 269

BIBLIOGRAFÍA..271

CAPÍTULO 1.
Introducción

UNIVERSIDAD TECNfCA DEL NORTE
BIBLIOTECA
Ibarra - Ecuador

Un interrogante común para muchas personas que se adentran en el mundo de la
programación es la siguiente; ¿qué es Python? Dando respuesta a esta cuestión,
Python es un lenguaje de programación que ha adquirido considerable popularidad
entre programadores, aficionados y estudiantes por su alto nivel de expresividad,
sus códigos compactos y elegantes, su sencillez y su capacidad para crear tanto
aplicaciones de escritorio como aplicaciones web. Grandes empresas como Google
o la NASA utilizan Python extensivamente en sus proyectos.

El lenguaje fue creado a comienzos de los noventa como sucesor del lenguaje
ABC. Su creador Guido Van Rossum es un científico de la computación nacido en
los Países Bajos y el nombre del lenguaje proviene de la serie de televisión del
Reino Unido Monty Python, de la cual Guido es fanático. Actualmente es uno de
los lenguajes que cuenta con mayor soporte en el mundo entero con versiones
públicas que se lanzan cada seis meses aproximadamente. En este libro
trataremos con la versión 3.1 y todos los ejemplos que se expongan se supondrán
Implementados en dicha versión.

1.1 Instalando Python
Para instalar Python primeramente debe descargar el paquete de instalación de
Windows desde el sitio oficial de la Python Software Foundation
https7/www.Dvthon.orQ/downloads/.

1

http://www.Dvthon.orQ/downloads/

El paquete seleccionado para ser usado en este libro es python-3.1.msi para
Windows y la carpeta por defecto para la instalación se define en la raíz del disco
del sistema.

Python fácil

4 ti

python
windows

D C

Una vez instalado el paquete usted puede acceder al Ambiente de Desarrollo
Integrado (IDLE según sus siglas en inglés) que instala el paquete.

El IDLE contiene un intérprete que permite fácilmente ejecutar sentencias,
realizar pruebas y crear pequeñas funciones. También ofrece la opción de depurar
código y un visor de pila en el menú Debug.

fyteea S.l utXifiiU, 7-aT« JCCI,~3Óí3:*S»r {HSZ » l»Có bit aatall] ca wiaia ^
I)T4 *cs«lit»* er *iic«&4i|)* fsr i»t« iatocBAUea*
»> ftlzici.u r,l*í;-)

ü<SCcl4

Es posible crear módulos mediante la ruta File->New Window, los módulos
serán analizados en detalle próximamente. Solo para que el lector comprenda en
este punto, un módulo es básicamente una unidad que empaqueta funcionalidad.

2

Introducción

El módulo que se observa a continuación, de nombre prueba.py, realiza un
llamado a la función print con el texto ‘Hola Python'. Este módulo puede ejecutarse
a través del menú Run->Run Module.

1 7. prgrti. CyP|V>0TOl/pfMb*

filt Edit Femil Run Opbeni Wind^A-s Help

1
I

—

lArCoLlo

Luego de ejecutar el módulo anterior.

El paquete también viene acompañado de una consola a modo de intérprete.

Finalmente una amplia documentación que contiene detalles de funciones,
clases, etc. acompaña al paquete.

1.2 Características
Actualmente Python es un lenguaje que goza de gran aceptación, y no solo entre
estudiantes y aficionados, sino que ahora también se comienza a utilizar en
ámbitos científicos y en el procesamiento de grandes volúmenes de información.
Algunas de sus características distintivas son las siguientes;

• Es un lenguaje multiparadigma, soporta y favorece la programación
orientada a objetos y tiene vestigios de la programación funcional y la
estructurada.

3

Python fácil

• Tiene una sintaxis limpia y reducida que propicia ia creación de códigos
muy ieglbies y compactos.

• Es gratuito y iibre, un caso ciaro de Open Source Software -
Gratulto/Libre y Software de Fuente Abierta. En otras palabras, pueden
distribuirse libremente copias del software, puede leerse su código
fuente, llevar a cabo cambios, usar partes del mismo en nuevos
programas libres, y. de manera general, se puede acometer cualquier
acción que se desee con los códigos fuente. Se basa en la idea de una
comunidad que comparta conocimiento y esta comunidad resulta un pilar
fundamental en los avances que tiene el lenguaje día a día.

• Es multiplataforma, portable. Dado que el lenguaje es Open Source es
soportado en diversas plataformas por lo que el código que se desarrolle
en una determinada plataforma será compatible y ejecutable en otras
plataformas. A pesar de esto, se debe ser lo suficientemente precavido
para evitar la inclusión de características con dependencia de sistema en
el código (librerías o módulos que operen solo en un sistema en
particular). Python puede utilizarse sobre LInux, Windows, Macintosh,
Solaris, OS/2, Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS,
QNX, VMS, Psion, Acorn RISC OS, VxWorks, PlayStation, Sharp Zaurus,
Wndows CE y PocketPC.

• Es un lenguaje interpretado. Los programas desarrollados en lenguajes
compilados como C o C++ se traducen de un lenguaje fuente a otro
lenguaje comprensible por un ordenador (código binario, secuencias de
ceros y unos) empleando un programa conocido como compilador.
Cuando se ejecuta un programa, el software encargado de esta tarea
guarda el código binario en la memoria del ordenador e inicia la
ejecución desde la primera instrucción. Cuando se emplea un lenguaje
interpretado como Python, no existen compilaciones separadas ni pasos
de ejecución, simplemente se ejecuta el programa desde el código
fuente. Intrínsecamente, Python convierte el código fuente a una
representación intermedia conocida como bytecodes y luego lo traduce a
un lenguaje nativo en el ordenador para finalmente ejecutarlo. Es por ello
que de alguna forma es mucho más sencillo que otros lenguajes. He ahí
su carácter portable, la mera copia del código de un programa en Python
a cualquier otro sistema resultará en el mismo programa, considerando
por supuesto la existencia de los módulos, librerías de los que hace uso
el programa en cada sistema.

• Administración automática de memoria.

• En general, es fácil de aprender.

Durante las próximas secciones se abordarán temas que ayudarán a
comprender mejor algunas de las particularidades mencionadas previamente.
También se describirá el entorno de trabajo que se utilizará en el transcurso de
este libro para desarrollar los diferentes códigos de ejemplos.

4

1.3 Máquina Virtual

Introducción

Desde un punto de vista general, un programa en Python es simplemente un
fichero compuesto por un conjunto de sentencias del lenguaje. Este fichero, que
no es más que un fichero de texto plano con extensión .py, puede crearse con
cualquier editor de texto y luego ser provisto de un conjunto de sentencias. Una
vez que se haya definido este conjunto es necesario Indicar a Python que ejecute
el código, lo cual se traduce en ejecutar cada sentencia en el fichero de arriba
hasta abajo. Esta acción puede llevarse a cabo a través de un comando en la
consola de Python o simplemente mediante un botón Run {Ejecutar) en el entorno
de desarrollo utilizado.

Cuando finalmente se realiza la acción de ejecutar el código sucede que es
compilado a una forma intermedia llamada bytecode y luego éste es suministrado
a la Máquina Virtual de Python (PVM según sus siglas en inglés) que es el motor
de ejecución de Python.

Bytecode es una representación intermedia del código fuente, es una
traducción del código a un formato de bajo nivel que no es binario sino una
especificación del propio lenguaje y que es independiente de la plataforma. El
bytecode generado suele almacenarse en el disco duro como un fichero con
extensión .pyc, c de compiled y se almacena con el objetivo de acelerar la
ejecución del programa que para ejecuciones sucesivas reutilizará este bytecode
generado y evitará, de ser posible, el paso de la compilación. Para conocer si
puede evitarse la etapa de compilación se revisan las marcas de tiempo del fichero
fuente y del fichero bytecode, de ser distintas se procede a la compilación. Luego
se suministra el bytecode a la Máquina Virtual de Python (PVM)

fuente bytecode ejecución

x.py x.pyc PVM

La PVM consiste básicamente en un ciclo que ejecuta todas las instrucciones
contenidas en el fichero .pyc y forma parte del sistema instalado en el paquete de
Python, es el último paso del conocido intérprete de Python.

1.4 Entornos de Desarrollo Integrados

Un Entorno de Desarrollo Integrado (IDE según sus siglas en inglés. Integrated
Development Environment) es un programa que incluye un editor de texto, uno o
varios compiladores, depuradores y, en algunos casos, sistemas para desarrollar
interfaces gráficas. Es una herramienta que contribuye a facilitar y humanizar la
tarea del programador ofreciendo un ambiente cómodo para desarrollar
aplicaciones.

5

Python fácil

El entorno utilizado en este libro corresponde a un producto de JetBrains,
empresa líder en el desarrollo de herramientas de este estilo. Una lista con todas
las herramientas de la compañía puede encontrarse en su sitio oficial
http://www.ietbrains.com.

Intt^tlDEA RtShirptf

wtbStOftn PfioSMfm

L • PyChvra ■lubyMlnt

AppCodt TDuTrxk

1 , CUon THmCty
Upount dotTiici

H' tfotMtmory dotCmr

dMPnk MPS
^OtamtEdu KoUn

Entre los productos que el autor ha utilizado y recomienda ai lector se
encuentran WebStorm (desarrollo web, HTML, CSS, Node.js), ReSharper (Visual
Studio), PhpStoim (desarrollo web, PHP) y finalmente PyCharm que será el IDE
empleado en todos los códigos de este libro.

Pyi^Karm2.6

^ S* Jírm r« Ufese •‘c M*' iíUÜ

— MA. ' ••••>. ’•t

■ ■ ■ ¡4t3A'Ti

PyCharm provee muchas facilidades para desarrollar aplicaciones: incluye
autocompletamiento (siempre que es posible), permite crear proyectos vacíos o
siguiendo plantillas para proyectos Django, Google App Engine, etc., y también
Incluye soporte para crear código HTML y JavaScript.

El entorno de trabajo posee un panel de salida que de manera predeterminada
aparece en la parte inferior y donde es posible visualizar las impresiones
realizadas en el código.

------------------------ —-- ' —

■ * ,
It p tncBMt «tu tm ooB e

a '̂

Este panel será visto durante los siguientes capítulos para mostrar los
resultados de los diferentes ejemplos del libro.

6

http://www.ietbrains.com

Introducción

1.5 Sintaxis básica
Python es un lenguaje que propicia la creación de código legible y compacto
Tiene la característica de ser altamente dinámico por lo que su sintaxis carece de
la declaración del tipo de variables, lo cual puede resultar en diversas ocasiones
en beneficio de una sintaxis clara y concisa Se encuentra muy cercano a la forma
en que nosotros los seres humanos realizamos órdenes a otros, por ejemplo
suponiendo que alguien desee, de manera imperativa, orientar a otra persona que
imprima un cartel que diga ‘Hola Python', entonces en un lenguaje como Python
se procedería de la siguiente forma

pnnt ('Hola Python’)

En este caso pnnt es el tipo de orden o comando, pnnt contiene la descripción
de la orden y cómo debe ejecutarse mientras que ‘Hola Python' es aquello que
utiliza la orden para realizarse, es un prerrequisito

da£ suru(sclf,«astricta)*
£or 1 In ranga{sq1£ fllaa)

fila - []
for j In ranga(2ol£ colunnaa)

taap ■ self alana[l] [j]
for a in aatrlcaa

tarv +■ n alaaaCl]{j]
fila appand(tas9)

yiald fila

Python es un lenguaje basado en la identación, no utiliza bloques de
instrucciones encerrados entre llaves ({}) como los lenguajes de la familia C, Java o
JavaScript, sino que solo se basa en la identacion a nivel de funciones, clases, etc
La identación es lo que se conoce comúnmente como sangría, o sea, separar el
texto del margen izquierdo mediante la introducción de espacios o tabuladores para
asi darle un orden visual y lógico al código Afortunadamente PyCharm delimita
mediante lineas blancas las divisiones lógicas de la identación y favorece asi la
Identificación de los límites de identación Obsérvese el código anterior

1.6 Módulos
Los módulos son objetos contenedores que organizan de manera recursiva el
código en Python, se dice de manera recursiva porque, al ser objetos, un módulo
puede contener objetos y también otros módulos Cada módulo tiene un espacio
de nombres asociado que se puede ver como el nombre del propio módulo

1.6.1 Sentencia import
La palabra clave utilizada para importar un módulo es import y una vez que se
importa pueden utilizarse todos los objetos que en este se contienen En el
siguiente ejemplo se importa el módulo math, que contiene funciones y constantes
matemáticas Para que el lector comience a conocer el lenguaje debe saber que
en Python todo se considera un objeto, eso incluye a las funciones

7

Python fácil

ij^ort aatb

print(Bath.poM(2,3))

Para ejecutar el código anterior debe presionarse el botón Run o Ejecutar, que
se encuentra en la parte superior de la interfaz gráfica de PyCharm.

I kxtcbZ lifí U)

Una vez presionado, se ejecutará el código, el cual debe estar en un archivo de
Python previamente creado en el menú File o Archivo. El panel de salida mostrará
los resultados.

Ri/1 r* SLTttí
^ ¡ *C:\fc»]na FilciVPyttsa J.lVpvttsa.en*

1.0

. Orocctf flnUhea vltli ule eMe 0

En este caso se ha utilizado la función pow(x, y) del módulo math que devuelve
el resultado de elevar el número x a la potencia y. Una sentencia similar a import
también puede encontrarse en otros lenguajes de programación.

C# using System.Text

C++ #include<math.h>

Java import java.Util

Los módulos ofrecen varias ventajas entre ellas la más notable es la
reutilización de código, ya que como se mencionó anteriormente, un módulo sirve
como contenedor de funcionalidad. Además de módulos, Python también incluye
otro tipo de contenedor conocido como paquetes. Un paquete es un módulo de
Python que contiene otros módulos y/o paquetes. La diferencia entre un paquete y
un módulo radica en que el primero contiene un atributo__path__que representa
la ruta en el disco duro donde está almacenado el paquete. Desde un punto de
vista físico, los ficheros con extensión .py sort módulos, mientras que cualquier
directorio que contenga un archivo con nombre__init__.py representa un paquete,
Así se puede resumir que los módulos son ficheros y los paquetes pueden ser
ficheros o directorios con ficheros.

El Python Path Indica las rutas donde se buscarán los módulos, dicha ruta
puede consultarse por medio de la variable path del módulo sys (sistema).

H tM ̂ ~
í.l irSliUSli, Jaa Jí’joÓír'lÓTil'iíjí’rKjc’». 1S50 31 Bl« llnMlll on win

R 31

llirt 'enalta* ct *lleenai||* lot cata InCssaticn,
■ >» a/f
I >>> aya,pata

H C'CiWfrtjraa rilaaUryttnn J.llVUtWiaiallf, 'Ct\\»lr.aa»a\\avita=JJ\\j!V»>-.=n51] .aip'. •CiWPrejtaa rileaWf/tnon J.lWBLLa', 'CtWíresraa fllaiUFytton S.lWllMb', 'eiWfíCfliaa filajWrython l.lWllBWplac-vlB’, •CiWPtejtaa riJaaWPyttso 3II 'CiWfiejraa rUaaWfythnn 3.UUlBWalta-ptslajaa'I
|>”l

Un punto relevante a destacar en el Python Path reside en el hecho de que la
estructura de datos utilizada para almacenar las cadenas es una lista y las listas

8

Introducción

son objetos mutables (pueden sufrir cambios). Esto se traduce en que si
manipulamos el Python Path podemos indicar nuevas rutas a Python para que
busque módulos y paquetes.

1.7 Modo intérprete vs. modo script
En Python existen dos modos para ejecutar sus códigos: el modo intérprete o
interactivo y el modo script. El primero resulta bastante útil cuando se desea
probar códigos pequeños, funciones, operadores u operaciones del lenguaje, etc.
En este caso, el intérprete de Python interpreta y ejecuta cada sentencia y retorna
un resuitado, en caso de existir.

nt Offcvl Wfáem Hi»
S.l (rUnU’H. m9. 20131031 y U30 32 bU ^

I en VI&33
•ccyvriCbt*. cr "liceftMli* t&t Bar» lBfsn«tlen.

»>

>>> ‘3*"’**fif*
•ziwsiirr rxziv
»> 011 V «2 f«u*,lcwtc|í
nrsi 7 r«eil

»**2

Trve
»>i

La segunda opción se basa en la idea de un conjunto de sentencias que
conformen un script o fichero. En este caso se interpretan y ejecutan las
sentencias en su totalidad y no una a una como sucede con el modo intérprete. En
el IDE de JetBrains PyCharm trabajamos siempre en modo scnpt, definiendo un
conjunto de sentencias y obteniendo como resultado la ejecución de todas las
sentencias del archivo, como un todo. En modo script es posible guardar los
ficheros que representan el código del programa mientras que en el modo
interactivo evidentemente no existe esta posibilidad. El intérprete puede ser útil
para llevar a cabo experimentos pero para desarrollar un programa siempre debe
utilizarse el modo script.

1.8 Diferentes versiones
El mantenimiento y desarrollo de Python es guiado por Guido Van Rossum junto a
un equipo de desarroiladores del núcleo del lenguaje. Guido tiene la última palabra
en lo que respecta a la inclusión de librerías y lo que se añade o no en el lenguaje;
es, como se dice popularmente, el Dictador Benévolo de por Vida. La propiedad
intelectual de Python pertenece a la Python Software Foundation, una
organización sin ánimo de lucro encargada de promover el lenguaje.

Los cambios propuestos para Python son detallados en documentos llamados
Propuestas de Ampliaciones de Python (en inglés Python Enhancement Proposals).
Estas son debatidas por los desarrolladores y la comunidad de Python y finalmente
aprobadas o rechazadas por Guido. Muchas personas contribuyen a mejorar el
lenguaje a través de discusiones, reportes de errores, creación de librerías, etc.

9

Nuevas versiones de Python pueden introducir cambios asi como fócilítar el
uso del lenguaje y añadirle posibilidades.

1.9 Relación con otros lenguajes
En esta sección se realizará una comparación entre Python y algunos de los
lenguajes más populares de la actualidad. El objetivo de esta comparación es que
el lector pueda sacar conclusiones así como conocer las ventajas y desventajas
que cada uno posee.

1.9.1 PHP
La siguiente tabla que asume varios criterios comparativos resume las diferencias
entre los lenguajes de PHP y Python en torno a los criterios tenidos en cuenta.

Python fácil

Criterio PHP Python

Popularidad del lenguaje Mayor Menor

Discusiones del lenguaje Menor Mayor

Tipado Débilmente Dinámico

Sitios desarrollados con
el lenguaje Facebook, Wikipedia Google,

YouTube

Diseñado para Desarrollo web Propósito
general

Usabilidad Sigue un patrón clásico,
usabilidad media

Lenguaje legible
y usable

Fácil de aprender No tanto si se comienza
de cero

Genial para
novatos,

estudiantes

El límite principal que presenta PHP es que es un lenguaje para la web; en
cambio, Python es de propósito general, puede hacerse uso del lenguaje en
marcos de trabajo web como Django y también es posible desarrollar aplicaciones
de escritorio utilizando PyQt o Tkinter.

1.9.2 Java
AI igual que en la sección anterior en esta se presenta una tabla comparativa, esta
vez entre los lenguajes de Python y Java.

10

Introducción

Criterio Java Python

Jipado Estático Dinámico

División de código Llaves Identación

Usabilidad Sigue un patrón clásico,
usabilidad media

Lenguaje legible y
usable

Fácil de aprender Fácil Genial para novatos,
estudiantes

Diseñado para Propósito general Propósito general

Python y Java son ambos lenguajes de propósito general y ambos emplean
una máquina virtual para ejecutar sus códigos. Java sigue un enfoque sintáctico
similar a aquellos de los lenguajes de la familia C, mientras que Python es
altamente dinámico y nunca requiere la declaración del tipo de una variable.

1.9.3 CSharp
Finalmente se realiza una comparación entre Python y un miembro de la plataforma
.NET, que comparte varias similitudes con Python; este lenguaje es CSharp.

Criterio CSharp Python

Jipado Estático, aunque incluye
inferencia de tipos Dinámico

División de código Liaves Identación

Usabilidad Sigue un patrón clásico,
usabilidad media Lenguaje legible y usable

Fácil de aprender Fácil Genial para novatos,
estudiantes

Diseñado para Propósito generai Propósito general

Rendimiento
Se le atribuye un

rendimiento ligeramente
mejor

Rendimiento ligeramente
menor

Multiparadígma Orientado a objetos,
Funcional, Estructurada

Orientado a objetos,
Funcional, Estructurada

11

Ambos lenguajes son bastante fáciles de aprender, Python siempre con puntos
adicionales en este apartado dado su alta legibilidad. Ambos son de propósito
general y existen marcos de trabajo web bastante populares para cada lenguaje,
ASP .NET MVC para CSharp y Django para Python. Son mulliparadigma y
soportan la programación funcional. En próximos capítulos veremos cómo Python
brinda fócilídades para hacer uso de este paradigma de programación.

Python fácil

1.10 ímplementaciones del lenguaje

Una implementación de Python es el modelo de ejecución analizado en la sección
1.3 o una variación del mismo. Las Ímplementaciones más conocidas de Python
son CPython, Jython e IronPython.

CPython corresponde con la versión clásica de Python, la más actualizada,
optimizada y completa de las ímplementaciones del lenguaje. Aquella que ha sido
mencionada y será estudiada en este libro. CPython está conformada por un
compilador, un intérprete y un conjunto de módulos escritos en C que pueden
utilizarse en cualquier plataforma cuyo compilador C vaya de acuerdo con la
especificación estándar ISO/IEC 9899:1990.

Jython es la implementación de Python para cualquier Máquina Virtual de Java
(JVM según sus siglas en inglés) que esté acorde con Java 1.2 o superior. Con
Jython es posible utilizar todas las librerías y marcos de trabajo de Java.

Finalmente IronPython es la implementación de Python para la CLR {Common
Language Runtime), la máquina virtual de .NET. En analogía con Jython,
IronPython permite hacer uso de todas las librerías y marcos de trabajo de la
plataforma.

Ejercicios del capítuio
1. Responda V o F. Justifique en caso de ser falso:

a) Python no es un lenguaje multiparadigma.

b) Python utiliza llaves para delimitar bloques de código.

c) El bytecode siempre es generado sin Importar si el código fuente ha
sufrido cambios o no.

d) La ejecución del código fuente es llevada a cabo finalmente por la
Máquina Virtual de Python (PVM).

e) Python posee una sintaxis clara la cual favorece la creación de código
legible.

12

CAPÍTULO 2.
Elementos del lenguaje

La popularidad de Python viene dada sin duda alguna por algunas de sus
características más llamativas. Entre estas particuiaridades cabe mencionar su
expresividad, obtenida a través de una estructura sintáctica organizada, concisa,
clara. El hecho de ser un lenguaje multiparadígma y de alto nivel, con una evidente
inclinación hacia el paradigma de la programación orientada a objetos, también ha
contribuido a su aceptación e inciusíón como lenguaje de preferencia de muchos
en todo el mundo. El objetivo de este capítulo será entrar en detalles en la sintaxis
de Python, en la forma en la que se indican variables, funciones, se definen
ciases, se utilizan operadores y demás cuestiones que resultan elementos
esenciales en un lenguaje de programación.

2.1 Estructura léxica

La estructura léxica de un lenguaje es el conjunto de reglas que permiten formar
un programa en ese lenguaje. Esta estructura se encuentra apoyada en una
gramática que sirve como formalismo de esa estructura y que define la sintaxis y,
en caso de ser una gramática atributada, también la semántica. Mediante esta
estructura se define qué se entiende por una variable válida en el lenguaje, cómo
se forman las estructuras de bucle, las estructuras de control de flujo, etc.

2.1.1 Identación
A diferencia de otros lenguajes como los de la femilia C, Python no utiliza llaves ({})
para delimitar bloques de código, tampoco utiliza símbolos dellmitadores de
sentencias como el clásico punto y coma (;). En su lugar, para reconocer y delimitar
bloques de código utiliza un sistema basado en espacios a la izquierda conocido
como identación. La identación es básicamente como la sangría en tipografía, esto
es, la inserción de espacios o fabuladores para mover un texto hacia la derecha. Los
programas en Python deben seguir un orden jerárquico de identación para que su
ejecución sea según lo esperado. Por ejemplo las sentencias que pertenezcan a un
ciclo no pueden estar al mismo nivel de identación que la definición del ciclo. El
siguiente ejemplo ilustra un caso en que la identación resulta errónea.

UNU'ERSIOftD rfCNÍCfl ()El ►iOWE

13

for i in lista:
print(i)

Considerando que la función print se encuentra definida al mismo nivel de
identaclón que el ciclo /br entonces se asume que esta no pertenece al bloque de
instrucciones del ciclo, por ende es un ciclo sin instrucciones, lo cual se traduce en
un error. La manera correcta de definir el bucle serla la siguiente;

for i in lista:
print (i)

Es importante notar que las sentencias que tengan la misma connotación o
jerarquía en el programa deben estar al mismo nivel de ídentación Si en el
ejemplo anterior se quisiera imprimir siempre i +1 una opción válida serla el
siguiente código:

for i in lista:
i = i + 1
print(i)

Como las sentencias / = / + í y print (i) se encuentran al mismo nivel de Ídentación,
entonces ambas se ejecutarán dentro del ciclo. Fíjese también en que el final de
sentencia no va acompañado de un punto y coma sino de un cambio de línea.

2.1.2 Tokens
Los tokens son elementos esenciales que se definen en la gramática de un
lenguaje. En el proceso de compilación estos elementos son extraídos por un
componente conocido como lexicográfico y entregados al analizador sintáctico
Entre estos elementos figuran los identificadores, las palabras reservadas, los
operadores, los literales y los delimitadores. Existen porciones de texto como los
comentarios, que en el caso de Python aparecen precedidos del carácter # y son
ignorados por el compilador. El compilador es un componente que se constituye
de los analizadores previamente mencionados y de otras herramientas que
contribuyen a que un programa en Python pueda ejecutarse en un ordenador.

2.1.3 Identificadores
Un identificador es un nombre utilizado para definir el nombre de una variable,
función, clase, módulo u otro elemento del lenguaje. En Python los identificadores
comienzan con una letra o un guión bajo (J seguido por cero o más letras,
guiones bajos o dígitos. Visto como una expresión regular un identificador puede
ser cualquier expresión de‘ (J?(a---2|A...Z)+(a...z|A...Z|J0...9)*. Fíjese en que se
han considerado tanto letras en mayúsculas como en minúsculas, Python es case
sensitive, lo cual quiere decir que el identificador "a” es diferente del identificador
“A”. Por convenciones en Python los Identificadores de clases comienzan con
mayúsculas y el resto en minúsculas, cuando un identificador comienza con guión
bajo se supone que el elemento creado es privado. En el caso de que comience
con dos guiones bajos, entonces por convención se supone que es fuertemente

Python fácil

14

privado y sí termina también con dos guiones bajos entonces es un nombre
especial definido en el lenguaje.

2.1.4 Literales
Los literales son representaciones sintácticas de valores primitivos soportados por
un lenguaje de programación. Estos valores pueden ser enteros (Integer), coma
flotante (Float), cadenas (String), binarios (Binary), etc. Considere el próximo
código donde se muestran diferentes literales en Python y el tipo de valor al que
se asocia.

2 ñ Integer
2.3 # Float
'Jazz' It String
"Picasso" H String

Elementos del lenguaje

2.1.5 Delímítadores
Un delímitador puede cumplir, entre otras, la función de servir de organizador de
código. A continuación una lista con los delímítadores de Python.

() 1 1
{ } . :

+=

//=

A=

Las últimas dos filas contienen los conocidos como operadores de asignación
incremental que no solo sirven como delimitadores sino también realizan una
determinada operación.

2.1.6 Sentencias
Un programa en Python puede descomponerse en un conjunto de sentencias las
cuales a su vez pueden ser descompuestas en sentencias simples y compuestas.
Una sentencia simple, como pudiera ser, por ejemplo, una asignación es una
sentencia que no contiene otras sentencias. Varias de estas sentencias pudieran
aparecer en una misma línea separadas por el delimitador (;). Una sentencia
compuesta como por ejemplo un ciclo es una sentencia que, de manera lógica y
necesaria, requiere de otras sentencias en su cuerpo para cumplir una
determinada función.

universidad reCNÍCMEi '
biblioteca

Ibarra • Ecuanor
15

2.1.7 Palabras claves
Las palabras reservadas son tokens que generalemente no pueden utilizarse
como ídentificadores y se escriben con letras minúsculas. Algunos de estos tokens
son utilizados como operadores, palabras claves, etc. A continuación una tabla
donde se detallan las palabras claves de Python;

Python fácil

and as assert break

class continue def del

elif else except exec

finally for from global

if import in is

lambda not or pass

print raise return try

while yield False None

True

Es posible hacer uso de las palabras claves como Identificadores si se les
antepone un guión bajo, por ejemplo, _def = 1.

2.2 Variables

Las variables en Python no poseen un tipo intrínseco definido de manera
predeterminada y una misma variable puede contener en diferentes estados de
ejecución de un programa diferentes tipos de datos (entero, cadena, float, etc.). Las
sentencias de asignación representan el mecanismo mediante el cual una variable,
o más bien el nombre de una variable, es vinculado a la referencia de un objeto. La
forma en la que Python accede a valores de datos es a través de referencias. Una
referencia es un contenedor de una dirección de memoria donde se puede encontrar
el acamino» al valor de un objeto. Un ejemplo sería el siguiente:

asi

La variable (a) que representa una referencia se encuentra ligada o vinculada
a una dirección de memoria (por citar un ejemplo hipotético 0x003D) donde se
encuentra el valor (1) de un objeto de tipo entero. Las variables en Python
almacenan una referencia a un lugar en memoria donde se encontrará el valor del
dato, esto en contraposición a las variables por valor que pueden encontrarse en
diferentes lenguajes como CSharp y que almacenan directamente ei valor que
representan. Tenga en cuenta que CSharp no solo contiene tipos por valor sino
también por referencia.

16

Elementos del lenguaje

Si consideramos una situación como la que aparece en el próximo código,
entonces estamos en presencia de un proceso llamado revinculación, donde una
variable con una determinada referencia es revinculada para que contenga ahora
una referencia que apunte hacía otro dato, en este caso un objeto String con valor
Helio New York. Cuando un objeto deja de estar referenciado por alguna variable
este es eventualmente eliminado gracias a un mecanismo que poseen muchos
lenguajes modernos y que se relaciona con el manejo automático de memoria, y
que es conocido como el recolector de basura [garbage collector).

a s 1
a = "Hello New York"

Una variable se dice que es global cuando está definida a nivel del script de
Python; y local, cuando se ha definido en el interior de una función. Considere el
siguiente ejemplo:

globalVar = 1

def function O:
localVar = 2

En caso de que se declare otra variable globalVar en el interior de la función,
esta sobrescribirá a la anterior.

2.2.1 Variables de entorno
Las variables de entorno se encuentran fuera del sistema de Python y usualmente
se manejan por medio de la línea de comandos o Shell del sistema operativo del
usuario. Se utilizan para configurar determinados aspectos que son requeridos al
momento de ejecutar programas del lenguaje. Uno de estos aspectos es el camino
físico que utilizarán los programas para acceder a los diferentes módulos de la
instalación de Python; el valor de la variable de entorno PYTHONPATH o PATH
(en Python 3.1) se define con este propósito, esto es, la importación de módulos.

Desde Python es posible acceder a las variables de entorno mediante el objeto
de tipo diccionario os.environ que se encuentra en el módulo os. En este caso las
llaves del diccionario representan las variables de entorno. Considere el siguiente
ejemplo en el que se accede al objeto y se imprimen todas las llaves desde el
Shell de Python.

python 3.1 (r31:73574, Jim 26 2009, 20:21535) [MSC V.1500 32 bit (Intel))
32
Type "copyright", "credica" or "licenaeO" for more infonnatlon.
»> unpoEt oa
»> oa. environ, keya ()
XeyaVlew (<08 ._Envi.ron object at 0x01641£30>)
>» for key in oa .environ, keya () :

print(key)

El código anterior tiene como resultado la siguiente lista de nombres de
variables de entorno;

17

Python fácil

IMP
COMPtnXWIAME
VSllOCOHHTOOLS
dschdomuh
FYTHOJI
PSMODtriEPATH
COhMOJIPROGRAMFrLES
PROCESSOB_IDEIITIFIER
PflOGRAHTILES
PBOCESSOR_REVISION
SySTEHROOT
HOME
PTSHOHE
TK_LIBRARy
TEMP
PROCESSOR_ARCKITECrüRE
TIX LIBRARY
RLLDSERSPROFILE
LOCAIAPPOATA
KOMEPATH
DSERHAHS
PYTHOH 2.5
LOGOMSERVER
SESSIOtmAME
PROGRAKDATA
CLASSPATH
FT6H0HE
TCL_LIBRAHY
PATH
PATHEXT
ASL.LOC
FP_NO_HOST_CHECK
WIMDIR
APPOATA
HOMEDRIVE
PUPRC
3YSTEMDRIVZ
CC«SPEC
HUHBER_0F_PR0CESS0R3
PROCESSOR~IXVEL
D5ERPROF1LE
OS
PUBLIC
QTJAVA
»>

Para conocer el valor de la variable PYTHON se accede mediante os.environ
que como se mencionó previamente es un diccionario.

»> oa.en»lron['PAlH’)
•CrWPtoflran Fllea\\PHP\\;C!\\Progran FlleaV
yaX\\CoBísoruC:\\PEt»OEaia FlleaWMlKTeX 2.9\\m;
FlleaWCosaoD FileaWHicroaoft SharedWHlndot
acem32;C:\\RlDdowa;C;\\RiiidGwa\\Syacem32\\Ubi
2\\RlndowaPoweESbeIl\Wl .0\\;C:\\PEogcaai Fill
fotsi InatftUetW.'CíWProgtaa FlleaWHlcroaofi
Pagea\\vl.O\\;C;\\PcooEa« FlleaWMicroaoCc 5?
Biim\\;C:\\PE09ram Fllea\\HotepBd-H-\\;C:\\PE«
VQT3yace»\\;C:\SPro^ram FlleaWPychon 2.5.1\'
TLAB\\R2009tt\\bln;C!\\Ptogtaa FlleaWHAILABV
\Pc09ram FlleaWTortoiaeHgVSjCAXDew-CppWbli
SPcogcam Fllea\\i}odcJp\S;C!\\PEoaEan FlleaWl
ova Berfohnnheé toollclt\\;Ci\\t>E05Ean FlleaS’
c ShacedWHlsdoua Ll7a;C:\SOaeEa\\Skywixlke£\'
C;S\PEogEaiB Fllea\\GnuHln32\\biii;C;\\BlBQD\\l
»>l . . . •

18

Elementos del lenguaje

La modificación de los valores de las variables de entorno también se realiza a
través del diccionario os.environ. Por ejemplo para modificar PATH se accedería a
la llave y se realizaría el cambio definiendo los caminos separados por un
delimitador (punto y coma en Windows).

»> oa. environ ['PATH*] = 'caminos...'

2.3 Tipos de datos
python es un lenguaje de alto nivel que considera a los objetos como ciudadanos
de primer nivel de modo que todos los datos en el lenguaje son representados
medíante objetos y cada objeto tiene un tipo. El tipo de un objeto determina las
operaciones y atributos que posee y si puede ser alterado. Un objeto que puede
ser modificado se dice que es mutable y, en caso contrarío, se dice que es
inmutable. En Python existen objetos predefinidos que permiten el manejo de los
tipos de datos primitivos: cadenas, números, tupias, listas y diccionarios. En
secciones venideras se analizarán estos y otros tipos de datos del lenguaje.

2.3.1 Secuencias
Una secuencia es un contenedor de elementos ordenados a los cuales es posible
acceder mediante un índice que consiste en un entero no negativo (mayor o igual
a cero). Python ofrece tipos predefinidos de secuencias entre las cuales cabe
mencionar las cadenas, listas y tupias, todas ellas serán analizadas en las
próximas subsecciones.

2.3.1.1 Cadenas
Una cadena [string) es un conjunto ordenado de caracteres que se utiliza para
representar información textual. En Python, al igual que sucede en CSharp, las
cadenas son objetos inmutables y cualquier operación sobre una cadena siempre
devuelve otra que resulta de la operación requerida. En el código que aparece a
continuación se puede apreciar la definición de dos objetos de tipo cadena; uno
representado por un literal de doble comillas y el otro, por uno de comillas simples.
Ambas representaciones poseen igual comportamiento y funcionalidad, en este
aspecto son idénticas.

a = 'Cadena con comillas simples'
b ~ "Cadena con comillas dobles"

Es posible utilizar un tipo de comilla externa (rodeando el texto) y otro tipo de
forma interna, como parte del texto, tal y como se observa en el siguiente ejemplo:

b = "I’m the author."
print(b)

UNIVERSinAP TfCNfCA DEL HORTE
biblioteca
Ibarra • Ecuador

19

Python fácil

Rin source
^ ' "C:\Prograiii Files^Python 3.1\pythOD.exe"

I'a the author.■ * III I I Process finished with exit code 0

Para admitir caracteres de escape se utiliza el backslash (\). También se utiliza
para continuar una cadena en otra línea.

b = "I'n tho author\
Arnaldo P.C."

print(b)

Run ^ source

►► t
■
II >£5

“C:\Ptogran Files\Python S.lNpythOD.exe’
X'b the author Amaldo P.C.

Process finished with exit code 0

En el caso de que se desee realizar un cambio de línea en un string, se utiliza
el carácter de escape de línea (\n). Considere el siguiente ejemplo y a
continuación la tabla que se muestra con diferentes secuencias de escape.

b =s "I'm the author\n\
Arnaldo P.C. "

Rui souce

►►
■

♦

4-

"C:\Prograa Flles\Pychon 3.1\pyehon.exe"
I'B the author
Amaldo P.C.

Secuencia Descripción

W backslash

\’ comilla simple

V’ comilla doble

\a campana

\b backspace

\n
..ni 1

nueva línea

t'' ■ . \r- retorno

20

Elementos del lenguaje

Secuencia Descripción

\t tab

\v tab vertical

\DDD valor octal DDD

\xXX Valor hexadecimal XX

Otra forma de representar cadenas en varias líneas es mediante el uso de
paréntesis según ilustra el ejemplo que se aprecia a continuación:

b = ("I'm the author"
" Arnaldo P.C.")

print(b)

Rm sowce

^ { *C:\Pzt>grBa FllesNPython 3.1\pyrbon.exe*
, I'a the aathor Arnaldo P.C.

m:' Ptoceaa finished with ene code 0

2.3.1.2 Listas
Las listas son secuencias de elementos ordenados que además tienen la
característica de ser mutables. Cada elemento puede ser de cualquier tipo y la
sintaxis para crearlas es bastante simple.

{> Zict.i X’.icz.i

n
Lict.i cc.d les olcr.citccs 1,^,3

(1.2,3}

fl LícCn ectt cliíosentas ehjcces

(•Python-, 2.3, 45]

Otra alternativa para crear listas es a través de la función predefinida list() que
toma como argumento una secuencia y devuelve una lista con cada elemento de
esa secuencia. En caso de no recibir argumento devuelve una lista vacia.

print(list('python’))

Am r* sauce

■

II Éí

*C:\Pr«9Eaa rilea\Python 3.1\pychGn.exe'
t'p', 'y'» 't', 'h', 'o', 'n'J

Procesa flnlahed wich exit code 0

UNIVERSIDflnTECNlCCOEl NORít
BIBLIOTECA

Ibnrrn • fEcuacior

21

El código anterior crea una lista a partir de la cadena “python". Observe el
lector como se imprime cada elemento de la lista resultante y como estos
elementos coinciden con los caracteres del texto de la cadena.

2.3.1.3 Tupias
Una tupia es una secuencia ordenada de elementos que, a diferencia de la lista,
tiene la característica de ser inmutable y, por ende, las operaciones de
modificación que se realizan sobre esta resultan en una nueva tupia, la original no
sufre cambios. Al igual que sucede con las listas y como resulta lógico suponer
considerando la naturaleza de Python, ios elementos de una tupia pueden ser de
cualquier tipo. La sintaxis general para crear una tupia es la siguiente:

(a1, a2.....an)

Donde a1, a2..... an son los elementos. En el siguiente código se pueden
apreciar varias tupias creadas en Python.

Python fácil

Tupia ds cúzssros enteros
c - (1,2,3)

t Tupia mjcta
C = (1,"FCB",3.2)

Tupia vacia
t = O

Para crear una tupia de un solo elemento se escribe una coma al final del
elemento.

Tupia de un solo elesiento
(1,)

La función predefinida tuple() permite crear tupias de manera análoga a la
función listo, analizada en la sección anterior.

2.3.2 Diccionarios
Un diccionario es una correspondencia (del inglés mapping) que se establece en
un multiconjunto de elementos de cardinalidad n. Este multiconjunto de elementos
se encuentra particionado en dos multiconjuntos de igual cardinalidad (n/2), el
conjunto de las llaves y e! multiconjunto de valores. Entre estos conjuntos se
establece una función inyectiva de manera tal que a cada llave le corresponde un
elemento y un elemento puede estar asociado a varias llaves. El lector puede
suponer entonces que un diccionario esté constituido por elementos de la forma
llave-valor y que la manera en la que se accede a un elemento es mediante su
llave. Los diccionarios, que son el único tipo de dato mapping que de manera
predefinida ofrece Python, carecen -de 'orden y son mutables. Las llaves al igual
que los valores pueden ser pi^etos de cualquier tipo. La sintaxis genérica para
definir un diccionario es la siguiente:" '

22

Elementos del lenguaje

{llave_1: valoM, llave_2: valor_2,..., Ilave_n: valor_n}

Considere el próximo ejemplo que Ilustra en concreto la creación de un
diccionario en Python.

La función dlct() permite crear un diccionario a partir de una lista de listas que
debe suministrarse como argumento. Cada lista debe contener dos elementos que
representen los pares llave, y el valor.

print(diet{[['Jordan',23],['Messi', 10]]))

Run source
^ 1 "“C:\Progrus Flles\PythQn 3.1\python.exe*

|{'Heasl': 10, 'JonlAn': 33)

^] Piticess finished wlch exlc code 0

Si no se suministra ningún argumento entonces la función díct() devuelve un
diccionario vacio. En caso de que una llave se repita en la defínición de un
diccionario entonces el par que resulta será la llave duplicada junto a su último
valor asociado tal y como se aprecia en el ejemplo a continuación;

print{{’Jordan*:23, ’Jordan*:45))

Rir r* 5X/CC
♦ 1 *C:\Pto^an rilesNPythoa 3.1\python.exe*

\ ('Jortlan': 49)■ *

II 1 Procesa ílaiahed with exic code 0

Tenga en cuenta el lector que un diccionario no puede tener llaves duplicadas,
en caso de tenerlas se crearía una clara ambigüedad puesto que una misma llave
estaría asociada a dos valores posiblemente distintos y seria imposible recuperar
con total certeza alguno de esos valores, la propiedad inyectiva se perdería dado
que pudiera suceder que dicc[xj = dicc[y],

2,3.3 Numéricos
Python cuenta con tres objetos numéricos de manera predefinida, estos son: los
objetos que representan números enteros, los que representan números
complejos y aquellos que manejan números de punto flotante. Todos poseen la
característica de ser inmutables de modo que una operación que se realice sobre
ellos resulta en un nuevo objeto numérico.

Los objetos de tipo entero pueden tener diferentes representaciones según el
literal con el que hayan sido definidos.

decimal ~ 1
hexadecimal — OxAAF
octal - 0o023

S'BLIOTECA

23

Estas representaciones pueden ser números decimales, hexadecimales u
ocíales. Para indicar un número hexadecimal el literal debe aparecer antecedido
del prefijo Ox y en caso de ser un octal debe aparecer prefijado por Oo
precisamente como se observa en el ejemplo anterior. En Python todos los
enteros han sido implementados como enteros long.

Los objetos de punto flotante representan números reales basados en el
sistema de punto flotante. Pueden aparecer acompañados de un símbolo E o e
seguido del símbolo + y de un número llamado exponente para indicar que se
desplaza a la derecha el punto del número (mantisa) que antecede a E tantas
veces como indique el exponente; de manera análoga sucede con el símbolo (-)
solo que en este caso el desplazamiento es a la izquierda, pues se está negando.
Considere el siguiente código;

£1 = 0.02
£2 = .003
£3 = 2.3
£4 = .OOlE+3
fS = .OOle-3

Para comprender en qué consisten los números de punto flotante con
exponente positivo o negativo observe el resultado que se obtiene al imprimir f4
yf5.

Python fácil

print(£4)
print(£5)

Run f* soucs

►► ♦
■ 4^
II g

“CtXPtogru Flle9\Pythan 3.1\pytboa.exe"

1.0
le-06

Como puede comprobar el lector, f4 es equivalente al número 1, esto es
porque .001E+3 equivale a (0.001)*10''3 = 1. En el segundo caso como el
exponente es negativo equivale a (0.001)*10'' (-3) = 0.000001 que también puede
representarse como 1E-6 = lO'^ (-6). Los números de punto flotante en Python
encuentran su correspondencia en los tipos double de C considerando rango y
precisión.

Finalemente los números complejos se componen de dos valores de punto
flotante, uno asociado a la parte imaginaria y otro a la parte real, accesibles estos
valores por medio de propiedades de solo lectura imag y real del objeto complex
que corresponde a un número complejo. Aunque en la literatura la parte Imaginaria
de los números complejos suele indicarse con la letra / la elección de Python ha
sido utilizar la letra j. El siguiente código ilustra números complejos creados en
Python.

a = 1 + 2j
b = 2 + 2.5j

24

Para imprimir la parte real e imaginaria de b se puede proceder de la siguiente
forma

Elementos del lenguaje

pra.nt(Parte real ” + float.__str__(b.real))
prrnt(‘Parte naagmarra ' + float, str (b.unag)}

La función__^str__() con la que cuentan todos los objetos en Python devuelve
su representación como cadena, necesaria en este caso para imprimir los valores
de punto flotante que corresponden a las propiedades real e imag

Rin source

♦ ’C:\Progtaa FilesXPython 3.1\pychon.exe"
Parta real: 2.0■ ♦ Parte laaglnaria' 2.9

En las siguientes secciones se examinarán las operaciones que pueden
realizarse tanto con secuencias como con objetos numéricos

2.3.4 None
El tipo None es el equivalente a nuil en muchos lenguajes de programación No
contiene métodos y tampoco atributos Suele utilizarse cuando se crea una
variable cuyo valor inicial se desconoce a priori y probablemente será conocido
durante la ejecución de un programa Las funciones que carecen de retorno
devuelven por defecto None

2.3.5 Booleanos
La version 2 3 de Python incorporó el objeto tool como una clase que hereda de
int y cuyos valores posibles son True y False Versiones previas a la 2 3 no
poseían un tipo explícito para el manejo de estos valores que fueron introducidos
en la versión 2 2 1 y como sinónimo de los valores 1 y 0 (al igual que en C) que
eran usados para indicar valores de verdadero y falso

Todos los datos en Python pueden ser evaluados como un valor booleano Por
ejemplo, cualquier cadena, lista, tupia diccionario no vacío. None y dato numérico
distinto de cero tiene un valor verdadero (True) Mientras que, cero, cadenas,
tupias, listas y diccionarios vacíos evalúan falso Considere el siguiente código

a = n

if(a)•
pri.nfc (a)

Este código no llega a la sentencia de la función pnnt porque la condición
evalúa False dado que la lista está vacía Si se añade un elemento entonces se
logra que se ejecute la sentencia que corresponde a la función pnnt

a = [ij

if(a):
print (a)

25

Python fácil

Run r* cgjct___

^ ' ’C:\Prograa Fllea\Pytho& 3.1\pychon.exe’

■
II I procesa floiabed vlth exic code 0

Igual sucedería en caso de tratarse de un número distinto de cero. En la
próxima sección se examinará una estructura de datos muy útil conocida como
conjunto (set).

2.3.6 Conjuntos
Los conjuntos fueron introducidos en la versión 2.3 de Python a través del tipo Set
y se construyen a partir de una secuencia que se define como argumento de la
función set().

cjto » set([l,2,3]}

print(cjto)

Rlt i* sturCE

■ i *
II S

■C:\ProflEan FllesVPythoa 3.1\python.exe"
{í, 2. 3)

Pxoceaa finished wlch ezlc code 0

Los conjuntos que se crean en Python son conjuntos tradicionales y no
multíconjuntos de modo que solo un ejemplar de cada elemento repetido en la
secuencia de entrada es incluido en el conjunto resultante y por ende set([1, 2, 3])
es igual aset([1,1,2, 2, 3]).

cjto = sot(íl,l,2,2,3J)

print(cjto)

Rir P source
kk "C:\Prograa FlleaVPychon 3.1\python.exe"

|1. 2. 3)■ 4-
II Procesa finished with exit code 0

Los conjuntos permiten operaciones clásicas como pueden ser la intersección,
la unión o (a diferencia, todas serán analizadas durante este capítulo.

2.4 Operadores de comparación
Los operadores de comparación son binarios y cada uno de sus argumentos
puede ser una expresión que evalúe a un vator de un tipo diferente (numéricos,

26

cadenas, listas, etc). La siguiente tabla muestra los operadores de comparación
de Python.

Elementos del lenguaje

operador Descripción

sss Devuelve True si los dos operandos son Iguales. False
en caso contrario.

1= Devuelve True si los dos operandos son diferentes.
False en caso contrario.

o Idem a != pero no soportado en la versión 3.1

> Devuelve True si el operador de la izquierda es mayor
que el de la derecha.

< Devuelve True si el operador de la derecha es mayor
que el de la izquierda.

>= Devuelve True si el operador de la Izquierda es mayor
0 Igual que el de la derecha.

<= Devuelve True si el operador de la derecha es mayor o
Igual que el de la derecha.

Observe el siguiente código donde se puede apreciar el uso de los operadores
de comparación.

a - 2 1-2
b - □ ~ 1
o - 2 > 1
d - 3 >- 3

print(a)
print(b)
print(c)
print(d)

Run H test

♦ ' C:\Pyttion31\pytDon.exe
II■ *■ ' False

II ! True
□3 tí' True

Los operadores de comparación suelen utilizarse en sentencias condicionales
para controlar el flujo de un programa de acuerdo a determinadas condiciones.

2.5 Operadores aritméticos
Los operadores aritméticos al igual que los de comparación cuentan con un
operando derecho y uno izquierdo, son binarios. Generalmente se aplican a datos

27

Python fácil

numéricos aunque el operador de suma (+) también se emplea para concatenar
secuencias (cadenas, listas, etc.) según se muestra en el siguiente ejemplo;

print("Ja2z de " + "New York")
printd) + [1])

Rm source

♦ ‘C:\Progcaa Filea\Python 3.1\pythoD.exe"
Jazz de Hev York
tu

La aritmética es una rama de las matemáticas que data de la prehistoria. Entre
las operaciones que incluye se encuentran la adición, la resta, la multiplicación, la
división, la potenciación y el resto. La siguiente tabla muestra los operadores
aritméticos en Python.

Operador Descripción

+ Devuelve la suma de los
operandos.

-
Devuelve la resta del
operando de la izquierda por el
de la derecha.

/
Devuelve la división del
operando de la izquierda por el
de la derecha.

• Devuelve la multiplicación de
los operandos.

II
Devuelve la división truncada
(parte entera del cociente) del
operando de la izquierda por el
de la derecha.

••
Devuelve el operando
Izquierdo elevado a la potencia
que representa el operando
derecho.

%
Devuelve el resto de la división
del operando izquierdo por el
operando derecho

Para ilustrar el uso de estos operadores considere el código que se muestra a
continuación:

28

print((2+3)**2)
print ((4%3)-l)
print{2*9/3)

Elementos del lenguaje

Aio I* mne

►►: t
■ 4
II

'C:\Pngtaa rtlea\Pycton S.Upychea.ue*
39

Todos los operadores excepto el operador de potenciación son asociativos de
izquierda a derecha. La potenciación es asociativa de derecha a izquierda.

2.6 Operadores lógicos

Los operadores lógicos de Python son equivalentes a su contrapartida de la lógica
preposicional, estos son; la conjunción, la disyunción y la negación. Considerando
que en Python muchos de los objetos o datos predefinidos pueden ser evaluados
al tipo bool (datos numéricos, cadenas, listas, tupias) entonces todos estos
pueden ser tomados como operandos lógicos. Observe el código que se muestra a
continuación:

print(0 or 2)
print(True and 0)
print(False or 1)
print([] or 1)
print([1] or 1)
printC'Hola" and "Arnaldo" and 0)
ptintC'Hola” and 0 or "Sting")

Run P sauce
C:\Pcogtas FlleaSPyEhon 3.1\pychon.exe*

3
0
i
1
[1]
0
sting

UNIVERSIOAO TECNfCi OEl

biblioteca
;^P^arra • Pr.uaoor

Para comprender su funcionamiento debe tenerse en cuenta la evaluación a
tipo bool que poseen los objetos empleados como operandos. La forma en la que
los operadores lógicos devuelven un resultado de verdad a partir de s'us
operandos es la siguiente;

Operador Operando Izq. Operando der. Resultado

or

True True True

False True True

True False True

False False False

29

Python fácil

Operador Operando izq. Operando der. Resultado

and

True True True

False True False

True False False

False False False

Operador Operando Resultado

not
True False

False True

Como se puede observar el operador de negación es uñarlo, solo recibe un
operando. La tabla que se observa a continuación describe estos operadores.

Operador Descripción

or Disyunción lógica de sus operandos.

and Conjunción lógica de sus operandos.

not Negación lógica de su operando.

Los operadores lógicos en Python resultan mucho más expresivos si se
comparan con sus homólogos de otros lenguajes. La disyunción en C, por
ejemplo, se consigue por medio del operador (||), claramente (or) ofrece la
posibilidad de crear sentencias lógicas más legibles y claras.

2.7 Operadores sobre bits
Esta clase de operadores, como el nombre sugiere, operan a nivel de los bits de
los operandos y son frecuentemente utilizados en operaciones matemáticas para
optimizar cálculos que impliquen multiplicaciones o divisiones en potencias de dos.
Los operandos para este tipo de operadores deben ser números enteros porque
son representados como una cadena binaria de 32 bits.

Operador Descripción

& Rea/iza una conjunción.lógica a nivel de bits.

30

Elementos del lenguaje

Operador Descripción

1 Realiza una disyunción lógica a nivel de bits.

A Realiza una disyunción exclusiva lógica a nivel de
bits.

- Realiza una inversión lógica a nivel de bits la cual se
define para un operando entero x como -(x+1).

«
Desplaza los dígitos binarios de un número hacia la
izquierda la cantidad de veces indicadas por el
operando de la derecha.

>>
Desplaza los dígitos binarios de un número hacia la
derecha la cantidad de veces indicadas por el
operando de la derecha

Para observar el uso de estos operadores considere e! siguiente código y el
resultado que se obtendría al ejecutarlo.

print(4 & 2)
print{7 fi 2)

print (4 I 2)
print(7 1 2)

print(4 ^ 2)
print(7 ^ 2)

print(~2)

Riri r* taxa

kk * •Cí\tngiaa

■ * 7

II 3 6

es 6

i? & 9

X
9

La aplicación de (4 & 2) tiene como resultado 0 (no existen bits que coincidan)
dado que este operador realiza una conjunción lógica bit a bit de manera que solo
resulta en 1 si ambos bits son 1.

4= 100

2 = 010

0
UNIVERSIDAD TeCNÍCánEL NOWE

BIBLIOTECA
Ibarra - Ecuador

31

Elementos del lenguaje

Para comprender el resultado anterior a partir de la aplicación de los
operadores de desplazamiento note que 2 = 10 (binano) y que al realizar el
desplazamiento hacia la derecha se transforma en el número binario 1 (binano)
que es 1 (decimal) En el otro caso, 3 = 11 (binario) que desplazado a la izquierda
una vez resulta en 110 (binario) cuyo valor decimal es 6

2.8 Operadores de asignación
La asignación es una de las operaciones básicas en los lenguajes imperativos y
forma parte indisoluble del modelo Von Neumann que utilizan los ordenadores en
la actualidad Una asignación es básicamente la reserva o modificación de
memoria del ordenador para cumplir un propósito inmediato La inmediatez viene
dada por el hecho de que se supone que se utiliza memoria para servir un
propósito a corto plazo (ejecución de un programa) y el espacio reservado será
liberado luego de un determinado tiempo que se estima relativamente corto No
sucede así con otros tipos de reservas de memoria que se dedican al
almacenamiento y se supone contengan la misma información durante
prolongados períodos de tiempo, tal es el caso de las bases de datos Los
operadores de asignación son binarios e incluyen a los operadores de asignación
extendida que realizan una operación antes de llevar a cabo la asignación Todos
ellos se describen a continuación

Operador Descripción

Asigna a la expresión izquierda el valor de la expresión
derecha

+= Asigna a la expresión izquierda el valor de la expresión
derecha sumada al valor de la propia expresión izquierda

-= Asigna a la expresión izquierda el valor de la expresión
derecha restada al valor de la propia expresión Izquierda

/= Asigna a la expresión izquierda el valor de la expresión
derecha dividida al valor de la propia expresión Izquierda

•=
Asigna a la expresión Izquierda el valor de la expresión
derecha multiplicada al valor de la propia expresión
Izquierda

%=
Asigna a la expresión Izquierda el valor del resto de la
división de la expresión Izquierda por la expresión
derecha

Asigna a la expresión izquierda el valor de la potenciación
de la expresión Izquierda como base y la expresión
derecha como potencia

&= Asigna a la expresión izquierda el valor de la conjunción
lógica de la expresión Izquierda con la expresión derecha

1=
Asigna a la expresión izquierda el valor de la disyunción
lógica de la expresión Izquierda con la expresión derecha

33

python fácil

Operador Descripción

A=
Asigna a la expresión Izquierda el valor de la disyunción
exclusiva (XOR) de la expresión Izquierda con la
expresión derecha

»=
Asigna a la expresión Izquierda el desplazmtento a la
derecha de la expresión izquierda la cantidad de veces
definida por la expresión derecha.

«=
Asigna a la expresión izquierda el desplazmiento a la
izquierda de la expresión izquierda la cantidad de veces
definida por la expresión derecha.

En la próxima sección se detallarán algunos operadores que no se clasifican
dentro de las categorías anteriores pero que defínitivamente resultan útiles en
múltiples situaciones y ofrecen la posibilidad de crear un código limpio, legible y
compacto.

2.9 Otros operadores

Entre los operadores que escapan a las clasircacíones previas se encuentran los
llamados operadores de identidad y los operadores de membresía. La siguiente
tabla los describe:

Operador Descripción

in Devuelve True si el elemento de la izquierda se
encuentra en la secuencia de la derecha

is Devuelve True si el operando de la izquierda es Igual
al operando de la derecha

Considere el siguiente ejemplo donde se pueden observar algunos casos de
uso.

1 = [1,2,3]

print(2 in 1)
print(2 i9 '”■)
print(2 is 2)

Rm P soxo
*C:\Fxogx&n rilc3\Pyc&on 3.1\python.exe"
Truem False

m True

34

Elementos del lenguaje

Conocidos los operadores de Python así como los tipos de datos principales,
una cuestión que queda pendiente es la referente a las operaciones que pueden
realizarse con estos datos. Precisamente esa será la motivación de la siguiente
sección.

2.10 Operaciones
Los objetos analizados hasta el momento poseen de manera predeterminada un
conjunto de operaciones que facilitan el diseño e implementación de algoritmos.
Entre estos objetos se encuentran los numéricos, las secuencias y el objeto bool

2.10.1 Tipos numéricos
Una de las operaciones más comunes con datos numéricos es la conversión a
diferentes tipos. Por ejemplo para convertir de forma explícita un objeto a tipo int
se puede utilizar la función predefinida int().

print(int(2.3))

Rm ^ sauce

■ * “

De igual modo existen las funciones predefinidas long(), float() y complexQ que
convierten a long, float y complex respectivamente. También es posible utilizar
estas funciones para convertir una cadena en un valor numérico.

print (£J.oat ("2.5")}

Rifi H sauce

A I *C:\ProgTSB FLlcB\?ytnan 3.1\pythac.eie*

- *

Otro argumento que puede ser suministrado a las funciones int y long es un
entero entre 2 y 36 que índica la base empleada para la conversión.

print(int("1001",2))
Rui r* Muce

. A *C:\Progras flleeXPytttaa 3.1\p^0D.exe*

- |9■ ;

En el ejemplo anterior la cadena ‘'1001° se toma como una cadena binarla y se
realiza la conversión de acuerdo a la base indicada, lo que resulta en el entero 9

2.10.2 Secuencias
Como se mencionó anteriormente, las cadenas, listas y tupias son secuencias que
se han incluido en e! lenguaje Python. Una de las operaciones básicas que puede

35

python fácil

realizarse con diferentes secuencias es la concatenación. Esta puede lograrse
según se habla descrito en secciones previas mediante el operador de suma (+).

1 = (1,2,3]

print (l+l-fl)

Rui r* swrce__
^ *C:\Frogtaa Filea\Pychon l.lXpyrhon.exe"

, (1, 2, 3, 1, a, 3, 1, 2, 31
■ ! ♦

Una alternativa para concatenar una secuencia con si misma es emplear el
operador * seguido de un número que Indique cuántas veces se desea concatenar
la secuencia, la cual debe aparecer a la izquierda del operador.

1 = tl»2,3J

print(1*4)

Rui source
^ *C:\ProgcaB FllesXPythoa 3.1\python.exe'

^ ^ [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

De Igual modo que se concatenan listas también es posible concatenar tupias
y cadenas.

a = "Hola " + "Amaldo"
b = (1,2) + (3.4)

print(a)
print(b)

Run I* source

¡ ^ j"C;\Prograa Fllea\Python 3.1\python.exe"
I I Hola Amaldo ■ I ♦ I (1, 2, 3, 4)

Otra operación recurrente en secuencias es el test de membresía, para ello se
emplea el operador (in) descrito en secciones previas. Dicho operador puede ser
utilizado en combinación con (not) para realizar un test negativo de membresía, o
sea, para chequear que un elemento no pertenece a una secuencia.

print('A’ in "Arnaldo")
print('A' not in "Arnaldo")

Rir source

“C:\PrograB FllesVPython 3.1\pythen.exe"
Tm«
Falae

m ♦
36

Elementos del lenguaje

Considerando que las secuencias son contenedores de elementos otra
operación bastante común es el indexado Python considera que el primer
elemento de una secuencia es indexado con el numero cero La sintaxis para
realizar esta operación es semejante, sino igual, a la de lenguajes como Java o
aquellos de la familia C

ti IndQ:\ mrío tmn cadtina
a = "Dolly"
print(a[0] -f a[l])

Run r* source

^ "C:\Pzooran FlleaVPychon S.lNpychen.ue'*
I Do■ I I

Una peculiaridad en el indexado de Python es que los valores admitidos para
el indexado se encuentran en el rango [-L, L-1] donde L es la longitud de la
secuencia Esto se traduce en la posibilidad de especificar Indices negativos que
se referirán a elementos de la secuencia tomados de derecha a izquierda y
utilizando los valores -1. , -L

/r Ind2>:nsiclo ima cncfena de
it dczcchi .1 ízqiiiordi
a = 'Dolly"
print(at-ll + a[-2J +

a[-3] + a[-4] + a(-5])

Run r* stMzce

►► ♦ ■C:\Proflraa FllesSPython 3.1\python.ftxe"
ylloO■ ♦

II 3 Procesa finished with exit code 0

El rebanado (del inglés slicing) es otra operación distintiva de Python y permite
tomar elementos consecutivos de una secuencia en un rango de Indices
especificados Para ello se emplea la sintaxis S [i j) donde /, j son enteros en el
rango [0 L-1] y L es la longitud de la secuencia En el caso de que se desee tomar
elementos desde un Indice y hasta el final de la secuencia se utiliza la sintaxis S
[i], de igual modo que para tomar los elementos desde el principio hasta un Indice
dado, se define S (i] Tenga en cuenta que el elemento que corresponde al ultimo
Indice nunca se loma haciendo que el inten/alo sea abierto al final

rr lizt.i cí>ij de sIicíí:^
a = [1,2,3,4,51
print(a[1:3]}
print[a[:2]]
print(a[3:])

37

Python fácil

Rui H souce
^ 1'C:\FrooEan FilesV^ction s.lVpychan.ere*

17II0D■ ♦ - 12. 3]
II I U. 21

^ l*. 31tí

A partir de la versión 2.3 de Python las secuencias predefinidas soportaron el
slicing extendido cuya sintaxis es S [i: j: k] donde k es el paso que se da para
tomar elementos de la secuencia de manera que si se comienza en el Indice 0 y
se define paso 2 el próximo elemento a tomar será aquel que corresponda al
índice 2, luego al índice 4 y así sucesivamente.

P fiiCijKv c-tcr.c’.icíc

a s [1,2,3,4,5]
print(a[0:4:2])
print(a[:¡-1])

Rui sauce
*C:\Progcan FllesNPytlion 3.1\python.exe"
ílloD■ 11. 3]

II (3, 4, 3, 3, 1]

Observe en el ejemplo anterior lo sencillo que resulta obtener el reverso de
una secuencia utilizando slice extendido. Otra bondad que se consigue con esta
operación es la asignación o modificación de una parte de la secuencia, asi se
muestra en el siguiente código:

* :iicx¡:7 c::t-7r.di'ic-

a a (1,2,3.4,5]

a[lt3] o ['ir , -V]

print(a)

Run H sauce

C:\Progren Filee\Pychon 3.1\pychon.exe
U, '0', 'Y', 4, 9]■ *

La forma en que se modificó la lista anterior puede considerarse también como
una alternativa para Insertar elementos en una secuencia.

Para llevar a cabo el borrado de elementos se puede utilizar la palabra clave
(del) seguida de una expresión con la secuencia indexada para así especificar el
elemento a eliminar. También es posible indicar una subsecuencia a eliminar
utilizando slices.

t con í,Vi
A s [1,2,3,4,5)

36

dal a[2]
print(■)

Elementos del lenguaje

Run H soiree
>^1^1 'C:\Froge&ffl FilesVFyubon 3.1\python.exe'
■;«i“- “■ =’

Para concluir esta sección considere la siguiente tabla que detalla los métodos
del objeto lista.

Método Descripción

append(x) Añade x al final de la lista.

insert(i.x) Inserta x en el Indice i de la lista.

remove(x) Elimina la primera ocurrencia de x en la lista.

sort(key -
comparer)

Ordena los elementos de la lista utilizando comparer
como comparador. En caso de no indicarse comparar
se utiliza emp para realizar las comparaciones.

reverseO Reverso de la lista.

pop(i) Elimina el elemento en el índice / y lo devuelve como
resultado del método.

extend(l) Añade todos los elementos de / a la lista.

count(x) Devuelve la cantidad de veces que x aparece en la
lista.

index(x) Devuelve el Indice de la primera ocurrencia de x en la
lista.

En el caso de sort, la función comparer que se pase como argumento debe
tener como valor de retorno una llave de comparación. Esta llave se tomará de
cada elemento de la lista y será utilizada para llevar a cabo las comparaciones y
por ende la ordenación. Tenga en cuenta el siguiente ejemplo:

r Sert cen lui cc.-:par.T.-ií>i-

a = [1,2,3,4,51

def comparar(c):
return -c

a.aort{lce^ a comparar)
print(a)

UNIUERSIOfin fPCNÍCí OEi VOWf
BIBLIOTECA
ionrra • P.cuíirior

Rim r* source

►► ♦
■ ^

I "C:\Proflcaa Fllea\Python 3.l\python.exe"
I [5, 4, 3, 2, 1}

39

Dado que la función de comparación devuelve por cada liave recibida el propio
número negado, entonces parece natural que el orden resultante para una lista ya
ordenada sea la lista con los elementos dispuestos de derecha a izquierda,

2.10.3 Diccionarios
Los diccionarios son contenedores así que la función predefinida Ien() puede aplicarse
a este tipo de objetos asi como puede aplicarse también a listas, tupias o cadenas.

print(l«n(('autor': 'Atnaldo'}))

Python fácil

Hm tow»

^ T*Ci\Prograa fllesVPython 3.1\pythoD.exe*

El manejo con diccionarios es muy similar al manejo con listas, tupias o
cadenas (secuencias). La mayor diferencia radica en que, mientras el manejo en
secuencias se realiza directamente por medio de Indices o elementos, en un
diccionario ei manejo de los datos se realiza a través de las llaves, de modo que
para indexar un diccionario se procede de la siguiente forma;

dice = ('autor': 'Arnaldo',
'libro' : 'JavaScript Fácil')

print(dice['autor'])

Rui souce
^ *C:\Progtan fllesVPython 3.1\python.e*e"

_ Arnaldo■
En el caso de que la llave indicada en una operación de indexación no exista

se lanzará una excepción. Para añadir un par llave-valor se define la llave y el
valor que se le asociará. La sintaxis general se ilustra a continuación;

diccionario (llave) = valor.

dice[■ correo'] = 'arnaldo.skyv/alkerQgmail.com’

Utilizando la palabra clave (del) es posible eliminar un par llave-valor, según se
observa en el siguiente código.

del dice['autor']

Algunos de los métodos de los diccionarios de Python pueden verse a
continuación.

Método Descripción

has_key(k) Devuelve True si el diccionario contiene la llave k.

40

Elementos del lenguaje

Método Descripción

itemsO Devuelve una lista de los elementos del dicaonano
Pares llave, valor

keysQ Devuelve una lista con las llaves del diccionano

valuesQ Devuelve una lista con los valores del diccionano

itenlemsO Devuelve un Iterador de los elementos del diccionario

iterkeysQ Devuelve un iterador de las llaves del diccionano

itervaluesQ Devuelve un iterador de los valores del diccionario

get(k) Devuelve el valor que corresponde a la llave k del
diccionario Si la llave no existe devuelve None

get(k,x) Devuelve el valor que corresponde a la llave k del
diccionario SI la llave no existe devuelve x

clearO Elimina todos los elementos del diccionario

popilemO Devuelve un elemento aleatono del diccionario

update(dlcc2) Por cada llave k en dícc2 actualiza o Inserta la llave con
el valor dlcc2[k] en el diccionano

En secciones venideras se analizaran los detalles de funciones, objetos,
clases, ciclos y demás características que convierten a Python en un lenguaje
expresivo, poderoso y fácil de usar, que encuentra una gran cantidad de adeptos
entre la comunidad de programadores y aficionados a la computación

2.11 Objetos

Los objetos son la representación tangible de una clase en el mundo de la
programación Una clase es la especificación de un objeto, una especie de gula
para construirlo Encontrando analogía con la vida real, la clase puede verse como
el plano para la construcción de un edificio y este serla entonces el objeto Es por
ello que se dice que un objeto es una instancia o ejemplar de una clase y,
lógicamente, de una misma clase se pueden crear vanos objetos al igual que de
un mismo plano pueden crearse diferentes edificios, todos con las mismas
características La clase es la base teórica y el objeto es la realización de esa base
teórica Si la clase contiene indicaciones para determinados comportamientos,
atributos o datos, entonces el objeto deberá tener todos estos elementos Python
es un lenguaje netamente orientado a objetos y muchos de los componentes que
conforman al lenguaje son objetos Demostrar la afirmación anterior es el objetivo
de la próxima subsección

41

2.11.1 Todo es un objeto en Python
Las funciones, los tipos predefinidos, los módulos y hasta los ficheros son
representados en Python por medio de objetos Todo en Python es un objeto y
por ende todo contiene métodos y propiedades que son afines con su propósito
particular El hecho de que la abstracción de datos en Python se lleve a un
ciento por ciento por medio de objetos propicia que todo el intercambio de datos
en el lenguaje se produzca entre objetos Considerando que las funciones
también son objetos, todo el código de un programa en Python puede verse
como un conjunto de objetos

python fácil

2.12 Funciones

Una función es un conjunto de sentencias agrupadas en una pieza de código que
posee cierta independencia Como se mencionó anteriormente, una función, al
igual que todo elemento en Python también es un objeto La sintaxis general para
definirlas es la siguiente

def nombre { argumentos)

Sentencias

Los beneficios que ofrecen las funciones en un lenguaje de programación son
bien conocidos El beneficio principal, sin duda alguna, es la reutilización de
código, o sea, la idea de tener en un fragmento de codigo una funcionalidad que
pueda usarse, ejecutarse una y otra vez sin la necesidad de codificarla cada vez
que se utilice Las funciones en un sentido positivo son contenedores de código
que deben cumplir un determinado objetivo

Cuando se solicita la ejecución de una función se efectúa un llamado a función
y se realiza en una sentencia donde aparezca el nombre de la función seguido de
paréntesis donde se indiquen los parámetros que requiere, en el caso de que
requiera alguno

2.12.1 Argumentos
Las funciones en Python pueden tener desde cero hasta una cantidad n de
argumentos y estos pueden ser obligatorios u opcionales (también conocidos
como predefinidos) Los argumentos se especifican como una lista de valores
separados por coma, la sintaxis genérica es la siguiente

arg1, . argn

De este modo una función se define siguiendo el patrón

def(arg1, ,argn)

Sentencias

Los argumentos opcionales se declaran como pares llave-valor, por ejemplo,
arg1=valor1 Cuando en el llamado a una función no se especifica un valor para un
argumento opcional entonces se toma el valor por defecto para ejecutar la función
Tenga en cuenta el siguiente ejemplo

42

Elementos del lenguaje

de£ fuñe(a, b = 2}:
return a*b

La función fuñe tiene un argumento opcional, en este caso b con valor 2, asi
que es posible realizar un llamado sin necesidad de pasar un valor para esta
variable

print(£unc(3))

(Un I® test

►► ♦
■

I C:\PythOD31\pyclion.exe
[6

Resulta importante notar que si una función modifica el valor por defecto de un
argumento opcional que posea la característica de ser mutable (como una lista)
entonces esta modificación persistirá en subsecuentes llamados a la función
Dicha situación puede apreciarse en el siguiente ejemplo

de£ fuñe(a, b = {)):
b[a] = a
return b

print(£unc (3))
print{fuñe (4))

Run test

♦ C:\PythOD31\python.exe

■
(3: 3}
(3: 3, 4: 4J

También es posible crear funciones con una cantidad indeterminada de
argumentos, cumpliendo un objetivo similar al que cumple params[] en C# Para
ello, debe especificarse *args como argumento de la función Observe el siguiente
código

def promedio (^mimaros) :
sum = 0
for n in muneros:

sum +« n
return sum/len(números)

Como puede observarse, la función len() puede aplicarse a *args y esto es
posible porque *args es una tupia que posee los valores indicados como
argumentos extras Del mismo modo que se puede indicar *args, también es
posible especificar **args que en este caso sera un diccionario que contenga
nuevos argumentos definidos como llave-valor La diferencia principal entre *args y
**args radica en que *args solo recibe valores mientras que *'args recibe valores
ligados a una variable

43

Python fácil

daf promedio(**numaros):
sum = 0
for Have in números:

sum -fs números [ll&ve]
return sum/len(números)

print(promedio(asi,b=2,0^3))

Rui H test

►► rv C:\rython31\pyrboD.exe
2.0

El paso de argumentos en Python se realiza por valor, o sea, al suministrar una
variable como argumento realmente se busca el objeto al que se refiere esa variable
y es entonces el valor que se suministra para la ejecución de la función. Fíjese el
lector en que en caso de suministrar un tipo mutable, al terminar la ejecución de la
función las modificaciones realizadas sobre ese objeto permanecerán.

2.12.2 Funciones anidadas
Python ofrece la posibilidad de crear funciones anidadas. Una función anidada es
una función que se crea en el cuerpo de otra función que se conoce como externa.

def promedio(*numeros):

de£ suma(lista=numeros):
sum = 0
for n in lista:

sum += n
return sum

return suma(}/len(números)

Tenga en cuenta que se ha modificado el código de la función promedio()
incluyendo en su cuerpo una función suma() que se encarga ahora de realizar la
sumatoria de todos los números proporcionados como argumentos. Luego se
retorna este valor dividido entre la cantidad de números, La función interna puede
acceder sin problema alguno a las variables definidas en la función externa según
puede observarse en el siguiente ejemplo:

def promedio(*numeros):
a = 3
def suna(lista=numeros):

sum s o
for n in lista:

sum +=.n
' feíúrn sum + a .

return .siu&a()/leti (números)

44

Elementos del lenguaje

2.12.3 Generadores
Las funciones que contienen en su cueipo la palabra clave yield son conocidas
como generadores. Un generador es básicamente una forma de construir un
íterador de modo que cuando se realiza un llamado a esta función se realizan los
siguientes pasos:

1. Se crea un objeto iterador que envuelve el código de la función asi como
sus variables locales, argumentos y el punto de ejecución en que se
encuentra, normalmente el principio de la función.

2. Cuando el método next del objeto iterador es llamado, entonces se
ejecuta la función hasta la primera ocurrencia de yield.

3. Se retorna el valor indicado por la expresión que sigue a yield.

A. Se resume la ejecución de la función a partir del punto donde había
quedado y hasta el próximo yield encontrado.

5. La ejecución termina cuando se encuentra una sentencia return (que no
puede devolver valor alguno) o cuando se alcanza el final del cuerpo de
la función.

El método next se ejecuta cuando se solicita un nuevo elemento. Para ilustrar
este funcionamiento tenga en cuenta el código que se muestra a continuación:

de£ generador O:
for i in [1,2,33•

yield i

for n in generador():
print(n)

Run ^ test

►► ♦
■ 4^
II £3

C:\Python31\python.exe
1
2
3

Un beneficio notable que ofrecen los generadores es que estos proveen
evaluación perezosa. Esta característica garantiza que la evaluación o cómputo de
elementos se realíce solo en el caso de que estos sean requeridos. No sucede asi
con las funciones tradicionales que realizan toda la computación de antemano y
pueden requerir gran cantidad de memoria. El siguiente generador representa una
lista infinita de números naturales.

def lista_infinitaO:
i = 1
while True:

yield i
i+= 1

*RSIDflDTfCNfOír)Ei
5^ BI8UOTECA

»b«-^rra - ecuaaor

45

Python fácil

2.12.4 Recursión
La recursión o recursividad es un concepto que proviene de las matemáticas y que
ha sido adoptado favorablemente como técnica de programación, una función se
dice recursive cuando se define en términos de si misma. En la naturaleza existen
procesos que de manera intrínseca tienen la característica de ser recursivos, la
sucesión de Fibonacci que fue descrita por el matemático italiano Leonardo de
Pisa como la solución a un problema de cría de conejos quizás sea el ejemplo más
conocido. La fórmula de su recurrencia es la siguiente F(n) = F(n-1) + F(n-2), n>2.
Cada elemento es la suma de los dos anteriores y se conocen como punto de
partida los valores de los pnmeros elementos (1,1) a los cuales se les considera
casos bases. Los primeros 10 elementos de la sucesión de Fibonacci son 1, 1, 2, 3,
5, 8.13. 21,34, 55.

Python permite la creación de funciones recursivas. Considere el siguiente
código que corresponde a la implementación de la función Fibonacci.

de£ £ib(n):
if n <= 2:

return 1
else:

return fib(n-2) + £ib(n-l)

print(fib(3)}
print(fib(4))
print(fib(5)}
print(fib (6)}
print(fib(7))
print(fib(8))
print(fib(9))
print(fib(10))

Run ^ tet 1

■t C:\Python3l\python.exe

m 3

II S

m 13

'J 21
34

X
if

55

2.12.5 Funciones nativas
Algunas de las funciones nativas o predefinidas que ofrece Python han sido
brevemente descritas durante capítulos anteriores y en esta sección serán
descritas con mayor formalidad.

46

Elementos del lenguaje

Función Descripción

abs(x)
Devuelve el valor absoluto de un numero x Si x es un
número complejo entonces devuelve la raíz cuadrada
de la suma de los cuadrados de la parte Imaginana y
la parte real

all(iterable)
Devuelve True si todos los elementos del Iteradle
tienen valor de verdad True o si el Iteradle se
encuentra vacio

any(iterable)
Devuelve True si algún elemento del llerable tiene
valor de verdad True SI el iteradle se encuentra vacio
devuelve False

apply(f, arg = 0.keywords = {}) Realiza un llamado a la función fy devuelve el
resultado de su ejecución

bln(x) Devuelve una cadena que conesponde con la
representación binana del entero x

bool(x) Devuelve 0 si x es False, en caso contrano devuelve 1

chr(x)
Devuelve una cadena de longitud 1 que representa el
carácter al que se asocia el código x según la
codificación ASCII/ISO

cmp(x,y) Devuelve 0 cuando x = y En caso x < y retoma -1, de
lo contrarío 1

complle(source, fílename,
mode)

Compila source que puede ser una cadena o AST, y
devuelve un objeto de código ejecutable con exec o
eval Lanza SyntaxEnor cuando source no es
sintácticamente correcta Mode puede ser ‘exec’ si
source es un conjunto de sentencias o ‘eval* si consta
de solo una sentencia o expresión

delattr(ob]ect, name)
Elimina un atnbuto de un objeto dado el objeto y una
cadena name que representa el nombre del atnbuto a
eliminar

divmod(a,b)
Recibe dos números no complejos y devuelve un par
que corresponde con el cociente y resto de su división
entera

enumerate(iterable. start = 0)

Devuelve un objeto enumerate cuyo iterador, al
realizar un llamado al método_next__0. devuelve
una tupia que contiene un contador que comienza en
start y el elemento correspondiente del iterable
(iterable[ij, contador)

eval(expreslon) Analiza sintácticamente y evalúa la expresión
suministrada como argumento

exec(object)
Object debe ser una cadena o un objeto de código En
caso de ser una cadena es analizada sintácticamente
y ejecutada En caso de ser un objeto de código es
simplemente ejecutada

47

Elementos del lenguaje

Algunas funciones que deberían corresponder a la tabla anterior han sido
omitidas porque serán analizadas en próximas secciones Otras, simplemente han
sido omitidas porque han sido analizadas previamente, tal es el caso de las
funciones list (), tuple() y dict()

Las clases son componentes básicos del paradigma de la programación orientada
a objetos Representan el documento formal, la plantilla que gula el proceso de
creación de objetos y además su validación Las clases son herederas de un
modelo matemático conocido como Tipo de Dato Abstracto (TDA) que surge en los
años setenta y que consiste en una colección de operaciones definidas sobre un
conjunto de datos De este modo una clase puede verse como un TDA pero con
propiedades definidas La sintaxis general para declarar una clase en Python es la
siguiente

class nombre_clase [(clases_base)]

sentencias

Donde nombre_clase es el nombre dado a la clase y clases_base es una lista
de nombres separados por coma que indica las clases de las que se hereda Los
atributos de una clase se especifican como variables dentro del cuerpo Para
comenzar a conocer las clases de Python considere el siguiente ejemplo

class persona:
nombre = ""

def init (self, nombre):
self.nosibre = nombre

def deunenombre (self) ¡
return self.nombre

def definenombre(self, nombre):
self.nombre = nombre

def __str__(self) :
return self.nombre

2.13 Clases

UNIVERSIDAPTFCNiCjl PEI
BIBLIOTECA
Ibarra • Ecuador

49

Python fácil

class libro:
autor s persona("")
titulo = ""
isbn =

dof__init__(self, autor, titulo, isbn):
solf.autor = autor
self.titulo = titulo
self.isbn = isbn

def dameautor(self):
return self.autor

def defineautor(self, nombre):
self.autor.nombre = nombre

def dametitulo(self);
return self.titulo

def dameisbn(self):
return self.isbn

Las clases autorlibro se encuentran relacionadas en el sentido en que un libro
tiene un autor y se dice que es una relación uno a muchos en este caso, pues un
libro puede tener varios autores. Aunque lógicamente un autor puede tener varios
libros esta relación no se contempla en el diseño de clases propuesto anteriormente
y se ha omitido en aras de mostrar un primer ejemplo de clases sencillo, pero tenga
en cuenta el lector que siguiendo el paradigma de la orientación a objetos asi como
buenas prácticas de programación esta relación debió haberse plasmado según
ordena la lógica del mundo real. La programación orientada a objetos debe modelar
las relaciones del mundo mediante objetos tal como es.

En el código anterior se ha creado la clase persona que contiene el campo
nombre (otros campos relacionados con una persona pudieran añadirse) y los
servicios, métodos u operaciones damenombrej) y definenombreO con propósitos
bien definidos. Las funciones __init__() y __str__() son especiales y serán
analizadas en el próximo capítulo. Para comprender el ejemplo tenga en cuenta
que la primera función representa lo que se conoce en otros lenguajes de
programación como un constructor, o sea, un método que se ejecuta cuando se
crea una instancia de una clase y la segunda es un método que devuelve la
representación textual de un objeto. Todos los objetos en Python contienen este
método y cuando se define en una clase meramente se sobrescribe la
implementación por defecto. En este caso devolvemos el nombre como
representación textual de la ciase persona.

Teniendo estas dos clases podemos relacionarlas de la siguiente forma:

50

p =: parsonaC'Arnaldo")
1 = libro(p,"Python","978-84-267-XXXX-X”)

Elementos del lenguaje

También podemos acceder a las operaciones (funciones) que ofrecen.

print(l.dAmeautor())
print(1.dametitulo 0}
print(l.d2uneisbn())

Run P test

•f C:\Python31\pychaD.exe
Amaldo

♦ Python
II 976-e4-267-XXXX-X

Tenga en cuenta el lector lo que sucedería si se eliminara la implementación
de__str__0 en el código anterior.

Rin H test
[►►I ^ ; C:\Python31\pychon.ejie C:/naera/fttnaldo

l< aaln .persone object at 0x0237699Q>* ^ I Python
II ^ I 978-e4-267-XX]OC-X

En próximas secciones se abordarán en detalle diferentes conceptos de la
programación orientada a objetos (herencia, polimorfismo, encapsulación) los
cuales se encuentran estrechamente vinculados al concepto de clase. El objetivo
de este capítulo no es profundizar en este concepto, sino mostrar al lector los
elementos tíásicos de Python, siendo la clase uno de ellos.

2.14 Estructuras de control
Los ciclos y las condicionales son estructuras de control inherentes al paradigma
de la programación estructurada. Los ciclos encuentran su origen en la sentencia
JUMP de! código ensamblador donde es bastante común repetir un conjunto de
instrucciones utilizando una instrucción JUMP Esta repetición suele concluir al
cumplirse una determinada condición, la cual puede ser verificada con
instrucciones JE, JGE, etc.

Una función predefinida en Python y omitida con toda intención en la tabla
anterior es la función range() la cual crea Iterables que representan progresiones
aritméticas. Una progresión aritmética es una sucesión de números tal que para
todo par (aj, a_i+1) se cumple que jaj - aj+1| = C donde C es una constante,
esto es equivalente a decir que para todo par de números consecutivos de la
secuencia su diferencia debe ser constante.

La sintaxis para crear una función range es la siguiente;

range ((start], stop, [step])

Los argumentos start, step son opcionales y definen el comienzo y el paso
(constante C) de la progresión. En el caso de que solo se defina el argumento stop
entonces se asume paso=1 y start=0. Es importante conocer que range no incluye

51

Python fácil

el valor de stop en la progresión, o sea, el último valor incluido es stop-1, observe
el ejemplo a continuación.

for i in range(5):
print (i)

Rm r" soiree

►► (‘C:\Pro5rsa FlleaVPython 3.1\pythoB.Me"

-
n S 3
a ¡í

Ahora considere el siguiente código que define una función range con inicio 1,
parada 10 y paso 2.

for i in range(1,10,2):
print ti)

Rtf) source

►► ♦
■ *

a ^

"C:\Prograa fUeaVPychon
1
3
3
7
9

El paso puede ser también un número negativo y en general cualquier número
entero (int).

for i in range(22,10,-2):
print(i)

Rm r* KXfee

I *C:\Progc«a FÜeaV^thgn
22

■ I ♦ ¡20
II I g le
a cá

En las siguientes secciones se describirán dos de las estructuras de control
iterativas más conocidas en el mundo de la programación imperativa, se trata de
los ciclos for y while. También se detallará la sentencia condicional if que puede
encontrarse en muchos lenguajes de programación.

2.14.1 Sentencia for
El ciclo for permite iterar sobre un bloque de instrucciones un número de
iteraciones que depende de la longitud de la expresión iteradle que se le defina. La
sintaxis general se puede apreciar a continuación;

52

Elementos del lenguaje

for elemento in iterable:

sentencias

Iterable debe ser un objeto Iterador y elemento es un identificador que
representa la variable de control del ciclo la cual se vincula con el elemento actual
del iterador comenzando desde el primer elemento y vinculándose a todos estos
en el orden dictado por el iterable. En este caso la palabra clave in forma parte de
la sintaxis de la sentencia for y no cumple igual función que cuando se emplea
para realizar pruebas de membresía, analizadas estas en secciones previas

Es posible terminar la ejecución de un ciclo en cualquier momento utilizando
las palabras claves break o return También es posible pasar al próximo elemento
del iterable y por ende a la próxima iteración haciendo uso de la palabra clave
continue.

for i in range(10):
print(i)
break

Rui H Mua

■ ¡ 4-

II

C:\Progcaa rileaNPythoa J.lNpythoa.txe
a

Process ílniahed vlcb exle cods 0

En el ciclo anterior se imprime el primer elemento del iterable y luego se
termina o rompe (break) la ejecución del bucle.

En el ejemplo que sigue no se llega a ejecutar nunca la función prínt porque la
sentencia continue que se encuentra al comienzo del bloque de instrucciones
provoca que el control del ciclo se lleve hacia el próximo elemento del iterable en
cada iteración, luego nunca se produce el llamado a la función prínt.

for i in rango(10):
continuo
printC'Hola Arnaldo")

Rui P touts

^ j*Ci\pEogt#B rileaXPythen 3.1\python.eie*

® 4" Ptoccas flnlahed with eslt cíxls 0

Existe la posibilidad de procesar múltiples identificadores si el iterable contiene
secuencias todas de una misma longitud y la cantidad de identificadores coincide
con la longitud común Esto resulta muy útil para iterar sobre diccionarios.

1 = [(1,2).(3,4)1

for i,j In 1:
print("(" + str(l) +

+ str(j) + ■•) ■•)

53

Python fácil

Rir f* source
►► ^ i "C:\Proorfta rileaVPython 3.l\pychon.exe"

' (1.3)
■ + (3,1)

9 Itasando eohso paxes iiave-valor do dice.
dice B ('autor'I 'Arnaldo',

'libro' : 'JavaScript Fácil'J

for Hava, valor in diec.itamsO :
printC'C ♦ Hava +

"," + valor + ")")

Rui P source

^ ; 'C:\Procran FlleaVPython 3.1\pychon.exe'
> ’ (antor.Amaldo)■ I ♦ ' (Uhro,JavaScript PAcU)

2.14.2 Sentencia while
La estructura de control iterativa while ejecuta un bloque de instrucciones hasta
que una condición es incumplida (devuelve False). Su sintaxis general es la
siguiente;

while condición:

sentencias

Observe el próximo código que ilustra el uso de esta estructura de control.

iteración = 0

while(iteración < 5):
printC'Chicago, Windy City ")
iteración += 1

Rui Í* wauta

» t *C:\PtogcAa rUeBVPythso 3.l\python.exe*

m *
Chlcxtro. City
Chicago, Mlody City

II Oalcago, Wlsdy City

a Chicago, City
Chicago, Windy City

Process finished with exit code 0
X 9

Tenga en cuenta que la condición debe retornar valor False en algún momento
porque de lo contrario el ciclo será infinito.

iteración = 0

9 Cíelo infinito
while(iteración < 5):

printC'Chicago, Mindy City")
9 Falta íncrenentax la variable

54

Al igual que sucede en una sentencia /ores posible utilizar las palabras claves
break, return y continue para romper o continuar el ciclo

2.14.3 Sentencia if
La sentencia //es probablemente la estructura de control más antigua en la historia
de la computación Permite cambiar el flujo de ejecución de un programa en
dependencia de una determinada condición y en numerosas ocasiones aparece
complementada por las cláusulas elif y else Su sintaxis general se puede ver a
continuación

if condición_1

sentencias

elif condicion_2

sentencias

Elementos del lenguaje

elif condición_n

sentencias

else

sentencias

Las cláusulas elify else son opcionales y el bloque de sentencias de una de
las primeras se ejecuta si se cumple la condición que le corresponde, cuando esto
sucede no se verifican el resto de las cláusulas pues la ejecución de la sentencia
condicional concluye La cláusula else se ejecuta st ninguna de las anteriores
evaluó a True Visto de una forma más hispanoamericana una expresión
condicional //puede considerse de la siguiente forma

SI condicion_1

sentencias

en caso contrario si condición_2

sentencias

en caso contrario si condición_n

sentencias

en caso contrario

sentencias

Observe en el próximo ejemplo como se llega a ejecutar la segunda cláusula
que es la primera en evaluar verdadero El valor de x es igual a 4 asi que 5 > x > 2
tiene valor de verdad True y se imprime la cadena ‘2 < x < 5'

X = 4

55

Python fácil

if 2 > X > 0:
print{"0 < X < 2")

eli£ 5 > X > 2:
print("2 < X < 5")

elsa;
print("x > 5”)

lUn nura

'■ ^ 'C:\Pro9raa rUeaNPython 9.1\python.exe*
a < X < 9

■ *

Cuando existen solo dos cláusulas (if/e/se) se cuenta con una condicional
binaria donde solo existe una alternativa posible; ejecutar el bloque de sentencias
de la clásula /7 o ejecutar el bloque de sentencias de la clásula e/se. Recuerde el
lector que las cláusulas elif, else son opcionales de modo que if puede existir de
manera independiente según ilustra el siguiente código;

X = 4

i£ X - 4 is 0:
printC'x * 4")

2.15 Funciones de entrada/salida

En computación la entrada de datos se refiere al proceso medíante el cual un
programa recibe de una fuente externa un conjunto de datos necesarios para su
ejecución. La salida representa entonces los datos que el programa presenta en
un dispositivo de visualízación como puede ser la pantalla del ordenador. En el
caso de Python las funciones utilizadas para la salida y la entrada son print() e
inputO respectivamente.

A partir de Python 3.0, príntQ se convierte en una función predefinida,
anteriormente era tomada como una sentencia del lenguaje. El cambio sintáctico
puede verse en los siguientes casos;

■ Como sentencia; print “Hola Python"

■ Como función; print(“Hola Python")

La función print imprime diferentes objetos (object, *) al flujo definido en la
variable file dé modo que todos aparecen separados por el valor de sep y
seguidos bór el valor de erid.

print ([object], *, sep=", end='\n', file=sys.stdout)

Tenga en cuenta el siguiente ejemplo;

for i in range(3):
print(l,2,3,sep='-',ends' pasos \n')

56

La función input cuenta con un único argumento opcional que permite indicar
una cadena a escribir antes de esperar entrada de datos del usuario.

respuesta = input{"Nombre:")
print(respuesta)

El código anterior detiene su ejecución esperando asignar un valor a la
variable respuesta, este valor representa la entrada del usuario.

Elementos del lenguaje

Run H tes(

9 t C:\Python31\pytljon.Me
a i.

UoBbreiAraaldij

Definida la entrada (en este caso es el texto “Amaldo") y pulsada la tecla enter,
la ejecución del código continúa.

Run test
¡ ^ I C:\Pytbon31\p/thon.ftj(e
I I UoobroiArna’da

“ , ^ I Xrnaldo

Fíjese en que se ha impreso la cadena ‘‘Amaldo" según dicta la sentencia
print(respuesta).

2.15.1 ‘Hola Mundo’ en Python
Este capitulo concluye con una versión del popular e introductorio ejemplo 'Hola
Mundo’ que puede encontrarse en infinidad de libros de diferentes lenguajes de
programación. En este caso, el código incluirá varias de las sentencias, funciones,
operaciones y operadores analizados durante las distintas secciones de este
capítulo. Intente comprender el lector el propósito del algoritmo.

de£ £(n):

o = n

fot i in range(2,n):
i£ n % i is 0:

e = i
break

i£ e < n:
print("Hola Mundo")

else:
printC'No es lo que busco")

Teniendo en cuenta que Python es un lenguaje multiparadigma. en el siguiente
capitulo se describirán las posibilidades que ofrece este lenguaje en torno a ios
paradigmas orientado a objetos y funcional,

UNIVERSIDAD reCNÍCúOEl NOfWE
eiBLIOTECA

Ibarrn • Ecuaaor

57

Python fácil

Ejercicios del capitulo

1. Programe una función que determine si dos listas son iguales. Dos listas se
consideran iguales si tienen Igual longitud y sus elementos en cada Indice
también lo son.

2. Programe una función que reciba una matriz de enteros y devuelva una
tupia con la lista o vector de la suma de cada fila y otro vector con la suma
de cada columna.

3. Programe una función que determine si un número entero suministrado
como argumento es primo,

4. Programe una función que dado un número x devuelva una lista infinita con
todos los múltiplos de x.

5. Diseñe y programe un algoritmo recursivo que encuentre la salida de un
laberinto, teniendo en cuenta que el laberinto se toma como entrada y que
es una matriz de valores True, False. (x,y), (a,b), donde True indica un
obstáculo; False, una celda por la que se puede caminar; (x.y), el punto
donde comienza a buscarse la salida y (a,b), la salida del laberinto.

6. Programe una solución recursiva al conocido juego de las Torres de Hanoi.

7. Determine el propósito del siguiente algoritmo:
dof f(1):

a = o
b B 0

£or i in 1:
if i > 0:

a += i
else:

a-= i

return a *f b

a) Defina un buen nombre para la función f.

8. Determine el propósito del siguiente algoritmo.

a) Defina un buen nombre para la función g.
def g(l) :

a = 0

for i in 1:
for j in 1:

if abs(i-j) > a:
a = abs(i-j)

return a

58

CAPÍTULOS.
Paradigmas de programación

Python es un lenguaje multiparadigma, evidencia de ello es e! soporte que brinda
el lenguaje a características propias de diferentes paradigmas de programación.
Entre estos paradigmas se encuentran la programación orientada a objetes y la
programación funcional. Durante este capitulo se analizarán las características
que posee Python en relación a estos paradigmas y las ventajas que ello ofrece al
desarrollo de aplicaciones.

3.1 El paradigma orientado a objetos

Un paradigma de programación es una filosofía, una concepción que orienta el
proceso de construcción de aplicaciones. Las ideas, conceptos y la forma de
pensar orientada a objetos comienzan a cobrar fuerza a finales de los años
sesenta y durante los setentas con el desarrollo de lenguajes como Simula 67 y
Smalltalk. Con la aparición de C++ (una versión del lenguaje C con orientación a
objetos) en los años ochenta el paradigma adquirió gran popularidad y aceptación.
Por estos años surge también Eiffel, un lenguaje orientado a objetos diseñado por
Bertrand Meyer, autor de Construcción de software orientado a objetos, uno de los
títulos más reconocidos del tema. En la actualidad algunos de los grandes
representantes del paradigma orientado a objetos son los lenguajes Java, CSharp
y, por supuesto, Python. Entre ios beneficios que ofrece la programación orientada
a objetos vale mencionar la reutilización de código, la abstracción de datos, el
manejo de eventos y la separación de responsabilidades.

3.1.1 Objetos
Como se mencionó en el capítulo anterior un objeto es una instancia, un ejemplar,
una realización de una entidad formal conocida como clase que resulta en la
plantilla o guía para la creación del objeto. Estos son tipos de datos abstractos que
incluyen atributos e interactúan entre sí procesando información y generando
eventos-

Python es un lenguaje dinámico que considera a todo elemento como un
objeto. El dinamismo que posee permite que la extensibilidad de objetos resulte
bastante sencilla de modo que agregar propiedades puede realizarse sin problema

59

Python fácil

alguno. Tenga en cuenta el siguiente ejemplo donde se añade a un objeto
instancia de la clase zapato la propiedad costo.

class zapato:
pass

adidas = zapato()
adidas.costo = 23

print(adidas.coste)

Run source

^ "C:\Prooraa File3\PythOD
23

■ ’I'

También es posible agregar dinámicamente métodos a una clase vinculando
un nombre con una función.

daf x() :
return "rojo"

adidas, color = x()

print(adidas.color)

Run ^ sourer

^ "CAProgton Filea\Pyt:hon
rojo

♦

De esta manera un objeto puede crearse a partir de una clase vacía y
comenzar a poblarse con propiedades y métodos según sea necesario.

3.1.2 Herencia
La herencia es un mecanismo inherente al paradigma orientado a objetos
medíante el cual se establece una relación jerárquica entre diferentes clases
favoreciendo de este modo la reusabilidad, organización y extensíbilidad del
código de un programa. La relación de jerarquía se establece cuando una
determinada clase llamada heredera o subclase hereda propiedades y métodos de
otra clase conocida como clase padre o superclase.

La intención principal de la herencia es proveer un modelo de objetos regido
por la lógica de la vida real de manera que una jerarquía como la siguiente pueda
manejarse tal y como correspondería con el escenario real.

60

Paradigmas de programación

Edificación I

/ \ \
Hotel Centro Comercial Unidad Militar

/ \
5 Estrellas 4 Estrellas

......t...
i Hilton ¡ ¡ Mella [

¡ Walmart ¡

y V

¡ UM-30 I

Como se puede apreciar, se trata de una jerarquía de edificaciones Fíjese en
que siempre se intenta agrupar elementos comunes bajo un mismo nodo, esto
favorece la reutilización de código debido a que el código que resulte común para
todas las edificaciones comerciales-económicas podrá ser ubicado en la clase
Comercial-Económica y omitido en sus descendientes que lo tomarían del padre
Las hojas de la jerarquía son aquellas clases (Hilton, Casa, Walmart, UM30, etc)
de las que no se hereda La implementación en Python es la siguiente

eliiss edificación;
altuxa = 0
dueño "
precio = 0
ubicación = "’

def __init__(self, altura, dueño, precio, tibicacion) :
self.altura = altura
sq1£,dueño = dueño
sol£.precio = precio
solí .ubicación ubicación

def danealtura(self);
return self.altura

def definealtura(sclf, altura):
self.altura = altura

61

Python fácil

daf dasieduano (self):
return solf.dueño

de£ da£ineduano(solx, dueño);
solf.dueño » dueño

def daneptecio (solf);
return self.precio

def de£lnepreeio(sol£, precio):
self.precio e precio

def deBeubicaeion(solf):
return solf.ubicación

def de£ineubicaeion(scl£, ubicación):
self.ubicación = ubicación

clase casa (edificación):

habitantes - 0

def __init__(self; altura, dueño, precio,
ubicación, habitantes]:

supero . def ineal tura (altura)
supero .defInedueno(dueño)
supero .defineprecio(precio)
supero.defineubicacion(ubicación)
solf.habitantes = habitantes

def daaebabitantas(self)i
return solf.habitantes

class comercial (edificación):
areas_eomercio = []

def __init__(self, altura, dueño, precio,
ubicación, areas_comercio):

supero •definealtxura(altura)
supero .definedueno (dueño)
supero .defineprecio(precio)
supero .daflneubicaelon(ubicación)
self.areas^comercio = araas^comarcio

def daaeareas(self);
return solf.areas comercio

62
•• I í • I •

Paradigmas de programación

class gubernamantal (edificación] :
ni.vel_seguci.dad = 0

def __init__(self, altura, dueño, precio,
ubicación, nivel_seguridad) :

supero .definealtura(altura)
supero .definedueno(dueño)
supero .defineprecio(precio)
supero.defineubicacion(ubicación)
Bel£,nivel_seguridad = nivel_segucidad

def dafflenivel_segucidad(sel£) :
return self.nivel_seguridad

c = comercial(3, "Acnaldo',
1000, "Vedado, Habana, Cuba',
['ropa ’, ’alinentoc"))

print (' Altxira. ", c,damealtura ())
pcintC'Precio ", c.dameprecio())
print("Dueño.", c.damedueno())
pcintC'Areaa: , c.dameareas ())

Run f* source

■ 4-

"C:\Prograa FllesVPython 3.1\python.eie"
Altara: 3
Precio: 1000
Dueño: Amaldo
Áreas: [’rc^', 'alimentos']

Ei codigo anterior modela una parte de la jerarquía de edificaciones y evita que
se cree código duplicado, por ejemplo, todas las clases, siendo edificaciones,
comparten propiedades como altura, precio, etc , las cuales han sido definidas en
la clase padre (edificación) que representa la entidad de mayor abstracción en la
jerarquía y sus descendientes pueden hacer uso de todas sus propiedades y
métodos, asimismo sucede con el resto de las clases La función predefinida
supero en este caso que se cuenta con herencia simple retorna un objeto que
representa el padre de la clase desde la que se realiza el llamado La palabra
clave y argumento self hace referencia a una instancia de la clase en cuestión,
debe indicarse en todos los métodos como primer parámetro

En muchas ocasiones sucede que para modelar apropiadamente un objeto es
necesario que este herede propiedades y métodos de vanas clases, no de una
sola como sucede en la jerarquía de edificaciones En casos como este se dice
que la herencia es múltiple, de lo contrario es simple

iJNiveRSinunTFrNícflnEi *jor-íf
BIBLIOTECA
Ibarra • Ecuador

Python fácil

I Largometraje I

Drama Oeste Comedía Suspenso

I Imperdonable ¡
I_______________ i

La jerarquía de largometrajes es un ejemplo concreto que ilustra como una
clase puede requerir ser derivada de varias clases. Afortunadamente Python es un
lenguaje que soporta herencia múltiple. Así puede observarse a continuación:

class largomatraje:
duración = 0
titulo =

def dametitulo(solf):
return solf.titulo

def definetitulo(self, titulo):
self.titulo = titulo

def dameduracion(self):
return self.duración

def defineduracion(sel£, duración):
self.duración s duración

class drama (largometraje):
cargadramatica = 0

def damecargadramatica(self):
return self.cargadramatica

def definecargadramatica(self, cargadramatica): •
self.cargadramatica = cargadramatica

64

Paradigmas de programación

class oeste (largometraje):
pistoleros = 0

def damepistoleros(self).
return self.pistoleros

def definepistoleros(self, pistoleros)
self.pistoleros - pistoleros

class imperdonable(oeste, drama):
pass

1 = imperdonable(}
1.definecargadramatica(2)
1.defineduracion(120)
1.definetitulo(’Imperdonable')
l.definepistoleros(2)

print('Carga l.damecargadramaticaO}
print("Duración*",1.dameduracion())
print ('Titulo ", l.dametitulo())
print("Pistoleros ", 1.damepistoleros()}

Una clase hija puede sobrescribir o crear su propia implementaclon de un
método que contenga el padre

class in^erdonable(oeste, drama);

def damepistoleros(self) :
return "Solo dos"

También es posible acceder a propiedades y métodos de la clase padre a
través de la función super() según se analizó en el código correspondiente a la
jerarquía de edificaciones

3.1.2.1 Herencia diamante
Lenguajes que soportan la herencia multiple generalmente tienen que lidiar con
una situación conocida como la herencia diamante En esta situación se crea una
ambigLiedad al realizar un llamado a un método de A desde D dado que no se
sabría a ciencia cierta si tomarlo de B o de C

Para comprender cómo Python ha resuelto este escenario en sus diferentes
versiones, debe conocerse que hasta el momento han existido dos tipos de clases
en el lenguaje aquellas conocidas como clases clásicas (en versiones anteriores a
la 2 2) y las conocidas como clases de nuevo estilo, cuyo modelo aparece a partir
de la version 2 2

65

Python fácil

A

X X
Desde 2.2, el objeto predefinido object es un ancestro común de todos los

tipos predefinidos en Python, también lo es de las clases de nuevo estilo. El hecho
de que las clases en estas versiones de Python hereden de object se convierte en
una diferencia fundamental con respecto a las clases clásicas que no pueden
heredar de object pues en versiones previas a 2.2 no existía el objeto.

En el modelo antiguo de clases (clásico) la resolución de herencias de tipo
diamante se realiza por medio de una búsqueda en profundidad (DFS en inglés)
donde se recorrían las clases comenzado por A, luego sus hijos por orden así que
en el caso anterior el siguiente serla B. luego los hijos de B, por orden también asi
que el próximo sería D, luego por vuelta atrás se regresaba a B (D no tiene
descendientes) que no tenía más hijos por recorrer, luego por vuelta atrás hasta A y
finalmente se llegaba al último hijo de A que era C. El recorrido quedarla A, B, D, C.

En el nuevo modelo se resuelve el problema del diamante realizando una
búsqueda de izquierda a derecha y de abajo hacia arriba de modo que el recorrido
realizado sería D, B, C, A, object. En el ejemplo de la jerarquía de largometrajes
las clases Imperdonable, Drama, Oeste y Largometraje presentan una herencia
tipo diamante.

3.1.3 Polimorfismo
El polimorfismo hace referencia a los múltiples (prefijo poli - ‘muchos’)
comportamientos (base morfismo = ‘formas’) que puede mostrar una clase en
dependencia de la subclase de la que se instancie. Debido a que Python permite
que una subclase pueda tratarse como una clase padre, el concepto realmente
queda como algo inherente y casi invisible del lenguaje. La filosofía duck typing,
que sigue Python, declara lo siguiente; «Si camina como un pato o nada como un
pato, entonces es un pato». Veamos en el siguiente ejemplo cómo objetos
diferentes responden a métodos heredados con implementaciones particulares.

66

class animal:

Paradigmas de programación

def acciones(self):
return []

class perro (animal):

def acciones(self):
return ['ladrar',

'comer',
'caminar',
'respirar']

class ave(animal):

def acciones(self):
return ['volar',

'comer',
'respirar']

a = ave()
p — perro 0

def polimorfismo(animal) :
return animal.acciones()

print(polimorfismo(a))
print(polimorfismo(p))

Run H test

►► ❖
a

C:\Python31\python.exe Cí/Osers/amaldo.OtnOAL
('volar', 'comer', 'respirar']
('ladrar', 'comer', 'caminar', 'respirar']

Observe que al realizar los llamados a la función polimorfismo el resultado se'
halla en correspondencia con el objeto suministrado como argumento De este
modo, la variable animal ha adoptado el comportamiento adecuado en
dependencia de su implementación concreta

3.1.4 Encapsulacíón
La encapsulacíón es un término que suele confundirse con la ocultación de
información Aunque ambos se encuentran relacionados y realmente cuando se
encapsula puede ocultarse información, el primero es un concepto que abarca un
espectro mucho mayor

Puede pensarse en la encapsulacíón como en el proceso de contener
información existiendo la posibilidad de que el contenedor pueda también utilizarse

67

como una forma de ocultar información Si buscamos una analogía con la vida
real, el contenedor puede ser un auto y la información todo io que tengamos
dentro del auto El hecho de tener o no la información oculta dependerá de si
tenemos o no cristales oscuros, pero de cualquier forma la información estará
encapsulada

Para decidir qué información debe encapsularse es necesario tener un buen
nivel de abstracción La abstracción es una forma de pensar que nos permite
modelar apropiadamente los objetos que existen en el mundo real y llevarlos a una
representación en un programa Esencialmente es una traducción que se lleva a
cabo de un contexto a otro, en este caso del mundo real a una plantilla o clase que
servirá para crear objetos Para ilustrar la relación entre abstracción y
encapsulación considere una clase piano y otra clase pianista Un piano cuenta
con una cantidad de elementos como pueden ser cuerdas, teclas, etc que lo
describen físicamente Por otro lado un pianista puede interesarse en un piano
solamente por su marca, sin tener en cuenta diferentes cuestiones que le pueden
resultar poco llamativas como pueden ser el tipo de madera utilizada, cuerdas,
teclas, etc El pianista utiliza el piano pero puede no encontrar ínteres en algunas
de sus propiedades interiores, es por esto que en el modelo de abstracción estas
propiedades deben dejarse fuera del alcance del pianista a quién solo le interesa
tocar un buen piano y con la marca obtiene suficiente información Analice el
siguiente código que ilustra esta situación

class piano:

Python fácil

__cuerdas = 224
__teclado = 08
__fabricante = "''
maderas = []

def __^rnit__(self, fabricante) :
self.fabricante = fabricante

def damefabricante(self}:
return self.fabricante

def dameteclado(self):
return self, teclado

def damecuerdas(self);
return self, cuerdas

68

class pianista:

__nombre = ""
__piano = None

def __init__(self, nombre) :
self.nombre = nombre

def damenombre(self):
return self.nombre

def definenombre(self, nombre):
self.nombre = nombre

def damepiano(self):
return self.piano

def definepiano(self, piano):
self.piano = piano

beethoven - pianista("beethoven")
beethoven.piano = piano ("Steinv;ay & Sons")

Paradigmas de programación

print(beethoven.piano.damecuerdas(})
print(beethoven.piano.damefabricante())
print(beethoven.piano.dame teclado{))

Rui ^ soiFce
^ I "C:\Progran FUesVPython 3.i\pychon.ere* *

_ 1 224
* ' ^ I Stelmfay t Sons
II ! S ! 00

: ' i

Del mismo modo en que se pueden hacer privados los campos de una clase,
también es posible hacer privados los métodos que esta defina antecediendo al
nombre del método o campo dos guiones bajos.

En el código anterior la clase piano incluye 4 campos privados de los cuales
solo 3 pueden ser accedidos por medio de los métodos damefabricante().
dametecladoQ y damecuerdasO, de modo que son campos que la clase expone
como de solo lectura. El campo maderas se supone sea una variable para
funcionamiento interno de la clase y no puede ser accedido desde el exterior

Finalmente la clase pianista posee un campo piano (de lectura y escritura),
que puede ser leído y definido por medio de los métodos damepiano() y
definepiano(). Observe que con este diseño se ha logrado encapsular variables
como cuerdas o maderas, que siguiendo un modelo de abstracción lógica deben
ser de funcionamiento interno de la clase y no expuestas públicamente o

69

Python fácil

expuestas a través de intermediarios como son las propiedades de clase, las
cuales han sido mostradas hasta ahora como métodos y no en la manera formal
en la que se definen las propiedades de clases en Python. Este será el objetivo de
una sección venidera.

3.1.5 Instancia de una clase
Como hemos visto hasta ahora, para crear una Instancia de una clase se emplea
la siguiente sintaxis;

nombre_ob]eto = clase({argumentos])

Para conocer la clase de una instancia se cuenta con la función
isínstance(instancia, clase) que retorna True sí la Instancia suministrada como
argumento es heredera directa o indirecta de clase.

class ciudad:

__pais = ""
nombre = ""

__^habitantes = 0

def __init (self, p, n, h):
self, pais = p
self, nombre = n
self, habitantes = h

def fnumerohabitantes (self):
return self, habitantes

ntimerohabitantes = propertyX
(fget B fnumerohabitantes)

class habana (ciudad):

def __init__(self, p ,n> :
supero •__init__(p.n, 2000000)

h = habana("Cuba", "Habana")

print(h.numerohabitantes)
print(isinstance(h, ciudad})
print(Í8instance(h, habana))
print(Isinstance(h, matemáticas))

Risi H £Mce
w •C:\Prograo FUes\Python 3.1\python.exe"

200QOOO■ I* Tme
II Trva

1 '![á False

70

Paradigmas de programación

En el ejemplo anterior puede apreciarse que habana es reconocida como
instancia de ciudad, clase de la que hereda y que es reconocida también como
instancia de sí misma. Observe que acertadamente no es considerada instancia
de la clase matemáticas.

3.1.6 Método__init__
El método especial__init__se ejecuta al crearse una instancia de la clase que lo
haya implementado. Se utiliza frecuentemente para definir valores de la clase o
llevar a cabo diferentes tareas de inicialización. Todos los argumentos que recibe
excepto el primero (selO deben suministrase al crear la instancia. Su símil en
lenguajes como CSharp o Java es un método especial conocido como constructor,
que lleva siempre el nombre de la clase que lo implemento. El método no debe
devolver ningún valor salvo None.

class rectángulo:

__area — 0
__perímetro = 0

def __^init__(self, a, b) :
self, area = a*b
self.__perímetro = 2*(a+b)

de£ ^damearea (self) :
return self, area

de£ __damBperimetro (self) :
return self.__perímetro

area - property(fget= damearea)
perímetro = property (fcret= damaperlmetro)

r “ rectángulo(2,3)

print ("A: " ,r. eirea, "P: " ,r. perímetro)

Run ^ source

♦ "C:\Program Filea\Python 3.1
A: 6 P: 10

En el código anterior se inicializan los campos area y perímetro en el método
__init__. Esto tiene sentido porque la clase no permite que los lados del rectángulo
sean modificables y al no ser alterables tampoco lo serán su perímetro o su área
que pueden ser calculados ai crearse una instancia de la clase. Resulta importante
tener en cuenta que los argumentos que se suministren a la instancia de una clase
deben corresponder con los definidos en__init__de lo contrario se lanzará una
excepción.

71

3.1.7 Argumento se/f
Hasta el momento la mayoría de los métodos que hemos creado en las clases
analizadas durante este capítulo tienen como primer argumento a self. Para
comprender el sentido que Python otorga a este argumento debe conocerse lo que
son los métodos atados y los no atados.

Un método se dice atado si se encuentra asociado con una instancia de clase;
de lo contrario, se dice que es un método no atado. El hecho de estar atado o no a
una instancia de clase está dado por el uso del argumento se/f de modo que los
métodos que lo tomen como parámetro en una clase son atados y los que no lo
hagan son no atados. La atadura o vínculo se logra por medio de self que
representa a la Instancia creada a partir de la clase y proporciona acceso a todos
sus atributos. Observe el siguiente código donde se muestran métodos atados, no
atados y la forma en que todos estos pueden ser Invocados.

class auto:
millas = 0
marca - ""

python fácil

def __init__(self, marca, millas) :
self, marca = marca
self, millas = millas

def dame_millas(self):
return self, millas

def dame__marca (self) :
return self, marca

def f0 :
print("Un auto")

auto. io^rime = f
auto. imprime ()
// Este llamado resulta en TypeError
bmw.imprime()

En el ejemplo anterior imprime es un atributo asociado a la clase auto', solo
existe en esta asi que un llamado a impríme() en el objeto bmw resultarla en un
error.

3.1.8 Sobrecarga de operadores
Python, al igual que lenguajes como C++, Java o Csharp, brinda la posibilidad de
sobrecargar sus operadores. La sobrecarga consiste en crear una implementación
particular de cacia .operador; de modo tal que cuando sean utilizados el resultado
corresponda a |a impjemeritaqión definida. Esto es posible porque los operadores

72

Paradigmas de programación

pueden verse simplemente como funciones binarias, uñarías o n-arias que
retornan un resultado. Las ímplementacíones deben disponerse en métodos
especiales (con prefijo__al igual que init) que se ejecutan cuando se utilizan los
operadores sobrecargados sobre ios tipos cuyas ciases contengan las
sobrecargas. A continuación se puede observar una tabla con algunos de estos
métodos especiales.

Método Invocado por Operador

_add__ a+b, a+= b +

_sub__ a*b, a-= b -

_muí__ a’b •

eq a==b ==

_IL a<b <

at a>b >

a<=b <=

ge a>=b >=

_neg__ Negación not

or Operador de disyunción or

_and__ Operador de conjunción and

setitem Asignamiento por Indice a[i] = x

El siguiente ejemplo ilustra el uso que se le puede dar a la sobrecarga de
operadores mediante una clase mi_numero que consiste en una implementaclón
de un tipo numérico personalizado.

UNIVERSIDÚO ^FCNfCú DEl NflRíE
biblioteca

Ibarra-ecuador

python fácil

class mi_numaro:

valor = 0

def __init__(coif, v) :
self, valor = v

daf __add^(3clf, other) :
return (self.__^valor

+ other, valor)/2

def sub (self, other):
retusm (self.__^valor

- other.__^valor)/2

def __mul (self, other):
return (self.__valor

* other, valor)/2

daf __qt (self, other):
return self._valor > other.__^valor

def __nog__(self) :
return self.__^valor < 0

def __bool (self):
return self.__^valor > 0

def __eg (self, other):
return abs(self.__valor

- other, valor) <= 1

n = mi^numero(5)
D — mi^^numero (6)

print (n = m)
print(n < m)
print("Suma:",n + m)
print("Rasta:",n - a)
print ("Ilult: " ,n * a)
print (not ai_nuaero (**6))

Rui H starce

♦ *C:\PtogsaB FUea\?ython S.lXpychoa.ere"
Truem True

II m Sana: 9.9
Rasta: -0.9

m Ls Halt: 19.0
& True

74

Paradigmas de programación

En el código anterior se ha sobrecargado la función__bool__() que se ejecuta
cuando se requiere un vaior de verdad para el objeto. Esta ejecución puede darse
por ejemplo al realizar la negación lógica pues esta demanda un vaior de verdad a
ser negado. Considere el lector que los tipos de mi_numero tienen operadores de
suma, resta, multiplicación y comparación personalizados. La suma por ejemplo
resulta de sumar los valores de ambos tipos y dividirla entre dos. De esta forma es
posible crear un objeto que tenga el comportamiento deseado cuando se opera
con él.

3.1.9 Propiedades
Hasta ahora hemos visto las propiedades como métodos de clase buscando
compatibilidad con el modelo clásico que no soporta la creación implícita de
propiedades sino a través de los métodos especiales__getattr__y__ setattr__. En
el nuevo modelo de clases es posible crear propiedades a través de la función
predefinida property según se puede observar en el siguiente ejemplo:

class mesa:

__longitud = 0
ancho = 0

def __init__(self, 1, a) :
self.__longitud = 1
self, ancho = a

def damelongitud(self):
return self.__^longitud

longitud = property(damelongitud,
doc='longitud de la mesa')

m = mesa(21,34)
print(m.longitud)

Run lest

C:\Python31\pythan.exe

31

La función property que devuelve un atributo propiedad posee la siguiente
sintaxis genérica:

property (fget=None, fset=None, fdel=None, doc=None)

Donde fget es una función para tomar el valor de la propiedad, fset una función
para definirlo y fdel una función para borrar la propiedad, Finalmente doc será la
cadena que documente la propiedad {docstríng). Teniendo esto en cuenta, el
ejemplo anterior puede ser complementado de la siguiente forma-

■ *

75

Python fácil

de£ de£lnelongitud(sQlf, valoc):
self.__^longitud = valor

longitud = property(danelongitud,
deflnelongitud,
doc—'longitud de la mesa')

n = mesa(21,34)
tn. longitud = 3

print(m.longitud)

dun H eoucE *

■ l'f
*C:\Pcograa FilesXPychon 3.1\python.exe’
3

1

En el modelo clásico de clases se podía lograr el mismo efecto mediante los
métodos especiales__getattr__y__ setattr__.

class mesa:

__^longitud = 0
__^ancho = 0

dof __init__(self,1,a) :
self, ancho = a
self, longitud = 1

de£ daffielongitud(sslf):
return self.__longitud

de£ de£inelongitud(sel£, valor):
self.__longitud = valor

def__getattr__(self, item):
if item = "longitud":

return self.damelongitudO

def __setattr__(self, key, value) :
if(key = 'longitud'):

self, diet__(key) = value

Observe que estos métodos deben tener Implementado un mecanismo para
reconocer que la propiedad existe, esto se puede lograr sin problema alguno
medíante bloques condicionales que realicen pruebas para determinar si la
propiedad solicitada existe. Tenga en cuenta también que los valores se
almacenan en un diccionario__diet__que existe para cada instancia de una clase
y permite vincular atributos arbitrarios con una Instancia.

76

Paradigmas de programación

3.1.10 Métodos estáticos y de clase
Un método de una clase se dice estático sí puede ser llamado desde una clase por
medio de la sintaxis nombreclase.metodo o desde una instancia de la misma
siempre sin vinculo al primer argumento self.

En cierto modo un método estático puede verse como un servicio que ofrece la
clase por mediación de una función que se le define, dicho servicio se supone esté
lógicamente relacionado con el propósito de la clase. Para construirlos se utiliza la
función predefinida staticmethod que recibe un único argumento.

staticmethod (f)

El argumento f es la función a invocar cuando se solicite el método estático.
Observe el ejemplo que se muestra a continuación:

class matemáticas:

def __fpotencia(basc, exponente):
return baso ** exponente

def frair cuadrada(ni:
return pow(n,0.S)

def fesprimo(n):
n = abs(n)
if n <s 1: return False
for i in range(2,round{pow(n,0.S))+l):

if(n % i 0):
return Falsa

return True

potencia - staticmethod(fpoteneia)
ral2_cuadrada = staticmethod(__fraiz^euadrada)
esprimo - statioðod(__fesprimo)

m =1 matemáticas ()
print(maternaticas.potencia(2,3))
print(matemáticas.raiz_cuadrada(5))
print(matemáticas.esprimo(13))

Rin tp sauce

■f ~C:\Progtui FilesNPython 3.1\python.exe*
8
2.2360679775m

Bl True

La clase matemáticas ofrece los métodos estáticos potencia, raíz cuadrada y
esprimo. Fíjese en que el haberse definidos como estáticos se encuentra apoyado
por el hecho de ser servicios de la clase que no requieren para nada de una
instancia.

Por otro lado, un método se dice que es de clase si es posible invocarlo desde la
clase o desde una instancia cualquiera de la misma. Su primer argumento es llamado

77

por simple convención cis y es quien se vincula a la clase desde la que se llama al
método o a la clase de la Instancia desde la que se realiza el llamado al método, de
modo que nunca se lleva a cabo ningún vínculo o atadura con la Instancia en sí.

Para construir un método de clase se emplea la función predefinida
classmethodO que requiere como único argumento la función que será invocada al
llamar al método. Considere el próximo ejemplo en el que puede verse como la
clase móvil tiene acceso a un método de clase tanto desde una Instancia como
desde la propia clase.

claas móvil:

python fácil

marca =
pin s 0

de£ __init__(self, m, p) :
self.marca - m
solí.pin = p

def fllamada(cls):
print("llamando..."}

llamar - clas9mathod(fllamada)

iphona ° móvil("iphoneS", 4513)

móvil.llamar()
iphone.llamar()

Rim P source
^ *C:\Pro9tsa FllesVPychon 3.l\pychon.exe*

UASAndo*.»
® ^].lAA&ndo**«

3.1.11 POO y la reusabilidad
La reusabilidad es uno de los grandes beneficios que ofrece la programación
orientada a objetos (POO) y consiste en la capacidad de utilizar una y otra vez el
código propio o de un tercero con el objetivo de lograr la construcción de software.
Dicho código puede estar de manera explícita a través de un texto plano o
mediante librerías (.dll) que contengan la funcionalidad del código de manera
implícita, Actualmente los marcos de trabajo (.NET, Django. ASP. NET MVC, etc,)
representan un claro ejemplo de las ventajas de la reusabilidad de código. En

■ lenguajes como Python la reusabilidad puede alcanzarse de diferentes formas,
entre ellas los módulos y las clases son las alternativas más acertadas. Cuando en
un fíchero .py se escribe una línea para importar un módulo, se está tomando
ventaja del trabajo de otros y, por ende, también se está tomando provecho de su
código, que en este caso está siendo reusado. Con las clases sucede lo mismo
que con los módulos pues ambos son contenedores o paquetes de funcionalidad,
aún más, las clases no solo pueden reusarse sino que también pueden extenderse
por medio de la herencia.

78

Paradigmas de programación

Siendo uno de (os pilares fundamentales de la programación orientada a
objetos, la herencia posibilita que se pueda obtener el mayor provecho de la
reutilización al permitir que una clase obtenga toda la funcionalidad de otra clase
padre y que además pueda extenderla o personalizarla. Considere el siguiente
ejemplo donde se puede observar como de las clases compañía y móvil se
hereda, reusa y extiende código para construir las clases iphone y samsungalaxy.

class iBovll:

o&£ca ■ "
pin e o

def __init__(self, n, p) :
col£.mares = n
self.pin a p

ds£ llamadafself):
return 'llaruda a su móvil"

class coEipania:

fundación — ""
aede a ••
nombre o ""

def__init__(self, n, f, «):
self, nombre = n
self .^fundación = f
self, sede = a

class apple<eompania):

def init (solf, n, f, sj ¡
supero .__init__(n, £, s)

class Samsung(cos^ania):

def __init (solf. n, f, s) !
supero.__init__(n, f, s]

class iphone(móvil. apple):

def __init (self, m, p) :
supero •__init__(m,p)

def llamada(sol£):
return "llanada a su iphono"

class saasungalaxy(movil,Samsung):

def __init__(solf. m, p) :
supero •__init__(m.p)

de£ llamada(colf):
return "llanada a cu saasung" \

'galaxy

WERSIDflO TKÑíCfl OEl

biblioteca
— — Ibarra • écu.idor

79

3.1.12 Módulos vs. Clases
En la sección anterior se estableció una relación entre las clases y los módulos en
términos de funcionalidad y reusabíiidad. Para aclarar las diferencias que existen
entre los módulos y las clases considere lo siguiente:

Las clases:

• Siempre existen dentro de un módulo.
■ Representan una plantilla para la creación de objetos.
■ Se crean a través de la sentencia class.
• Se utilizan mediante llamados.

Los módulos;

■ Se utilizan mediante importación con la palabra clave import.
■ Son paquetes funcionales de datos y lógica.
• Son creados cuando se escriben ficheros Python o extensiones C.

Evidentemente las clases son elementos mucho más adheridos al paradigma
de la programación orientada a objetos pues estas soportan la herencia, la
sobrecarga de operadores y funciones, el polimorfismo y otros componentes de la
POO que los módulos como simples contenedores no soportan.

3.1.13 Extensión de tipos
Decimos que extendemos un tipo cuando creamos nuevas clases a partir de tipos
predefinidos del lenguaje. La extensión puede lograrse embebiendo o envolviendo
un tipo que se quiera personalizar en una clase donde se implementen las nuevas
operaciones requeridas. El siguiente ejemplo muestra una clase bolsa que extiende
o personaliza las operaciones de una lista al comprobar que dos elementos iguales
no sean añadidos a la bolsa y que el nuevo elemento a añadir no provoque que la
cota de peso máximo sea superada. Asimismo se comprueba que no se eliminen
una cantidad de elementos tai que la cota minima sea alcanzada.

class bolsai

nax • 0
aln ■ 0

__eloas “ []
paso o 0

d»t __inlt_(self, OMX, Bin) ¡
self, s^ax B Biax
self, mln a min

daf a/Ud*(self, x):
ií (not self. «laai. contains (x)
and x[l] ♦ self, pesa <» solf. naxl¡

golf, alesvs.appendix)
solf. Paso x{l)

Python fácil

daf aHm(na(celf, x) :
If (self, aleas.__contains__(x) and

golf, pase - x(l] >■ 5olf._BÍn)t

80

Paradigmas de programación

solf. oleaa.reaova(x)
self, paao -= x[l]

daC tULaapeao {self 1 ¡
return solf. peao

peso = property(fget = danepeaol

daf __getrtco (solf, iten)t
return self.^_eleaa[itea]

def __fltr__(self):
salida =
fot t in self, elents

salida += + str(t[0]) + ’ ,
+ Dtr(t(l]) +)' + '\n'

return salida

b = bolsa(S,2)
b.aAada([2,3])
b aAade([4,2])
b aflada((l,2])

b.elinina([2,3))
b elimina([1,2))

psint(b[0])
prlnt(b)

Run ^ test

►► ▲ 1 C:\Pychon31\pychoa.exe
1 (4. 2]

■ ; [4,2]

En el código anterior se ha creado la clase bolsa que se apoya en una lista
como tipo predefinido base para su implementación Observe que al final todas
las operaciones (indexado, adición y eliminación) se realizan sobre__elems y
siendo una clase también es posible extenderla y personalizarla mediante
herencia y sobrecarga de operadores. Otra técnica para extender un tipo es
conocida como subclassing y será descrita en la próxima sección.

3.1.13.1 Subclassing
Decimos que hacemos subclassing cuando creamos una clase que hereda de
otra Comenzando en Python 2 2, se ofrece la posibilidad de hacer subclassing a
los tipos predefinidos de manera que puedan ser extendidos y personalizados
Con esta técnica se puede crear una clase micadena que herede de str e
implemento operaciones adicionales como pudieran ser verificar si la cadena es
palíndromo (una palabra es palíndromo cuando es igual a su reverso, ‘ana' por
ejemplo) o comprobar que la cadena es un anagrama (es un anagrama de otra
cadena si de cualesquiera de estas puede obtenerse la otra por medio de una
reordenación de sus caracteres) de otra cadena suministrada como argumento El
código que se ilustra a continuación muestra la clase micadena con estas dos
operaciones

81

Python fácil

olftaa mloadana (atr):

daf •a_j>allndromo (self):
it lan(aolf) la 1:

xaturn Trua

j " lan(sal2) - 1
for i in ranga(Ian(salf)):

if aolfCl] I- 3ol£(j] :
ratum Falsa

3—1

if 1 -■ j: braak

raturn Trua

daf aa_anagrama(3cl£, x):

for i in ranga(Ian(:olf)):
if x.eount(SQlC[l}) I- \

aolf.count(aol£(i]):
raturn Falsa

for 1 in ranga(Ian(x>}:
if x.oount(x{i])

sclf.oount(xtl]):
raturn Falaa

ratum Trua

8 • mlaadana(‘savtvas‘)
print(B.aa_palindro(no())
print (8.aa_anagrama(' sasatw'))

RiFi H test

►► ♦
■

C:\Pythao31\pythan.exe
True
True

Los algoritmos es_palindromo y es_anagrama son bastante simples. El
primero realiza un recorrido por la cadena de izquierda a derecha comprobando
que el primer carácter y el último sean iguales, luego el segundo y el penúltimo y
así sucesivamente. Para ello utiliza la variable j que índexa siempre el último
carácter y el ciclo se detiene cuando i y j tienen el mismo valor. En ese caso todos
los caracteres han sido examinados y considerando que previo a alcanzar esa
condición no se han encontrado dos caracteres distintos entonces la cadena debe
ser un palíndromo.

El algoritmo es_anagrama realiza dos recorridos, el primero para verificar que
todos los caracteres de la instancia se encuentran en x y en igual cuantía; y, el
segundo, para realizar la misma operación pero comprobando que todos los
caracteres de x se encuentran en la instancia y en la misma cuantía.

82

Paradigmas de programación

3.1.14 Clases de “Nuevo Estilo”
Durante el presente capítulo se han examinado algunas de las características
distintivas de las clases de nuevo estilo que aparecen a partir de la versión 2.2 de
Python. Estas características se resumen a continuación;

■ El tipo object es la superclase de todas las clases de Python.

■ Es posible definir métodos estáticos y de ciase mediante las funciones
staticmethod y classmethod.

■ Es posible definir propiedades de lectura y escritura mediante la función
property.

■ Considerando que hereda de object puede sobreescribir varios métodos
especiales entre los que se encuentran __init__, __^delattr__,
__getattribute__.__setattr__y__ str__.

■ El problema del diamante en las nuevas clases se resuelve por un orden
de resolución de métodos que realiza un recorrido de izquierda a
derecha y de abajo hacia arriba.

Una de las nuevas extensiones con que cuentan estas ciases es la variable
__slots__que permite definir una lista de atributos válidos con el propósito de
limitar la cantidad que una instancia puede tener.

class a(object):

__slots__ = ['a', 'b']

var = a()

vax.a = 'hola barcelona'
print(var.a)
var.c = 'hola habana'
print(var.c)

Rií» P source
►►

■ O'

"C:\ProitBJa FllesSPychon 3.1\pythan.e*e" C:/03er3
bola barcelona
Tcaceback (nost recenc cali lase):

File “C:/Osers/Shwalker/PvcharBProTects/exaxDl

var.c » 'hola habana'
RcctibuceError: 'a’ object has no attribute ‘c’

Tenga en cuenta que en el código de la clase a se definen slots o ranuras para
los atributos ‘a’ y 'b' de modo que un intento de acceso a cualquier otro atributo (c
por ejemplo) resultarla en un error.

3.1.15 Atributos privados
En Python no se cuenta realmente con la noción de privacidad o accesibilidad con
que cuentan otros lenguajes como aquellos de la familia C donde existen los

83

modificadores de acceso prívate, protected y public que restringen el acceso a
métodos y variables para que estos sean accesibles por el objeto, por el objeto y
sus descendientes o accesibles para todos.

En secciones anteriores se han declarado variables y funciones prefijadas con
dos guiones bajos (__). El lector pudiera pensar que en estos casos realmente se
estaban creando variables privadas dado que un acceso del tipo
instancia.__atributo resultaría en un error.

class aspajualo:

python fácil

^graduación ■ ""

• ■ aspojualoO
print(a. graduación)

►► 0
■ ^
II B
S3 C3

C:\PytbOD31\python.exe C:/0sec3/arBald3.CU7&iL/Pych&iaPro]eces/te9
Icaceback (osac ncenc cali lascji

file ^C:/üseF9/á neldo.CAÜüAt/Pvcy.énPrmñcts/tes tins/tes ,

prlnele.__graíaaeleni
Attrlbutetrror: 'espejuelo’ object has oo atttlEute •_qraduaelQa'

Realmente en Python todo es público, lo que sucede cuando se crea un
atributo prefijado con dos guiones bajos es que entra en acción un mecanismo
conocido como mutilación de nombres (del inglés mangling name) que al encontrar
un atributo x que comience con dos guiones bajos lo transforma internamente a
_nombreclase__x y entonces puede ser accedido siguiendo esta sintaxis.

ciaos «spajualo:

^graduación ■ "barcelona"

• ■ aspajualoO
print (a ._aspa jualo__graduación)

Run P test

►► C:\Pychon31\python.exe

■
barcalona

Los programadores en Python utilizan convenciones para delimitar lo público
de lo privado. Por lo general una variable que comience con uno o dos guiones
bajos se considera privada y se supone que su valor no deba ser modificado.
Estas convenciones rigen el desarrollo de aplicaciones en Python,

3.2 Programación funcional

Los lenguajes de programación representan lenguajes formales que se utilizan
para definir tareas a ejecutar por un ordenador. Actualmente los lenguajes de
programación que gozan de mayor popularidad son aquellos que se encuentran

84

Paradigmas de programación

provistos de la mayor cantidad de capas de abstracción que son conocidos como
lenguajes de alto nivel, Python es claramente uno de ellos Estas capas de
abstracción pueden considerarse como traducciones del codigo binario
comprendido por una computadora a un conjunto de construcciones sintácticas
que asemejan a las utilizadas por los seres humanos Los lenguajes funcionales
se encuentran entre los lenguajes de más alto nivel

El paradigma de la programación funcional tiene sus inicios en ideas que
anteceden a las de la propia computación y encuentra sus cimientos en el calculo
lambda que proporciona un marco teórico para definir y evaluar funciones y es
introducido a principios del siglo XX por los matemáticos norteamericanos Alonzo
Church y Stephen Kleene Resulta significativo notar que un lenguaje que halle su
basamento en un sistema formal como el cálculo lambda tendrá a las funciones
como ciudadanos de primera clase y la solución dada a un problema
compulacional estará representado por un conjunto de funciones por las que
pasará el flujo de datos hasta obtener un valor de respuesta Naturalmente, la
mayoría de los lenguajes de programación, incluso aquellos que no incorporan
elementos del paradigma funcional guardan alguna relación con el calculo lambda,
los métodos, funciones o procedimientos que definimos en estos lenguajes
representan abstracciones de este sistema

Aunque la programación funcional tradicionalmente se vio orientada a entornos
académicos, en los últimos años se ha evidenciado un interés por el empleo de
lenguajes funcionales en diferentes ámbitos comerciales y para tareas como
pueden ser el análisis financiero, estadístico, económico Muchos de los llamados
lenguajes funcionales ofrecen la posibilidad de incorporar elementos que
pertenecen a diferentes paradigmas (orientado a objetos, imperativos, etc) Estos
son los llamados híbridos y entre los cuales vale destacar a F#, OCamI, Lisp y
Scala Entre los lenguajes puros (aquellos cernidos casi totalmente al paradigma
funcional) se encuentran Haskell y Miranda

Una de las características principales que define al paradigma funcional es la
expresividad y legibilidad que se obtiene en el codigo En Python el paradigma
puede verse representado por las funciones lambda, map, filter y reduce, clásicas
de lenguajes funcionales También por las listas de comprensión, añadidas en la
versión 2 0 y tomadas de un lenguaje puro como Haskell En secciones venideras
se analizarán cada una de las funciones previamente mencionadas y se mostrará
la forma en la que estas pueden beneficiar al desarrollo de aplicaciones

3.2.1 Expresiones lambda
La sentencia lambda permite definir funciones anónimas, esto es, funciones que
carecen de nombre Resulta bastante útil cuando se desea definir de manera
rápida una pequeña función La sintaxis general de la sentencia es la siguiente

lambda llsta_de_parámelros expresión

En este caso lista_de_parámetros es una lista de parámetros o argumentos
separados por coma y expresión es la expresión que definirá a la función
Considere el siguiente ejemplo

f = lambda x,y: x + y

85

modificadores de acceso prívate, protected y public que restringen el acceso a
métodos y variables para que estos sean accesibles por el objeto, por el objeto y
sus descendientes o accesibles para todos.

En secciones anteriores se han declarado variables y funciones prefijadas con
dos guiones bajos (__}. El lector pudiera pensar que en estos casos realmente se
estaban creando variables privadas dado que un acceso del tipo
instancia.__atribulo resultaría en un error.

class aspajualo;

Python fácil

^graduación ■

• “ «spaJualoO
printcraduacion)

táw ^ tert ________________________________ I
jCi\PyttionSl\pyUtcn.exe Cs/Usets/krsalda.CUmil/PyOistBfrojeRs/ces

^ iTtteebtck (oose reccat ull issOi

II '^ I prlsc(e._gtaduacloDi
— . i aculbutetrict; 'e»pe]uelo' object bas ao attribute ’ ftaduacloa'
3 ^ i

Realmente en Python todo es público, lo que sucede cuando se crea un
atributo prefijado con dos guiones bajos es que entra en acción un mecanismo
conocido como mutilación de nombres (del inglés mangling name) que al encontrar
un atributo x que comience con dos guiones bajos lo transforma internamente a
_nombreclase__x y entonces puede ser accedido siguiendo esta sintaxis.

class aspajualo:

^graduación ■ "bareelona"

a m aspajualoO
print (a .^tspa jualo__^graduación)

Rir? P test

^ C:\Python31\pyidion.eae
barcalona

■ *

Los programadores en Python utilizan convenciones para delimitar lo público
de lo privado. Por lo general una variable que comience con uno o dos guiones
bajos se considera privada y se supone que su valor no deba ser modificado.
Estas convenciones rigen el desarrollo de aplicaciones en Python.

3.2 Programación funcional

Los lenguajes de programación representan lenguajes formales que se utilizan
para definir tareas a ejecutar por un ordenador. Actualmente los lenguajes de
programación que gozan de mayor popularidad son aquellos que se encuentran

84

Paradigmas de programación

provistos de la mayor cantidad de capas de abstracción que son conocidos como
lenguajes de alto nivel, Python es claramente uno de ellos. Estas capas de
abstracción pueden considerarse como traducciones del código binario
comprendido por una computadora a un conjunto de construcciones sintácticas
que asemejan a las utilizadas por los seres humanos. Los lenguajes funcionales
se encuentran entre los lenguajes de más alto nivel.

El paradigma de la programación funcional tiene sus inicios en ideas que
anteceden a las de la propia computación y encuentra sus cimientos en el cálculo
lambda que proporciona un marco teórico para definir y evaluar funciones y es
introducido a principios del siglo XX por los matemáticos norteamericanos Alonzo
Church y Stephen Kleene. Resulta significativo notar que un lenguaje que halle su
basamento en un sistema formal como el cálculo lambda tendrá a las funciones
como ciudadanos de primera clase y la solución dada a un problema
computacional estará representado por un conjunto de funciones por las que
pasará el flujo de datos hasta obtener un valor de respuesta. Naturalmente, la
mayoría de los lenguajes de programación, incluso aquellos que no incorporan
elementos del paradigma funcional guardan alguna relación con el cálculo lambda,
los métodos, funciones o procedimientos que definimos en estos lenguajes
representan abstracciones de este sistema.

Aunque la programación funcional tradicionalmente se vio orientada a entornos
académicos, en los últimos años se ha evidenciado un interés por el empleo de
lenguajes funcionales en diferentes ámbitos comerciales y para tareas como
pueden ser el análisis financiero, estadístico, económico. Muchos de los llamados
lenguajes funcionales ofrecen la posibilidad de incorporar elementos que
pertenecen a diferentes paradigmas (orientado a objetos, imperativos, etc.). Estos
son los llamados híbridos y entre los cuales vale destacar a; F#, OCamI, Lisp y
Scala. Entre los lenguajes puros (aquellos cernidos casi totalmente al paradigma
funcional) se encuentran; Haskell y Miranda,

Una de las características principales que define al paradigma funcional es la
expresividad y legibilidad que se obtiene en el código. En Python el paradigma
puede verse representado por las funciones lambda, map, filter y reduce, clásicas
de lenguajes funcionales. También por las listas de comprensión, añadidas en la
versión 2.0 y tomadas de un lenguaje puro como Haskell. En secciones venideras
se analizarán cada una de las funciones previamente mencionadas y se mostrará
la forma en la que estas pueden beneficiar al desarrollo de aplicaciones.

3.2.1 Expresiones lambda
La sentencia lambda permite definir funciones anónimas, esto es, funciones que
carecen de nombre. Resulta bastante útil cuando se desea definir de manera
rápida una pequeña función. La sintaxis general de la sentencia es la siguiente;

lambda lista_dej3arámetros: expresión

En este caso IÍsta_de_parámetros es una lista de parámetros o argumentos
separados por coma y expresión es la expresión que definirá a la función.
Considere el siguiente ejemplo:

f = lambda x,y; x + y

65

La función anónima anterior es almacenada en la variable f Recuerde que en
Python todo es un objeto, incluso las funciones asi que f es un objeto que
representará a la función definida que no es más que la suma de los valores x, y
Si se ejecuta el siguiente código se obtendrá como salida el valor 5

print(f(2,3))

También es posible especificar argumentos predeterminados tal y como se
ilustra en el siguiente ejemplo

f = lambda x ,y ^ 2 : x * y

Ahora la función f cuando se utilice con un solo argumento tendrá como
resultado el doble del valor x Como es lógico pensar, para utilizar una función con
un argumento predeterminado resulta innecesario realizar el llamado pasando
algún valor para dicho argumento y en caso de efectuarse el valor suministrado
sustituirá al valor predeterminado Un llamado a la función anterior podría
realizarse de la siguiente forma

print(f(3))

En este caso se obtendría 6 como resultado, pero si se realiza el llamado de la
siguiente forma el resultado sería 15

print(f(3,5))

Observe que al definir una función a través de una expresión lambda los
parámetros no se encierran entre paréntesis, lo cual constituye una práctica
común cuando se construye una función Tenga en cuenta también que solo es
posible definir una expresión en el cuerpo de la función anónima, esto se traduce
en la imposibilidad de definir mediante expresiones lambda funciones cuyo cuerpo
contenga sentencias {pnnt, return, etc)

3.2.2 Función map
Cuando se cuenta con una función matemática f(x) y un conjunto de valores vi,
v2, , vn y queremos conocer f (v1), , f (vn) estamos implícitamente aplicando la
función map de la programación funcional La función map recibe como argumento
el nombre de una función y una secuencia donde aplicar dicha función, finalmente
retorna un iterable con los valores proyectados f (v1), , f (vn) La sintaxis general
es la siguiente

map (función, secuencia)

La función map permite obtener transformaciones de secuencias en una sola
línea de código, elimina la necesidad de realizar ciclos y proporciona expresividad
al código Veamos el siguiente ejemplo donde, dado una lista de números enteros
y una función, se obtiene un iterable con el doble de cada elemento de la lista
suministrada como argumento

Python fácil

86

t ~ lambda x ,y b 2 : x * y

Paradigmas de programación

doubles s map(£,[2,3,4])

for double In doubles:
print(double)

El resultado que se obtendría seria 4.6. 6.

Eifi r* nxa
^ I'CiVPrwiaa rUei\Pythsa J.UprUwo.cze'

■ ♦ i:
II ?5 I'
S3 ^ I Procesa tlaii&td uitfi exit code 0

En caso de modifícar el llamado anterior y agregar otra secuencia como
argumento, la función map tomarla el valor de cada secuencia para evaluar la
función f e incluir el resultado de esta evaluación en un iterable que tendrá el
mínimo de elementos de las anteriores. Véase el ejemplo que se ilustra a
continuación:

doubles = map(£,[2,3,4],[5,6]}

El resultado de la impresión de la lista doubles serla el siguiente:

Rtfl H BQkXCC
^ ^*Ci\PtoQcis Flle9\Pychca 3.l\ir/UiBs.eze* '

_ 10
■ ♦ ,1.
II

, Procela tialahed vita ezlo code 0a (á

En caso de añadirse otra secuencia, el código contaría con un error en tiempo
de ejecución puesto que la función f admite a lo sumo dos parámetros Observe
que en caso de no existir un argumento predeterminado en f no se podría pasar
una sola secuencia a map pues resultarla en un error de ejecución.

3.2.3 Función reduce
La función reduce es de naturaleza acumulativa Durante su ejecución, almacena
una variable, a la cual va sumando ios resultados obtenidos de la evaluación de la
función que requiere como argumento, sobre los elementos de la lista que también
requiere como parámetro, tomándolos de izquierda a derecha de dos en dos.

f a lambda x ,y : x * y

print(reduce(£,[2,3,4]))

El resultado sería el siguiente:
Sin r* taxa ______ _

^ *Ci\t‘rogna rUea\PitiBn J.Upvthcn.eie’
34

*
Pzoceai CUltMd vlUl exit cott 0

■
II

87

Python fácil

En este caso y considerando una variable accum que declare la función
reduce, las operaciones realizadas serían las siguientes;

■ Evalúa f (2,3) cuyo resultado es 6, suma este número a accum que
iniclalmente tenía valor 0.

■ Evalúa f (6,4) cuyo resultado es 24. Actualiza accum al valor 24
(anteriormente accum » 6) que es el resultado final.

Sí la secuencia contiene un solo elemento entonces este será el valor de
salida de la tinción. Un argumento opcional que se puede definir al utilizar reduce
es el valor que tendrá el acumulador {accum) antes de comenzar la ejecución
Considerando que se defina un acumulador inicial de 2 en el ejemplo anterior y
como es de suponer el valor final serla de 48, o sea, 24 x 2.

print(reduce(f,[2,3,4],2})
Rin I* (CLTce

^ j *C:\Prootaa FileaVPychoa a.lVpytbon.eie*

II I Process finished with eslc code 0

3.2.4 Función filter
En diferentes escenarios puede suceder que se desee filtrar elementos que
cumplan una cierta condición. Para dar una solución elegante y expresiva a esta
situación aparece la función filter cuya sintaxis es la siguiente;

filter (función, secuencia)

Teniendo en cuenta que función es la función que ha de servir como predicado
o función de verdad y secuencia la secuencia o iterador que contiene los
elementos a verificar o filtrar.

£ = lambda x : x % 2 = 0
filtered » £ilter(£,[1,2,3,4,5])

for elem in filtered:
print(elem)

El código anterior tiene la siguiente salida;

(Un íT ojie

A I *C(\pE07rsB riles\Python 3.1\p/hhoB.exe*

II 3 ¡

Como se puede observar, se ha filtrado la lista de los 5 primeros números
naturales para obtener una secuencia con los números pares de ese conjunto,
claramente.el 2 y el 4.

En caso de que f sea None la secuencia de salida coincidirá con la secuencia
de entrada, excluyendo solo aquellos valores que sean false.

88

Paradigmas de programación

La contraparte de la función filter() es filterfalse () que devuelve un iterable con
aquellos elementos para los cuales la función f evalúa false.

filtered » filterfalse(f,[1,2,3,4,51)

El resultado como es de esperar es el conjunto de números impares en {1, 2,
3.4.5}.

3.2.5 Función zip
La función zip se encuentra presente en muchos lenguajes funcionales (F#,
Haskell, etc.). Recibe como argumentos diferentes iterables y devuelve una
secuencia de tupias donde la i-ésima tupia contiene los i-ésimos elementos de
cada iterable suministrado como parámetro y según el orden en que aparezcan. El
iterable resultante tendrá como longitud la longitud mínima de ios iterables
definidos como argumentos de la función. Considere el siguiente ejemplo'

zipped = zip([l,4,3], [2,5], [3,6,7])

for i in zipped:
print(i)

El resultado obtenido serla el siguiente;

^ ‘C:\ProgEa2i FUesXPython 3.1\python.exe*
(1. a, 31

+ 3, fil

[É
Proeeas tlnlahed wltii exli code 0

Como se puede apreciar, el iterable contiene solo dos tupias que es la longitud
mínima de elementos que contiene alguno de los iterables (segundo) suministrado
como argumento.

3.2.6 Listas por comprensión
La comprensión de listas es una facilidad sintáctica (una de varias) que Python
incorpora y que toma del lenguaje funcional Haskell, permitiendo crear de manera
muy rápida y concisa una lista a partir de una secuencia Su uso puede observarse
en los siguientes ejemplos:

lista B [1,2,3,4,5,6]

paras ■> [x for x In lista if x % 2 is 0]
print(paras)

Run r* test

> r
■ I ‘

C:\Python31\pychon.exe
[2, 4, 6]

UNIVERSIDAD TECNÍCiOELNORÍE

BIBLIOTECA
Ibarra • Ecuador

89

Python fácil

notas ■ [('Ana',3)
, ('Jóse',4)
,('Gabriel', 4)
,(’Axnaldo', 2)]

•probados ■ [a for a in notas if a[l} > 2]
print(aprobados)

Rjn H tot

I C:\rvraoa3l\pythos.exe C:/üaei9/«mftlds.C ^ ^ I (('Aoa', 3|, ('Jojs', 4), ('CabrlaX', 4|]

Como es posible apreciar las listas por comprensión se definen por medio de
corchetes que encierran una expresión seguida por una cláusula for y a
continuación cero o más cláusulas foro if. Son especialmente útiles cuando se
desea crear una lista filtrando elementos o cuando se desea aplicar una operación

notas •• [4,3,2,1]

aprobados ■ [a-1 for a in notas]
print(aprobados)

Rm r* (ES\

» ♦

■ *

C:\PyUvoe31\pvtrcn.ere
|3, 2, 1. 0)

3.2.7 Funciones de orden superior
El concepto función de orden superior hace referencia al tratamiento de las
funciones como valores cualesquiera del lenguaje, ofreciendo la posibilidad de que
una función pueda suministrarse como argumento de otras funciones o la
posibilidad de devolver estas como salida de otras funciones.

Dado que en Python todo es un objeto (incluidas las funciones) esto se puede
lograr de manera muy transparente. Tenga en cuenta el siguiente ejemplo:

daf f(o):
raturn o 4 1

daf g(o):
raturn 2*o

daf h(o);
raturn o • 1

coiT7>uaata h(f(g(2))}

print(conpuaata)

RíT r* tat

I CiVEVtf.a&lUpytXses.ue
■ *■ *

90

Paradigmas de programación

El código anterior representa un claro caso de composición de funciones y
puede lograrse solo sí una función puede suministrarse como argumento a otras
funciones El valor de la variable compuesta es 4 que resulta de aplicar el doble de
2 luego sumarle 1 y finalmente restarle 1

Siendo objetos con valores asociados, también es posible crear una lista de
funciones y recorrerla para obtener la imagen de cada una en un determinado
valor del dominio Dicha situación se ilustra a continuación

import cstath

de£ dobla(x)
return 2*x

da£ cuadrado(x)'
return x ** 2

daf constante (x):
return x

de£ dobleces(x):
return 2*anath.cos(x)

def dobletan(x):
return 2*cmath.tan(x)

Irata = [doble, cuadrado,
constante,
dobleces, dobletanj

valor B 3

for £ in lista,
prxnt(£(valor))

lür H nret
^ *C.\ftegcu> nie9\?yt>en 3)

a ♦ S
II a 3(-1 }7»je49933>ai|
s ts (.0 3eS093QBSU9«0}}

El módulo cmath que se importa en el código anterior contiene una
considerable cantidad de funciones matemáticas y en este caso se han utilizado
eos y tan que devuelven el coseno y la tangente de un valor suministrado como
argumento Se invita al lector a que investigue y revise con paciencia vanas de las
funciones que ofrece este módulo, probablemente muchas puedan serle de
utilidad en futuros proyectos de desarrollo en Python

En e! próximo capítulo se detallará el uso de iteradores y generadores como
constructores de secuencias, también se detallarán algunos de sus beneficios y
vanos casos prácticos que demuestran las facilidades que estos pueden
proporcionar a un programador en Python

91

Python fácil

Ejercicios del capítulo
1. Programe una clase cuenta_bancana con los siguientes métodos y

propiedades
■ Método de clase extraer_dinero(cantidad), que disminuye el saldo de

la cuenta en la cantidad indicada Deben considerarse situaciones
ilógicas como por ejemplo que se intenta extraer una cantidad negativa
o que la cantidad a extraer es mayor que el saldo actual

■ Método de clase depositar(cantidad), que aumenta el saldo de la
cuenta en la cantidad indicada El saldo debe ser una cantidad positiva

■ Método de clase transferir(cantidad, cuenta), que recibe la cantidad a
transfenry una cuenta adonde realizar la transferencia Deben considerarse
situaciones ilógicas como por ejemplo que se intenta extraer una cantidad
negativa o que la cantidad a extraer es mayor que el saldo actual

■ Método de clase extraer_todo(), que deja la cuenta vacia y devuelve el saldo
■ Propiedad saldo, que devuelve el saldo de la cuenta bancaria
■ Propiedad nombrejDropietano, que devuelve el nombre del dueño de

la cuenta
■ Propiedad numerojarjeta, que devuelve el número de la tarjeta

asociada con la cuenta bancaria
■ Propiedad esta_vacia, que devuelve True si el saldo de la cuenta

bancaria es 0 y False en caso contrario

2. Programe una clase fecha con los siguientes métodos
■ Método estático fecha_actual(), que devuelve la fecha actual
■ Método estático hora_actual(), que devuelve la hora actual
■ Método estático a_fecha(cadena), que devuelve un objeto fecha

construido con la fecha y hora indicada en la cadena que debe tener
formato DD/MM/AAAA | hh mm ss

3. Diseñe una jerarquía correcta para las siguientes clases
■ Perro
■ Mamífero
• Animal
■ Reptil
■ Iguana
■ Cocodrilo
■ Gato

4. Utilizando las facilidades que ofrece Python en relación al paradigma
funcional, programe las siguientes funciones

■ Una función que filtre una lista de elementos de acuerdo a una función
de verdad que reciba como argumento

■ Una función que devuelva la división de una lista de elementos
suministrada como argumento

92

CAPÍTULO 4.
Iteradores y generadores

Los generadores son funciones especiales que devuelven una secuencia de
valores cuando estos son requeridos La diferencia fundamental entre una función
tradicional y un generador es que la primera devuelve un valor y termina su
ejecución, mientras que el generador suspende su ejecución en el punto en que se
encuentra la sentencia yield, luego devuelve el valor indicado y, a continuación,
remida su ejecución en el punto en el que había quedado suspendido

Los Iteradores, por otro lado, son objetos que poseen un método next() que ai
ser llamado retorna el próximo elemento en la secuencia de iteración Ambos tipos
proveen evaluación perezosa de modo que se itera cuando se solicita un próximo
elemento El objetivo de este capítulo será examinar en detalle el uso de
Iteradores y generadores como constructores de secuencias

4.1 Obteniendo un iterador
Un objeto iterable debe implementar el método especial__iter__() que retorna un
objeto Iterador con un método next() que lanza excepción Stoplteralion cuando la
Iteración se completa, esto es, cuando no existe ningún objeto next que retornar
Aunque parezca confuso, el iterador y el iterable deben implementar el método
__iter__{), esto simplifica el código y permite que ambos sean tratados de forma
semejante En el caso de un iterador el método__iter__() devolvería el propio iterador

Existen dos alternativas fundamentales para construir un iteradle la vía
explícita y la implícita La primera consiste en crear una clase personalizada donde
se implementen los métodos antes mencionados, de esta forma la codificación del
iterable se encuentra totalmente en las manos del programador Un ejemplo de
esta estrategia se observa a continuación

class mi iterable:

1 ~ None
1 - None

def __init__(oolf, *args) :
self.l = args
self.i - 0

93

python fácil

def __iter__(self):
return self

def next (self):
if sclf.i >= len(self.l):

self.i = 0
raise Stepiteration

result = sel£.l{self.1]
self.i += 1
return result

X = mi^iterable(l<2,3)
i B iter(x)

try:
veilor = i.__next 0
while valor:

print(valor)
valor = i.__next

except:
print(* Fin')

0

(Ufl IT tourcs
^ *C:\Pxograa Ftl«9\Pythao 3.1

■ !«

II ^ 3
— fin
s

Para poder obtener el objeto ¡terador que se esconde detrás de un iterable se
utiliza la función iter() que recibe como argumento el iterable en cuestión.

La otra vía (implícita) se apoya en el hecho de que las funciones pueden
recibir, transformar y retornar iterables de modo que siempre es posible diseñar
herramientas, en este caso funciones, que provean iterables por medio de la
lógica que definen en su cuerpo. Así se ilustra en el siguiente ejemplo:

def daaieiterable(1, long):
i£ len(l) < long < 0:

raise Exception(’long incorrecto')
return l[0:longl

print(dameiterable{'hola arnaldo',10))

Rixi tasa

■ '<•> t

’C:\Prograa Files
hols aniAl

94

Iteradores y generadores

Otra alternativa, también explícita, resulta del uso de generadores.

de£ damaitarablo(l, long):
for i in range(long):

yield l[i]

g s dameiterable('hola arnaldo',10)
print(g.__^noxt__())
print(g.__^noxt__())
print(g.__^noxt__())
print{g.__^next__())

Rm H 8CLIC7

^ ¡*C:\ProgTU

■
+ lo

II

m

Durante este capítulo se examinarán algunos ejemplos donde el uso de
iteradores o generadores puede resultar en una solución muy atractiva y elegante
a un problema computacional.

4.2 Ordenando una secuencia

Los generadores permiten computar objetos uno a uno a medida que son iterados.
Uno de los beneficios que puede extraerse de esta característica es que no resulta
necesario almacenar los objetos en memoria lo que significa una mejora
considerable cuando se itera por una secuencia de tamaño considerable. Además
del ahorro de memoria los generadores pueden evitar la modificación de iterabtes
cuando se realizan operaciones sobre estos. En el próximo algoritmo se realiza la
ordenación de mayor a menor de una lista de elementos sin necesidad de
transformar la secuencia inicial o duplicar sus datos en memoria.

def ordsna_secuencia(s) :
i£ len(s) is 0: ratum
posiciones = []
actual = s[0]
tei[^ ~ 0
while len(posiciones) < len(s):

for j in range(len(s)):
if actual < s[j] and j not in posiciones:

actual = s[j]
temp = j

posiciones.append(temp)
yield actual

actual - -1

for e in ordena^secuencia([3,4/2]) :
print(e)

95

Python fácil

Rin r* toua
^ I *C:\ProgEBB

■ *|3
II ^ ,3

Tenga en cuenla que en el algontmo anterior solo se ordenan correctamente
elementos positivos Se propone al lector que examine el código y vea cómo puede
mejorarse este particular para que puedan ordenarse números positivos y negativos

4.3 Generando la secuencia de Fibonacci

Los generadores son extremadamente útiles cuando se desea iterar sobre una
secuencia infinita como puede ser la secuencia de números de Fibonacci Su
capacidad para evaluar elementos al momento de ser requendos (característica
conocida como evaluación perezosa) provee la facilidad de iterar sobre una
secuencia infinita o sobre una subsecuencia de dicha secuencia

La secuencia de Fibonacci, descrita por el famoso matemático italiano
Leonardo Pisano o Leonardo Fibonacci, dada su relación con la familia Bonacci en
el siglo XII, XIII, es probablemente una de las más populares en el ámbito de las
Matemáticas Originalmente pretendía describir el proceso de cría de conejos y
actualmente encuentra aplicaciones en ramas del saber tan diversas como pueden
ser las Ciencias de la Computación, Matemáticas. Teoría de Juegos, Biología, etc
La secuencia comienza con los números 0 y 1, que son los valores iniciales, luego
a partir de ellos el resto de la secuencia se construye según la siguiente fórmula

Cl,¡ Qi,-2

De esta forma los primeros 10 miembros de la secuencia serían

0. 1, 1, 2, 3, 5, 8. 13, 21. 34

La sucesión de Fibonacci también se relaciona con el número de oro o la
proporción divina a la que se le atribuye una inmesa cantidad de propiedades
interesantes, entre las cuales cabe mencionar la representación de la belleza en la
naturaleza por medio de relaciones entre segmentos como pueden ser la relación
entre el diámetro de Id bdca y de la nariz en un ser humano
' 'Finalmente.'la implementación de la función generadora fibonacci se presenta
a contiriaacíón

import itertools

do£ £ii)onftcci{) :
X, y = 0, 1
whi-la Trua.

yi.ald X
X, y ~ y, X + y

print(li9t(ltertools.islieo(£ibenaccin, 10)))

96

Iteradores y generadores

Rin SCurCE

^ *C:\Progtu Fllea\Pychon 3.1\pyctioQ.exe*
(0, 1, 1. 2. 3, 3, 6. 13, 21, 34)

* * I

En el código anterior se ha utilizado la función ¡slice del módulo itertools. La
función ¡slice retorna un iterador con los elementos seleccionados (los 10 primeros
en este caso) de un iteradle que se recibe como argumento. El módulo itertools
será analizado en detalle en próximas secciones

4.4 Mezclando secuencias ordenadas

En el problema de mezclar una cantidad n de secuencias, los generadores
nuevamente parecen ser la herramienta apropiada para evitar un uso innecesario
de memoria Dado que las secuencias se encuentran ordenadas, la estrategia más
lógica para abordar el problema consistiría en realizar un recorrido comparando los
elementos actuales de cada secuencia y escogiendo el menor en cada momento,
luego incrementando un índice asociado a esta secuencia para que no se repitan
comparaciones de ese elemento con el resto.

daf na!cla._s«cs (*a«cs) :
rtcorridas ■ 0
indicas ■ (0 for x in sacs]
i Para cr.-r-rcl'Jr ol cajo tía lirt.u

for 8 in sacs:
if lan(s) is 0: socorridas +■ 1

whlla racorrldas < lan(aacs):
alan, j ■ nintsacs, indicas)
S lijt.i tJCXlrciiCo rcicrrid.T
if indieaslj] is lan(sacs(ll):

racorridas -f* 1
yiald alan

daf nln(sacs, indicas):
alen ■ float('inf'}

j ■ -1
for i in Eanga(lan<sacs));

if indicaa[i] < lan(80cs[1])'
if sacs[i] {indices [i]] < ala.n:

alan - sacs{i]{indicas{i]]
3 - i

a CújplAj-íi cl ir.Jjcc cli. 1 r
li cuyo olcncnto fi:o jclemon.'.ci?

a a
indicos(j] +■ 1
return alan, j

UNIVERSIDAD TECNfCA DEL NOR^E

biblioteca
Ibarra • Ecuador

itar ■ nazcla_sacs([1,3],(2], {0])
for a in itar:

print(a)

97

python fácil

Bin I* tot_________________________

^ , C:\Pychoc3Upytiuui.ue
, 0

» ,g ja

@3 .Ci

El método min es el encargado de escoger el menor elemento de todas las
secuencias siempre considerando aquellos que se hayan seleccionado previamente.
También se encarga de desplazar el índice asociado a la lista del elemento
seleccionado. La función generadora mezcla_secs mantiene el control de cuántas
secuencias han sido totalmente recorridas y su ejecución concluye cuando la variable
recorridas es igual a la cantidad de secuencias suministradas como argumento.

4.5 Iterando en paralelo por varías secuencias

El problema es simple; se cuenta con una cantidad n de secuencias y se desea
iterar sobre estas tomando en cada iteración los primeros elementos de cada
secuencia, luego los segundos y así sucesivamente. Una solución bastante simple
y elegante puede devenir del uso de generadores.

lt«raclon_paxal«lo(*s*ca):
nax_leng nax([l«n(x) for x In ates])

for i in ranga(nax_long):
alana m []
for a in aaca:

if i < lan(a) :

alana.appand(a [i])
yiald alana

itar ■ itaracion_paralalo([1,2],[3,4,5])

for a in itar:
print(a)

Rixi ^ test

k>
m
II

t
Tc7\Python31\python.exe

‘ (l. 3]
' [2, 4]

! [S]

La función generadora comienza calculando la mayor de las longitudes en sees
y este valor es almacenado en maxjong. Luego se realiza un recorrido hasta
maxjong tomando elementos de cada secuencia siempre y cuando el índice
actual sea menor que la longitud de la misma. Para que el resultado sea
significativo y fácil de comprender, los elementos que corresponde al índice i de
cada lista se almacenan en elems, que finalmente es el valor suministrado a la
sentencia yield.

98

4.6 Operaciones en matrices

Iteradores y generadores

Las matrices son arreglos k-dimensionales donde se almacenan valores que pueden
ser accedidos por índices En las matemáticas se conocen desde el año 200 a C y
siempre han estado vinculadas al estudio de sistemas de ecuaciones Toda una
rama de esta ciencia está dedicada al estudio de matnces y durante mucho tiempo
han sido ampliamente investigadas y empleadas en las más disímiles áreas
Probablemente el caso más conocido de matriz se tenga cuando k = 2
(bidimensional), con n filas y m columnas, básicamente lo que se entiende por una
tabla A continuación se muestra una matnz cuadrada donde n = m = 3

1 2 3

4 5 6

7 8 9

Entre las operaciones más comunes en matrices se encuentran la suma, la resta
y la multiplicación Para comenzar el estudio de dichas operaciones pnmero se crea
la clase matnz que representa a la estructura de datos y que en su momento servirá
como contenedor para diferentes funciones aplicadas sobre matnces

class matriz:
_n = 0

= 0
elems = None

def __inlt__(salí, n, m):
self._n = n
self .^ra o m
self._elems = []
for i in range{self._n):

self._elems.append([])
for j in range(self.^m):

self._elems(i].append(O)

def define_elem(self, i, j, v)
self._elems[i][jl » v

def imprime(self);
for i in range(self ._n) :

for j in range(self._m):
print(3olf ._elems[i) [j] , sep*»’, ,and« ')

print('\n')

99

Python fácil

d«f dun*_num_eel (self) :
return scl£._m

def deine_nun^fll (self) :
return self._n

colxinnes ■ property (fget«dame_num_col}
files ■ property(fgetBdene^num_fil)

n ■ netriz(4,3)
m.isg)rlne ()

Rifi tnt
n t '^ DOD
m
II S'

000

a
' 000

! 000

Observe que la matriz se inicia con valor 0 en cada celda y que la modificación
de estos valores tiene lugar mediante el método def¡ne_elem. En próximas
secciones se describirán operaciones sobre matrices que se asume estarán
declarándose como métodos de la clase anterior.

4.6.1 Suma
La suma de un conjunto de matrices A1, A2.....An es una de las operaciones
más sencillas que se puede realizar sobre esta estructura. Llevar a cabo esta
suma depende en gran medida de que todas las matrices tengan igual
dimensión y compartan el mismo valor para cada dimensión. De este modo no
sería posible sumar una matriz A de 3 x 2 con una matriz B de 4 x 2. Este
prerrequisito se halla justificado por la manera en que se realiza esta
operación.

El resultado de sumar dos matrices A y B es otra matriz C que tiene en
cada celda el resultado de sumar las correspondientes celdas de A y de B, de
modo que la primera celda de C, sería C (0,0) = A (0,0) + B (0,0) y de manera
general C (i, j) = A (i, j) + B (i, j) para todo par de índices válidos de A y B. La
forma en que se realiza la operación justifica el prerrequisito de que las
dimensiones de todas las matrices coincidan. Generalizando, la suma de
n matrices se obtiene mediante la fórmula, C (i, j) = A1 (i, j) + A2 (i, j) +
An (i, i).

100

Iteradores y generadores

Compruebe el lector que los valores de las celdas de la primera fila de C
coinciden con la suma de los valores de las celdas equivalentes en A y B.

5 = C (0,0) = A (0,0) + B (0,0) = 4 + 1

7 = C(0,1) = A(0,1) + B(0,1) = 5 + 2
9 = C (0,2) = A (0,2) + B (0,2) = 6 + 3

Finalmente, el desarrollo del método suma se presenta en el siguiente código;

def suoa(sol£,^matrices):
for i in range(solf.filas):

fila = []
for j in range(self,coltmnas) :

tamp - self.olemsíi][j]
for m in matrices:

temp m.elems[i][j]
f ila. append (fcexap)

yield fila

ml = matriz(3,3)
ml.define_elem(0,0,1)
ml.define_elem(0,1,2)
ml .define__elem (0,2,3}

m2 = matriz(3,3)
m2.define_elem(0,0,4}
m2.define_elem(0,1,5]
m2 .define_^elem(0,2,6)

for e in ml.suma(m2):
print(e)

Run H source

0.
a

+ ; *C:\Ptogtfta Files
(3, 7, 9J
(0, 0, 0]II I m ' (0, 0, 0]

La función se implemenla como un generador que retorna una fila de la matriz
C cada vez que se alcanza la sentencia yield. Tenga en cuenta el lector el ahorro
de memoria que representa el hecho de no almacenar la estructura C cuando se

101

python fácil

trabaja sobre matrices de dimensiones considerables, es una bondad derivada del
uso de generadores. Observe también que en el código anterior se definen las
primeras filas de m1 y m2 como las de las matrices A y B de la figura detallada al
inicio de esta sección y que ilustraba la operación de suma de matrices. La
primera fila del iterador resultante se halla en correspondencia con la primera fila
de la matriz C de la figura anterior.

4.6.2 Producto por un escalar
Un escalar es un elemento que por lo general se encuentra en el conjunto de ios
números reales. El producto de una matriz A de m x n por un escalar x es una
operación binaria que toma por operandos a la matriz A y al escalar x y tiene por
resultado una matriz C de m x n donde para todo i, j índices válidos de C se
cumple C (i, j) = x*A (i, j).

1 2 3

7 8 9

13 14 15

A C

La ímplementación del método como una función generadora es bastante
simple y se presenta a continuación:

def producto_«scala£(sel£, x):
for i In ranga(self.filas):

fila,- []
for j in range (self, coliunnas) :

fila.append(self.alamsli][jl *x)
yield fila

m ■ matriz(3,3)
m. de fina_alam(0,0,1)
m. def ina^alam (0,1,2)
m. daf ina^alam (0,2,3)

for a in n.producto_e8calar(3):
print(a)

102

Iteradores y generadores

Rin •* test

'C:\Pyebonal

O. 6, 9)
[Or 0, 0]
[0, o, 0]

En el código anterior se define la matriz m cuya primera fila corresponde con la
primera fila de la matriz de la figura anterior, también se define igual valor para el
escalar x. Fíjese en que el resultado se halla en correspondencia con el del
ejemplo de esta sección.

4.6.3 Producto
El producto de matrices encuentra sus orígenes en el papel que desempeñan las
matrices como funciones lineales. Según la forma en que se define este producto,
se puede decir que proviene de la composición de funciones lineales.

Si f y g son aplicaciones lineales tal que f A -> B y g: B -> C (A, B son los
dominios respectivos de f, g y B, C son las imágenes que corresponden a estos
dominios) entonces la composición de f y g denotada por el operador o, cumple
que f o g: A -> C. Los dominios pueden verse como los posibles valores de
entrada de la función y pudiera hallarse representado por un conjunto como el
conjunto de números reales. Por otro lado, la imagen sería un conjunto con las
posibles salidas ofrecidas por esta función y también pudiera ser el conjunto de
números reales. De esta forma el producto de la matriz A de m x n con la matriz B
de n X p serla una matriz C de m x p io cual representa una restricción. Dicho de
otra forma, solo es posible multiplicar matrices cuando la cantidad de columnas de
la primera es igual a la cantidad de filas de la segunda.

2x3

1 2 3

7 8 9

A

3x2 2x2

UNIVERSIDAD TECNÍCA OEl NORTE
biblioteca

—Ibarra • Ecunoor

El ejemplo anterior muestra el resultado de realizar el producto de las matrices
A y B, operación que se lleva a cabo entre filas de A y columnas de B, lo que
justifica que se requiera que esas cantidades sean iguales. Para calcular una
celda de C, sea C (i, j), se toman los valores de la fila / de A y se multiplica cada
uno con su correspondiente valor en la columna j de B, luego se suman los valores
obtenidos y el resultado es C (i, j). De manera general C (i. j) = A (i, 1) * B (1. j) + A
0. 2)*B(2.j) + ... +A(I, m)*B(m.j).

Para ver casos concretos considere la forma en que se calculan las siguientes celdas;

103

Python fácil

C (0. 0) = A (0. 0) • B (0, 0) + A (0. 1)*B(1,0) + A(0.2)*B(2.0) = 1*1 +
2*7 + 3*13 = 54.

C (0, 1) =A(0. 0) * B (0. 1) +A(0. 1) *B(1. 1) + A (0, 2) * B (2. 1) = 1 * 2 +
2*8 + 3*14 = 54.

C (1, 0) = A (1, 0) * B (0, 0) + A (1. 1) * B {1, 0) + A (1, 2) * B (2, 0) = 7 * 1 +
8*7 + 9*13=180.

C (1, 1) = A{1, 0) *B (0, 1) + A(1. 1) *B{1. 1) +A(1, 2) * B(2. 1) = 7*2 +
8*8 + 9* 14 = 204.

La implementaclón en Python de una función generadora que realice el
producto de matrices se detalla en el siguiente código;

def producto(self, m):
If self.filas is not m.columnas:

raise Exception(‘Cantidad de filas'
‘y cantidad de columnas '
'no coinciden')

for i in range(self.filas):
fila s n
for j in range(m.columnas):

suma 0
for e in range(self.columnas):

suma += sel£.elems(i][c]*m.elems[c][j]
fila.append(suma)

yield fila

mi = matriz(2,3)
tf Priner.í fil.i
mi.define_eleffl(0,0,1)
mi.define_elem (0,1,2)
mi.dafine_elem(0,2,3)
fí Segunda fil.i
mi. def ine_elem(l, 0,7)
ml.define_elem(l,l,6)
mi.defina_elem(l,2,9)

m2 — matriz(3,2)
Pri.T'cra colu-vu

m2.define_eleffl(0,0,1)
m2.defina_elem(l,0,7)
m2.define_elem(2,0,13]
d Sc-jund.! coltv~Ji3

m2.define_elem(0,1,2)
m2.define_elem(l,1,6)
m2. define_alem(2,1,14)

for e in ml.producto(m2):
print(e)

104

Iteradores y generadores

Rui r* laxce

^ 'C:\Prograa ru«9
|94. 60)

■ ♦ |ieo, ao(]

En la próxima sección se analizará un ente matemático que se halla vinculado
a las matrices y a los sistemas de ecuaciones lineales desde hace mucho tiempo;
se trata del determinante.

4.6.4 Transpuesta
La transpuesta de una matriz A es otra matriz B tal que las filas de B son las
columnas de A.

El código para obtener la matriz transpuesta de A es bastante simpie y se
presenta a continuación:

de£ tiranapuesta (self} :
for j in ranget&elf.colxonnas):

fila = []
for i in range(self.filas) :

fila.append(3Ql£.elems{i][j]}
yield fila

m = matriz(3,3)
i? Prifior-i fila
m.de£ine_elem (0,0,1)
m.de£ina_elem(0,1,2)
m.de£ina_elem(0,2,3)

Sa^u'.dn fíl.i
m.de£ina_elem(l,0,4)
m.dafine_elem(1,1,5)
m.dafine_elem(l,2,6)

Toiccra fila
m. da£ine__elam (2,0,7)
m.de£ine_elem(2,1,B)
m.de£ine_elem (2,2,9)

for e in m.transpuestaO :
print(a)

105

python fácil

fiin ^ tuce

t *Ci\froct(a
fl. *.

■ ♦ (3. 9, a)

II (3, S, »]

Nuevamente, y para mantener un uso eficiente de memoria, se define la
función como un generador. Esto evita tener que almacenar la matriz completa, la
cual puede tener grandes dimensiones y ocupar bastante memoria.

4.7 Generando permutaciones y combinaciones

En teoría combinatoria una permutación es un reordenamiento de los n elementos
de una colección. El número de permutaciones es n! y se halla definido por la
forma en que estas se construyen. Para obtener una permutación se toma un
elemento cualquiera de la colección, luego se toma otro cualquiera de los n-1
restantes y así sucesivamente hasta que quede solo un elemento lo que daría al
final un total de n*(n-1)*(n-2)...*2*1 = ni permutaciones posibles Para una lista (1,
2, 3] las permutaciones son;

[1,2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

Una combinación sin repetición de orden k (k <= n) se traduce en la forma de
tomar k elementos de una colección de n elementos sin repetir elecciones y sin
repetir elementos en cada elección. Considerando k = 2 y la lista [1, 2, 3] las
combinaciones posibles serian:

[1,2], [1.3], [2, 3]

Fíjese en que [2, 1] o [2, 2] no son combinaciones posibles pues la primera
duplicaría una elección tomada ([1, 2]) y la segunda repite el elemento 2. El
número de combinaciones es conocido como coeficiente binomial y su valor es ni /
((n-k)Ik!). Resulta interesante comprender la demostración lógica que justifica el
uso de esta fórmula como vía para conocer el número de combinaciones de orden
ken una colección de n elementos.

Primeramente obsérvese que la fórmula divide el número de permutaciones por
{n-k)lkl asi que dicho grosso modo el coeficiente binomial representa una
reducción de permutaciones para llegar al número de combinaciones de orden k.
Para obtener dicho número se toman n*k elementos y luego se toman otros k
elementos que se permutan en un producto con el objetivo de conocer cuántas
permutaciones de k elementos existen por cada permutación de n-k elementos.
Para comprender esto en un ejemplo considere las permutaciones de la lista
anterior [3, 1, 2], [3, 2, 1] y supóngase que se desea obtener combinaciones de
orden 2. En las dos listas el elemento 3 es fijado y las dos últimas posiciones son
los elementos a ser evaluados como combinaciones válidas, la fórmula solo
dejaría una de estas y eliminaría la otra dado que [2, 1] y [1, 2) no son al mismo
tiempo combinaciones válidas de forma tal que una debe desaparecer Esto
sucede también para las listas [1, 2, 3], [1, 3, 2] y [2.1, 3], [2, 3,1] de modo que es
necesario dividir el total de permutaciones 31=6 por 2 y la mitad de las

106

Iteradores y generadores

permutaciones equivale a la cantidad de combinaciones de orden 2. El resultado
obtenido indica que cada dos permutaciones existe una combinación

[1. 2, 3]J[1,_3,_2Í¡ [2, 1. 3].í[2'3riÍÍ [3. 1. 2],|(3iriíi

Observe el lector que los últimos 2 valores de las permutaciones señaladas
anteriormente son [3, 2], [3, 1], [2, 1] que corresponden con las combinaciones
presentadas anteriormente.

Finalmente un código en Python que retorne las combinaciones y
permutaciones de una lista se ilustra a continuación;

de£ ^^combinaciones (£, 1, n) :
if n=0:

yield []
return

for i, elem in enumerate(1) :
actual B [elem]
for c in ^^combinaciones (£, £(1, i) , n-1) :

yield actual -i- c

def combinaciones(1, n):
def ignora_ith_elem(l, i):

return l[:i] + lCi+1:]
return _combinacionea(ignora_ith_elem, 1, n)

def combinaciones__sin_repeticiones (1, n) :
def sucesor_ith_elem(l, i):

return l[i+l:J
return combinaciones(sucesor_ith elem, 1, n)

def permutaciones(1):
return combinaciones(1, len(l))

for e in permutaciones([1,2,3]}:
print(e)

for e in combinaciones_^ain_repeticiones([l,2,3], 2):
print(e)

Los algoritmos que requieren la generación de combinaciones o permutaciones
son conocidos como algoritmos combinatorios y, dado el elevado número de
combinaciones y permutaciones que existen, por lo general son intratables
computacionalmente Para entradas de un tamaño mediano la cantidad de
cómputos es gigantesca, lo que puede provocar que un algoritmo ejecutándose en
una computadora actual nunca termine o por lo menos no termine en un tiempo
razonable

107

Python fácil

Klíl •* IBÍ
en Up rthsa. exs
II. a.
11, 9.
ta. 1,
(a, 9,
19, 1.
13, a,
U. 3|
11. 3]
la. 3]

En la próxima sección se describirá brevemente un módulo que se encuentra
muy ligado a los iteradores: el módulo itertools.

4.8 Módulo itertools

El módulo itertools contiene funciones que construyen y retornan iteradores, lo que
conforma un álgebra de iteradores que permite diseñar herramientas poderosas.
Las funciones se pueden dividir según el iterador que retornan, así se cuenta con
las funciones que devuelven iteradores infinitos y con aquellas que devuelven
iteradores finitos.

Entre ias funciones que retornan iteradores infinitos se encuentran las
siguientes:

■ counto, devuelve un iterador que comienza en un número que se
suministra como argumento, también es posible definir el paso a dar en
cada iteración.

for • in it«rtools.count(l,2);
print (a)

Rin H test
C:\Pythoo31
1
3
S
7
9
n
13

Recuerde que el iterador es infinito, en el ejemplo anterior se detuvo la
ejecución y se muestra solo una parte de los elementos impresos.

■ cycleO, realiza un ciclo infinito por un iteradle suministrado como
argumento.

for • in itartools.eyclaf[1,2,3]);
print(e)

♦ 1
■ I

—'li

108

Iteradores y generadores

Rm lat

►► : ♦
■
H_jS
slcí

'9

C:\tV^os31
1
a
3
1
a
a
1
a

• repeatO. repite un elemento suministrado como argumento una cantidad
de veces también suministrada como argumento pero opcional. En caso
de no suministrarse esta cantidad, se repetirá el elemento infinitamente.
for e in itertools.repeatCarnaldo',3) :

print (a)
(tul P test

►► t C:\Pytlion31\pytboo.exe
anialdo

■ + amoldo

II |S ATTlAldO

Las funciones que devuelven iteradores finitos se utilizan frecuentemente para
realizar consultas sobre colecciones que pudieran representar tablas de una base
de datos. De hecho muchas de estas funciones tienen comportamiento similar a
sentencias o funciones de SQL.

• dropwhileO, toma como argumentos un predicado y un ilerable y retorna
un iterador con aquellos elementos del iterable comenzando por el
primero que tuvo valor de verdad False al ser evaluado en el predicado.

for e in itertools.dropwhile(lambda x: x < 3,[1,2,3,4,5]):
print(a)

fUn test

►► C:\PyUio&31
3

■ 4- 4
II 9

■ takewhileO se puede considerar el opuesto de dropwhileO pues toma
elementos de un iterable hasta que se incumple el predicado.

for e in itarbeols.takawhile(lambda x: x< 3,[1,2,3,4,5]):
print(a)

Rui ^ test

4^ 1 C:\Pychon3X

1
m + ja

filterfalseO, retorna un iterador con los elementos que evaluaron a False
en el predicado suministrado como argumento.

109

Python fácil

for • in lt*rtools.fllt«rfals«(laRibda x: x < 3, Cl«2,3,4,5]) :
print<•)

Rui test
A jCt\Pytíian31

¡3
■ ♦ >4
S 1»

En el próximo capítulo se describirán dos de ias herramientas más
interesantes y poderosas de Python, herramientas que favorecen la creación de
código legible y elegante. Se habla en este caso de los decoradores y las
metaclases.

Ejercicios del capítulo

1. Programe una función generadora que retorne los caminos que existen
para llegar de un punto A a un punto B en una matriz de nxm.

2. Programe una función que retorne un iterador con los n primeros
números primos, donde n es un número suministrado como argumento,

3. Programe la función generadora parjranspuesta () que opera sobre
una matriz y cuyo resultado es otra matriz donde cada fila es una
columna par de la matriz suministrada como argumento.

110

CAPÍTULO 5.
Decoradores y metaclases

Durante este capítulo se analizarán los decoradores y las metaclases,
herramientas de Python que permiten simplificar y al mismo tiempo extender el
código de un programa. Se comenzará estudiando los decoradores, sus beneficios
y algunos ejemplos de utilidad, luego se describirán las metaclases y de igual
forma se analizarán varios ejemplos que demuestren su utilidad y ventajas.

5.1 Decoradores
Los decoradores son funciones de envoltura (del inglés wrapper), es decir, son
funciones que reciben como entrada una función, la cual pueden manejar de forma
particular y retornar otra función llamada función decorada que es el resultado de
una posible modificación (no de código) al resultado de la función de entrada.

Utilizando un decorador es posible cambiar el comportamiento de cualquier
objeto invocadle (métodos, clases, etc.) sin necesidad de modificar su código. Es
una forma de extender funciones y de simular su sobrecarga. En el siguiente
ejemplo se crea un decorador que recibe como argumento una función que se
modifica en otra función interna al decorador y que juega el papel de envoltura.

def decorador(f):
daf envoltura!):

print('1')
f{)
print('3 ')

return envoltura

Qdecorador
def gO :

print('2')

g()

Rui r* c»ce
“Ci\Proarao
1
a
a

111

Python fácil

Luego de realizar la decoración de la función g se ha logrado extender sus
funcionalidades. Observe que el decorador controla lo que sucede antes de ejecutar
la Unción y lo que ocurre después de ejecutar la función. Como se aprecia en este
ejemplo, puede ser tan simple como la impresión de los números 1 y 3.

Los decoradores también ofrecen la posibilidad de componer funciones, sí
consideramos las funciones f(x) = x + 1 y g(x) = x * 2 entonces su composición
g(f(x)) puede lograrse mediante el siguiente código:

da£ g(f) :
daf h{x) ;

return £(x) * 2
return h

0g
de£ £(x);

return x -f 1

print(£(3))

Rm P sotrcc

4 'C:\Progrea Files

■ ♦
e

Para lograr la composición de í en g se emplea g como decorador y una vez
que se suministra un argumento la función envoltura (h) realiza la multiplicación
f(x) * 2 que se traduce en (x+1) * 2 que en definitiva es g(f(x)). La composición al
igual que la decoración puede extenderse a n funciones de modo que al
considerar la función k{x) = x ** 2 sería posible lograr la composición k(g(f(x))) tai y
como ilustra el siguiente ejemplo;

daf 9(f):
de£ h(x)!

rotum £(x) ,i 2
I ''return h

• ’

j -def Mg) r ■
de£ b(x):

return g(x) ** 2
return h

ek
Qg
def £(x):

return x+1

print(f(3))

Rm P tajee
@ t

■ *

•C»\Proffria rilei
6«

112

Decoradores y metaclases

Observe que la composición se realiza comenzando por la primera función en
la cadena de decoradores, que en el caso anterior sería la función k seguida de g
y finalmente la función decorada f. De este modo la función g recibe como entrada
la envoltura de k y de igual manera f recibe la envoltura de g. En próximas
secciones se estudiarán algunas de las situaciones en las que un decorador
resulta una herramienta útil, ya que ofreciendo una solución simple y elegante
puede ofrecer un código legible.

5.1.1 Añadiendo funcionalidad a una clase
Como se mencionó previamente, una de las ventajas que ofrecen los decoradores
es la sobrecarga y extensión de funcionalidades. Evidentemente, la adición de
funcionalidad de una dase puede lograrse por medio de la adición de
funcionalidad otorgada a uno de sus métodos, con la ventaja además de que el
código original de la clase permanece intacto, o sea, no se modifica. En el
siguiente código la clase banco cuenta con un constructor y un método
saldos_positivos que debe tener como salida una lista con los saldos positivos con
los que cuenta el banco. Para implementar esta operación se emplea un
decorador que selecciona y devuelve aquellos valores mayores que cero en una
lista que corresponde con la salida de un método de clase.

Decorador que eelecclooa y retorna
valores positivos de usa lista
def positivos(fuñe):

de£ eiivolt(s«l£) :
elems = fuñe(self)
result B D
for e In elems:

1£ e >0:
result.append(e)

return result
return envolt

class banco;

cuentas a []
nombre = Hone

UNIVERSIDAD TECNICA í)EL NORíE

biblioteca
Ibarra • Ecuador

def__init__(self, nombre, cuantas):
self.nombra “ nombra
self.cuentas = cuentas

gposltlvos
def saldos^osltivos (self):

return self.cuentas

b « bancoCBBVA', (273, 552, -1, 33, -4«1)
Rui cajee
» 11 1 C!\Python31\p/tíion.exB

(373, 353, 33]
■ . 1

113

Python fácil

Como hemos visto en capítulos anteriores, los métodos son funciones que
reciben como primer argumento una referencia al objeto que los encapsula. Los
decoradores para este tipo de función de clase deben construirse teniendo en
cuenta el argumento self en la función envoltura, de este modo la función puede
realizar el llamado al método de clase y extenderlo.

Otra alternativa deriva del uso de una cantidad arbitraria de parámetros,
mediante el uso de la sintaxis estudiada *args, **kwargs, así se puede observar en
el siguiente ejemplo;

Decorador qae aelecciona y retoma
§ valorea poaítívoa de una 2iata
def positivos<func):

def envolt(*args, **kwargs):
alema b £unc(*args, **kwargs}
result B []
for e In elems:

If e > 0:
result.append(e)

return result
return anvolt

class banco:

cuantas ■ []
nombre ■ None

def inlt (self, nombre, cuentas):
self.nombre ■= nombre
self.cuentas = cuentas

^positivos
def saldosjposltivos(self, *arga):

return ergs

b » banco('BBVA', [273, 5S2, -1, 33, -44J)

print(b.saldos_positlvos(273, S52, -1)}

Run P 601ÍCÍ

■
t C:\Python31\pychon.exe

[273, 992]

5.1.2 Pasando argumentos a decoradores
De manera predeterminada un decorador espera recibir una función como entrada
y el mecanismo mediante el cual se le suministran argumentos depende de otra

114

función conocida como generador de decoradores cuya tarea es envolver al
decorador y recibir sus argumentos.

Decorador que selecciona y retoma

§ valores positivos de una lista
mayores que cota_sup.
def positivos(cota_aup):

daf prlinara,_envolt(func) :
de£ seguncU_envolt(*args, **kwargs):

elems = £imc(*axgs, **kwargs)
result = []
for e In elems:

If e > 0 and e > cota_sup:
result.append(e)

return result
return segunda_envolt

return prlmara_envolt

class banco:

Decoradores y metaclases

cuentas = []
nombre = None

def Inlt__(self, nombre, cuentas):
self.nombre = nombre
self.cuentas » cuantas

Sposltlvos(300)
def saldo8_posltlvo8(self, *args):

return args

b o bancoCBBVA’, [273, 552, -1, 33, -44])

ptint(b.saldos_j>osltlvos(273, 552, -1))

Run ^ scurce

I ^ I C:\Py^oa31\python.exe
ai*

En el ejemplo previo positivos es el generador de decoradores y recibe como
argumento un valor cota_sup que tiene como objetivo filtrar el resultado por los
elementos con valor mayor que cota_sup, note que el resultado final corresponde
con este filtro.

S.1.3 Métodos estáticos y de clase con decoradores
Previamente se analizaron los métodos estáticos y los métodos de clase y su
definición por medio de las funciones predefinidas classmelhod y staticmethod,
para recordar su utilización considere el siguiente código:

115

Python fácil

daf «ntranaf <}:
print{'Entrenando...')

class pintor:

_nenbra m Nona

daf__init__(self, nonibra) :
self.^nombra ■ nonbra

daf pinta^euadrof(jclf):
print('Pintando cuadro..-’)

pinta^cuadro ■ classmathod{pinta_cuadref)
antrana ■ staticnathed(antranaf)

picasse • pintor{'picaaso')
pintor.antrana 0

Una alternativa al código anterior resulta del uso de decoradores que
proporcionan un código más simple y compacto.

class pintor:

__nornbra • Nona

def __init__(self, nombra) :
self._nonbra o nombre

Sclassmethod
daf pinta_cuadro(salf):

print('Pintando cuadro.■.')

Ostaticmethod
def antranaO:

print(■Entrenando...')

Picasso ■ pintor('Picasso')

pintor.antrana()

Las funciones classmethod y staticmethod cumplen el rol de decoradores y
pueden definirse como tal para las funciones que así lo requieran.

5.1.4 Patrón memoíze
El patrón memoize o de memorización es empleado en diferentes técnicas de
programación, entre ellas, la programación dinámica. Consiste en almacenar las
soluciones calculadas para evitar que sean recalculadas y con esto reducir el

116

Decoradores y metaciases

tiempo computacional de los algoritmos. En el siguiente código se puede apreciar
un decorador que sigue este patrón y almacena las soluciones en un diccionario
para ser reutilizadas al ser requeridas nuevamente.

def memoize(£):
memoria = ()
de£ anvolt(n):

i£ n not in memoria:
memoria[ni - £(n)

retiurn memoria [n]
return envolt

Un problema que aprovecha enormemente este patrón es el conocido
problema de hallar el n-ésimo número de Fibonacci. En su versión recursiva el
procedimiento puede verse como se observa a continuación:

def fibonacci(n):
if n < 2:

return n
else;

return £ibonacci(n-l) £ibonacci(n - 2)

El árbol recursivo que genera este algoritmo se halla plagado de subárboles que
corresponden a casos resueltos en diferentes ramas y que por lo tanto están siendo
recalculados. La siguiente figura muestra la explosión arbórea cuando n = 7.
Obsen/e el lector todos los subárboles que se repiten.

Una solución de tipo ramificación y poda utilizando el decorador memoize
puede evitar estos cálculos innecesarios.

Gmemoize
de£ fibonacci(n):

if n < 2:
return n

else:
return fibonacci(n-1) + fibonacci(n - 2)

117

Si modificamos el código del decorador para que Indique cuándo una solución ha
sido calculada previamente, podemos ver que la memorización se está llevando a cabo.

def meaaize(f):
mamozla = {)
dof envolt(n):

if n not in memoria;
memoria[n] = £(n)

else:
print('Calculado', n)

return memoria[n]
return envolt

fibonacci(7)

python fácil

Rm H seuce
» -f ■CsVPpoffrea FUes

Cftlcolodo 1■ ^ C4Ículado 3
11 CiLlculado 3

Calculado 4
CalculAdo 9

En secciones venideras se analizarán las metaclases y en detalle algunas de
las situaciones en las que estas pueden resultar ventajosas.

5.2 Metaclases
El prefijo meta se emplea en español para hacer referencia a un concepto que
abstrae a otro. Por ejemplo, en inteligencia artificial existen las metaheurísticas
que son (de forma simplista) heurísticas de heurísticas, de la misma forma las
metaclases son clases de clases. Definiendo el concepto con mayor formalidad,
una metaclase es una clase cuyas instancias son clases y que tienen como
objetivo primario personalizar la creación de clases, de este modo es posible
considerar la siguiente cadena:

objet
Instancia de
---------------►

Instancia de
clase ---------------- ► metaclase

Las metaclases pertenecen a una técnica de programación conocida como
metaprogramación, muy recurrente en lenguajes dinámicos como Python y que
como el nombre sugiere se basa en la creación de programas que a su vez
produzcan otros programas los cuales generalmente se crean en tiempo de
ejecución contribuyendo al ahorro de código que entonces se genera
automáticamente al ejecutar el programa y nunca se encuentra de modo físico en
un fichero. Al lenguaje en que se escribe el metaprograma se le conoce como
metalenguaje y al lenguaje de los programas que se manipulan se le conoce como
lenguaje objeto. La posibilidad que tiene un lenguaje de programación de ser su
propio metalenguaje se conoce como reflexivídad.

118

Decoradores y metaclases

Como se mencionó previamente una metaclase puede verse como una clase que
es responsable de crear otras clases y suele implementar los siguientes métodos:

■ __new__; crea la metaclase.
■ __init__: inicializa la metaclase.
■ __^call__: se ejecuta cada vez que se intenta Instanciar un objeto por

medio de la clase.
■ clase.__new__: crea la instancia.
■ clase.__init__: inicializa la instancia.

La mayoría de las subclases heredan del tipo type y extienden o sobrescriben el
comportamiento deseado. En código, el marco para desarrollar metaclases es el siguiente:

class Metaclase(type):
II Definición de métodos...

class A(metaclass= Metaclase):
II Definición de métodos...

a = A()

El código anterior se puede traducir de la siguiente manera: se crea el objeto a
que requiere una clase A y para crear la clase A se requiere una metaclase
Metaclase, en caso de no especificarse se asume type, que es la metaclase por
defecto. Para comenzar a analizar un código consideremos el siguiente ejemplo
que representa una metaclase cuyo objetivo es implementar el patrón Singleton,
que restringe la creación de instancias de una clase a solo una.

class Singleton(typa);

daf __init__(ela, nana, basas, dct) :
cía, instanca ■ Nona
typa. init__(da, nana, basas, det)

def __cali__(cía) ;

If da. instanca is Nono;
da. instanca ■ typa.__cali___(da)

ratum da.__instanca

class objetoSlnvletonlnataelassBSinglaton):

da£ atr (aolf):
raturn ’Objeto Singleton’

a B objetoSlnglatonO
b ■ ObjatoSinglatonO

print(a)
print(b)

Rui r’ aoirce
I ^ I C:\Pythas31\python.exe , I CS)jeto Singleton

® I Done

119

Python fácil

Fíjese en que el segundo objeto no ha sido creado, el llamado al constructor de la
clase ObjetoSingleton pasa por el método__cali__y dado que existe una instancia de
la clase al momento del segundo llamado otra instancia no es creada Eliminar la
condicional del método__^call__descarta la restricción de creación de instancias.

clasa Slngl*ton(typ«):

__init__(cía, n»n*, basas, dct>:
cl3,__instanca ■ Nona
typa.__iait__(cIj, nana, basas, dct)

daf__cali__(da) :
cía.__instanca • typa.__cali__(da)
ratuxn ds.__instanca

class ObjatoSinglaton(nataclassaSinglaton):

daf __str__(self):
satusn 'Objeto Singloton'

a >■ ObjatoSinglatonO
b ■ ObjatcSloglatcnO

pcint(a)
print(b)

Rii) sxrce
^ I C:\Python31\pytlian.ese

I Objeto Singleton
® ^ j Sijeto Singleton

> En el código de la clase Singleton se pudo observar cómo se creó la clase
Singletorr que’sobrescribe el método__new__, dicho método se ejecuta antes que
__init y es el encargado de crear la instancia de clase que luego será
suministrada al método init . En caso de que este método no devuelva la
instancia entonces nunca se ejecutará el método__init__pues el objeto nunca
habrá existido, es por esto que un segundo llamado a la clase ObjetoSIngletonO
devolvería None. Como se puede ver, la metaclase también sirve de puente entre
la instancia y la clase dado que controla la forma en que esta se comporta.

Cualquier preprocesamiento que una metaclase personalizada realice en el
nombre, base o diccionario de la clase que está siendo creada puede afectar la
manera en la que el objeto de clase es construido si dicho preprocesamiento
ocurre en el método__new__de la metaclase y antes de realizar el llamado al
método del mismo nombre de la superclase de la metaclase.

El método de metaclase__init__es generalmente el más apropiado para
cambios que se realicen en el objeto clase después que este ha sido construido.

En general la convención adoptada cuando se implementan __init__ y
__new__ es que el segundo debería emplearse para tareas que no puedan
realizarse después de la inicializacíón de clase y el primero deberla tomarse para
tareas que puedan llevarse a cabo luego. No todas las características de un objeto
pueden cambiarse luego del llamado a__new__.

120

Decoradores y metaclases

Durante secciones venideras se describirán algunas situaciones en las que las
metaclases pueden resultar bastantes útiles y pueden ofrecer una solución
elegante a un problema computacional

5.2.1 Encadenando métodos mutables de listen una expresión
Métodos de algunos tipos como list realizan una mutación de la secuencia pero
retornan None Ejemplo de estos son sort, insert y append Sería deseable bajo
determinadas circunstancias que los llamados a los métodos anteriores pudieran
encadenarse en una sola expresión.

sort().append(2) insert(1,1)

y no ejecutarse como sentencias independientes:

sort{)
append(2)

insert(1,1)

Para ello sería necesario que cada método devolviese una referencia a self.
Una metaclase personalizada puede ofrecer una solución a esta problemática, así
se Ilustra en el siguiente código:

‘I Eíu*uclre un nucodc que clsx'i.olvc h'i’na an

H uno cjiic? dütniolvo dc1£

de£ erea_encaden&ble(fuñe):
dof envoltura{self, *arga, **kwda):

£unc(sel£, *args, *»Jcwds)
return self

return envoltura

class MataEncadenaeion(type):
dof __^new__(cncl, cNama, cBasea, cDict) :

fi ohtanjír 21 i’ist
^ liiago or.rcli ur 'us riitiblc' an cDicL

for base in cBases:
i£ not rarnstanceCbase, MataEncadanaeion);

for mutable u» cOict['__^cutabloo__
r£ mutable not rn cOict:

cDicttnutable) = \
crea encadenable(getattr(base, mutable))

break
II dolcgjL el zeíico u l.i cl.ire piílit. t^-pa

return \
auparíMotaEnoadenacion, cid).__new__(trcl, cNama, cBaaes, cOiet)

U^ERSIDAOTECNfCA OEl NORíE

®'^lioteca

Abarra • Ecuador

class Eneadanable(metacla33=MetaEncadenacion) :
pasa

class ListaEncadanable(Eneadanable, list):
mutables = 'reverse sort append extend insert'.split()

print(ListaEncadenable([3,2,1]).8ort().appond(O).sort())

121

Python fácil

Rui «oKe2

» ♦ *C:\Pregru FileaNPytton 3.1\pythoa.exe*
(0, 1, 3, 91

■ ♦

En el código anterior se ha creado la metaclase MetaEncadenacion que
sobreescribe el método__new__donde se filtra en un primer ciclo clases bases
cuyas instancias difieran de MelaEncadenacion, en este caso, list. Luego se busca
apoyo en el método crea_,encadenable para retornar referencias a self en cada
uno de los métodos definidos en__mutables__. Fíjese en que el resultado es una
clase que hereda de lista y que ofrece la posibilidad de encadenar en una sola
expresión varios llamados.

S.2.2 Intercambiando un método de clase por una función
Supongamos que queremos intercambiar un método de clase por una función
externa, para cambiar de esta forma el comportamiento del método de clase. Una
solución a esta tarea puede devenir del uso de metaclases y un código que
representa dicha solución se puede observar a continuación.

def is^rimaHoabre(2cl£):
print ("Amoldo")

class ZnterMetaclasa(typo):

daf __^tiew__(bcI, cHaaa, cBases, cOict):
cDict['onprx&e'] s ii^rimaKombre
return \
supardntexMotaclase, ncl) .__new__(ccl, cNama, cBases, cOict)

class A(mataclasaBZntoeHataclaso):

de£ isprlma(self):
print('Rola Python’)

a - A()
a.ingrima ()

Flun I' n«fcz2

» *C:\Frograa rileaXFythoB 3.1

u *
An&ldo

El intercambio se realiza por mediación del método__new__de la metaclase
InterMetaclase transformando el valor de la llave que corresponde al nombre del
método de ciase en el diccionario de atributos de clase.

También sería posible añadir un método de clase que corresponda a la función
anterior.

def __new__(mcl, cKsm, cBases, cDict) :
cDict [' mpr ma') = isprirteNombro
xaturn \
supor(ZntorMstaclase, cel). new (cel» cNaoie, cBasos, cDict)

122

« *» AO

a.ls^rimaO

Decoradores y metaclases

Aun P eau(E2

^ *C:\Pt04raB fileaSPythan 3.1
' Arnaldo

® ^ Bola Pjthon

Durante este capitulo se analizaron los decoradores y las metaclases como
herramientas que ofrece Python para beneficiar las buenas prácticas y la
posibilidad de crear código legible. En el próximo capitulo se detallarán las
alternativas que provee el lenguaje para el procesamiento de ficheros de texto
(XML, HTML, texto plano).

Ejercicios del capítulo
1. Cree una función decorada que tenga como resultado la composición de

las funciones f(x) = 3*x y g(x) = 2''x,

2. Responda V o F:

a) Las metaclases pertenecen a una técnica de programación donde
programas crean otros programas.

b) Las metaclases son funciones que crean exclusivamente funciones.

c) Es posible extender, modificar el comportamiento de clases en
tiempo de ejecución mediante el uso de metaclases.

123

CAPÍTULO 6.
Procesamiento de ficheros

Actualmente existe una gran cantidad de formatos de texto que estructuran, organizan
y presentan datos de forma particular Algunos de estos formatos se han convertido en
estándares para el intercambio de información en diferentes plataformas y muchos de
los lenguajes de alto nivel han incluido, en sus diferentes versiones, facilidades para el
procesamiento de estos formatos, Python es uno de estos lenguajes

Cuando se procesa un fichero definido en un formato específico se requiere de
vanas herramientas que se engloban dentro del campo de la teoría de lenguajes
Entre estas herramientas cabe mencionar a los parsers o, como también se los
conoce, analizadores sintácticos que son los encargados de verificar que la
estructura del fichero es correcta y de acuerdo al formato en cuestión Uno de los
objetivos principales de este capítulo será detallar algunos de los parsers que
Python ofrece o aquellos que pudieran construirse a partir de alguno ofrecido por
el lenguaje de manera predeterminada

6.1 Procesamiento de XML
Uno de los formatos más utilizados para el intercambio de información es XML
{Extensible Markup Language) El verdadero poder de este lenguaje radica en el
hecho de ser un metalenguaje, o sea, un lenguaje con el que se pueden crear
otros lenguajes Representa la información de forma arbórea lo que posibilita, de
manera implícita, la creación de jerarquías y relaciones entre los nodos que
componen el árbol Emplea una sintaxis basada en el uso de angulares y, al igual
que HTML, desciende de SGML, un lenguaje de marcas normalizado desde los
años ochenta y de propósito más general Un XML deberla comenzar siempre con
un encabezado donde se detalle la versión, la codificación, etc todo esto a modo
de atributos en una etiqueta llamada xml

<?xml version=”1.0" encoding="UTF-0" ?>

Cada etiqueta es de la forma <etiqueta> y debe estar compuesta de dos
partes una etiqueta de apertura y otra de cierre

<etiqueta> (de apertura)
(contenido)

</etiqueta> (de cierre)

125

Python fácil

El cuerpo, que sigue al encabezado en un XML no es opcional, siempre debe
estar presente y su presencia está dada por la existencia de al menos una
etiqueta.

A continuación se puede observar un XML que pudiera corresponder con
información de una tienda online, dedicada, entre otras tareas, a la venta de
automóviles.

<7xml version="1.0" encoding="UTr-8" 7>
<venta_auto3>

<auto>
<narca>

llÉrcadai'Banz
</marca>
<inodelo>

500 X-Sp*zlal-Ro«dst«r
</modelo>
<anno>

1936
</anno>
<precio>

200.000 SUR
</precio>
<31tÍO>

bttp://Mwv.v«nta8.cu/autoa/marc«ds>/
</sitio>

</auco>
<auto>

<marca>
Porach*

</oarca>
<modelo>

911 se
</modelo>
<anno>

19S1
</anno>
<ptecio>

IBO.OOO EUR
</precio>
<3ÍtÍO>

http://w*nf.v»nt*s.cu/autos/porsch«/
</sicio>

</auto>
</venca_autos>

Observe el lector que la etiqueta venta_autos es padre de las dos etiquetas
auto, cada una con sus datos específicos y que se establece una jerarquía entre
las marcas contenedoras y las contenidas. Durante esta sección se dedicará
especial interés al análisis sintáctico de documentos XML en Python, se
presentarán algunas situaciones en las que Python puede ofrecer una solución
sencilla a la extracción y análisis de datos contenidos en este tipo de documentos

126

http://w*nf.v%c2%bbnt*s.cu/autos/porsch%c2%ab/

Procesamiento de ficheros

6.1.1 Parser SAX
Un analizador SAX (API Simple de XML o Simple API forXML) es una interfaz para
procesar datos en formato XML, Antes de la llegada de SAX casi todos los
analizadores sintácticos de XML ofrecían una interfaz propia, así que las aplicaciones
se construían en base a un parser específico y las interfaces eran de bajo nivel, así que
la aparición de nuevos parsers provocaba que las aplicaciones que se adaptaran a
estos nuevos parsers tuvieran que ser modificadas para conciliar con el nuevo parser.

La solución a esta problemática se hallaba en la introducción de una nueva
capa de abstracción que sirviera como puente entre la implementación de un
determinado parser y la interfaz ofrecida. Dicha solución fue definida por un grupo
de programadores lidereados por David Meggason del XML-Dev, quienes
definieron un conjunto de interfaces en Java que permitían a una aplicación
trabajar con cualquier parser, el único requisito era que existiera un driver para
cada parser. El driver era una clase que utilizaba la interfaz especifica del parser
para realizar llamados a la aplicación medíante la interfaz general. La aplicación
crearía objetos manejadores {handlers) que implementasen métodos que el driver
usarla para llamar a la aplicación. Esta nueva API fue conocida como SAX y en su
primer lanzamiento contaba con drivers para algunos de los más conocidos
parsers XML del momento. Tuvo una amplia acogida y fue implementada en
diversos lenguajes de programación. Un equipo de programadores lidereados por
Lars Marius llevó a cabo la tarea de adaptar el API a Python y dicha adaptación
fue incluida en el paquete PyXML.

SAX es un API basado en llamadas en el que se implementan objetos
manejadores para procesar XML, La primera tarea cuando se utiliza SAX es
implementar un manejador que comprenda y logre trabajar con los documentos XML
que utilice su aplicación. Una referencia al objeto SAX es suministrada a un driver o
SAX parser. Cuando el análisis sintáctico comienza, el parser realiza llamados a los
métodos de los objetos manejadores permitiendo el procesamiento del XML.

Cuando una aplicación se construye por medio de SAX puede verse como un
conjunto de componentes. Primeramente el analizador XML, que incluye al driver
SAX, es una caja negra que solo requiere información de control de la aplicación.
Los objetos manejadores son el medio por el cual el analizador XML puede
comunicarse con la aplicación y la lógica que contienen debe estar orientada a
interpretar ios eventos reportados por el analizador sintáctico. Finalmente, la
aplicación hace uso de las estructuras de datos y los eventos derivados de los
manejadores para llevar a cabo el procesamiento. La relación entre estos tres
componentes puede apreciarse en la siguiente figura:

control
J
i i

Aplicación

Parser Manejador

A
I

xml

127

python fácil

En aplicaciones pequeñas suele suceder que la aplicación y los manejadores
son uno solo y el código de la aplicación se traduce en el código de llamados.

En SAX el analizador sintáctico es conocido como reader y es el encargado de
leer la entrada de una fuente definida (generalmente un documento XML) y
generar llamados a los métodos del manejador para eventos particulares en la
entrada. Los manejadores principales son ContentHandIer, ErrorHandler,
DTDHandIer y EntityResolver que son llamados por el analizador sintáctico para
los diferentes eventos que son encontrados durante la fase de análisis.

Conlen^Har^dler es el manejador más utilizado y representa la vía principal
mediante la cual la aplicación recibe eventos del analizador sintáctico. Por cada
elemento encontrado en el document XML se dispara un llamado a un método
startElement. Este método debe ser implementado para el XML en uso y debe
saber qué hacer con cada elemento del documento.

ErrorHandler es el manejador que permite responder ante errores ocurridos en
el análisis sintáctico del documento. Debe registrarse con el objeto reader
mediante setErrorMandler. Todos los errores de análisis sintáctico se clasifican en
tres categorías según su severidad. Las advertencias o warnings, los errores y los
errores fatales que tienen lugar cuando al encontrar un error no se puede
continuar buscando otros errores.

DTDHandIer es el manejador que permite conocer notaciones y entidades no
analizadas. Se registra mediante el método setDTOHandIer donde debe especifi­
carse un objeto DTDHandIer que recibe esta información.

EntityResolver es un manejador que permite apuntar el parser hacia otra
ubicación (caché por ejemplo) en busca de entidades. Se registra mediante el
método setEntityResolver. Todos estos manejadores deben ser registrados con el
reader SAX.

Finalmente para mostrar el funcionamiento en Python de un parser SAX
considere el siguiente documento XML y el código que representa al manejador y
a la aplicación.

<7xml veraion="1.0" cncoding*"UTr-8"?>
<autoa>

<auto>
<&atca> Marcadas </matca>

</auto>
<auto>

<marca> Poracha </marca>
_ </auto>
<auco>

I ' ^arca> Tord </marca>
• </auco>

</auco3>
£xon xml.sax isiport *

class ManejadorDocs(ContentHandIer);

128

Procesamiento de ficheros

def 9tartElement(scl£, name, attrs):
print("Etiqueta, name)

m = ManejadorDocs()
aaxparser - make_parser()
aaxparser.setContentSandler(m)
saxparaar .parse (• F: \\autoc.xjnl' J
Riíi H sajfcc

___ ^ '
►► ♦ ! 'C:\Progr»a rilesVPythsn 9.1

Ettqaeta: autos
■ ' Etiqueta: auto
II Etiqueta: Barca

Etiqueta: auto
s 3 ! Etiqueta: Barca

^ i Etiqueta: auto
Etiqueta: Barca

El paquete xml.parser contiene un conjunto de módulos que representan el
SAX de Python. La clase ManejadorDocs representa el manejador de documentos,
enlazado con el lector o parser mediante setContentHandIer posee una
implementación del método startElement que se traduce en la impresión del
nombre de cada etiqueta. Vea el resultado final y compare con el XML
suministrado al parser.

Durante las próximas secciones se analizarán distintos problemas donde un
parser SAX puede ofrecer una solución simple y elegante.

6.1.2 Verificando correctitud del formato
Un documento XML se considera correcto cuando sintácticamente sigue las
normas de la creación de este tipo de formato En el siguiente ejemplo se puede
observar un documento XML incorrecto Observe que la segunda etiqueta marca
no ha sido cerrada apropiadamente.

<?xnil ver3ion="1.0'’ encoding="UTF-8"?>
<auto3>

<auto>
<marca> Harcedss </marca>

</auco>
<auto>

<marca> Foracha </marca
</auto>
<auto>

<marca> Ford </marca>
</auto>

</autos>

Para conocer de manera simple si un determinado XML está bien formado
utilizamos un manejador por defecto, que en este caso no realizará ningún
procesamiento basado en la lectura del documento, simplemente se empleará
para realizar el análisis sintáctico.

Wersidúo tecníca oa norte
biblioteca

— ~ Ibarra • ícundor

129

Python fácil

from xal.s&x.handler import ContentHandlar
from xml.aax Is^ort make_parser

saxparsex = make^araer()
aaxparaar.aetContentBandler(ContentHandler 0)

try:
saxpaxaex.parse (' F: Wautos.xnl')
print{''Docuaonto correcto")

except Exception as e:
print("Docur:onto incorrecto", e)

fttfl I* WHJCf
¡*Ci\?T^rta rUtt^^/thsQ C>/7««ri/jk>vilVct/h6A4nPnjtctj/(iuvUj/ioutee.pY
|D9C(asBt9 iaeerrveto riVMtM.iklsdiQi BQ. 9r Ust d»6l4ntioo a»t ftUft of «aUty

■ ♦ I

II ^ I iroceii riolihed with e<lc cade 0

En el código anterior se puede observar el resultado que se obtendría para el
documento XML presentado previamente.

6.1.3 Contando etiquetas
Imagine una situación en la que sea necesaria tener un control de la cantidad de
etiquetas que existen en un documento XML. Dicha situación pudiera darse en el
XML que corresponda a los productos de una tienda online y es probable que se
desee conocer cuántos productos de cada tipo se hallan disponibles. En casos
como este puede resultar útil el siguiente código;

elaaa ContadorEtlquatas(ContentHandler):

etie^uetaa = ()

def 8taxtEleBant{sel£, name, abtxs):
self .etiquetaa [name] = 1 self .etiquetas .get (name, 0)

c = ContadorEtiquetas()
saxpaxaer = make_paraec()
saxparaer.aetContentHandlec(c)
aaxpazaer.parae('F \\autos.sal')

print(c.etiquetas)

Esta información se almacena en un diccionario que contiene cada etiqueta
como llave y como valor, la cantidad de ejemplares de cada llave encontrados
durante el análisis sintáctico del documento.

fiin r* SMCe

■f ■C:\Proarsa rilea\Pytlion 3.1\pythfin.exe'
('autos': 1, 'Barca': 3, 'auto': 3|■ 4-

II Proceas finished with exlc code 0

Tenga en cuenta que las cantidades corresponden con las etiquetas del documento
autos.xml presentado a lo largo de este capítulo a modo de caso de ejemplo.

130

Procesamiento de ficheros

6.1.4 Etiquetas con valor numérico
Supongamos que tenemos un documento XML como ei que se muestra a continuación
y se desea conocer y organizar los precios de cada auto en pares marca, precio.

<73anl vec3ion="1.0" encodingo''UTF-B"7>
<aut03>

<auto>
<marca> Maceadas </Kacca>
<pcecio> 200.000 </pcccio>

</auto>
<auco>

'OcaEca> PoEBcha </nacca>
<precio> IBO.OOO </pcccio>

</auto>
<auco>

<Barca> Focd </icarca>
<pcecio> 120.000 </pceclo>

</auto>

</autos>

Esta situación, nuevamente, pudiera tener iugar en ei XML de una tienda
online, un banco o cualquier comercio. Un código que resuelve esta problemática
mediante un manejador y un analizador sintáctico SAX se observa a continuación;

class PrecioAutoE(ContentRandlec):

autos s []
_pcecio = Falso
_ioarca - Falso

def startEleinent(sol£, name, attxs) :
í£ name = 'marca':

sel£._marca = Truo
i£ name = 'precio':

self._procio = True

def characters(self, characters):
if self .jarea:

self.autos.append(characters)
if self._procio:

self.autos.append(characters)

def ondElemont(self, name):
if name = 'marca':

self .jarea = False
if name = 'precio':

self.jrecio — False

UNIVERSIOftOTECNli;* OELNORÍE

BIBLIOTECA
Ibarra - Ecuador

131

Python fácil

dsf toDict(sol£):
result s (}
ti la li5Ca ds autor a lu: diccionario
for i in ranga(0, len(self.autos), 2):

result[self.autos[i]] » self.autos[i+1]
return result

p B PrecioAutosO
saxparser = make_parser()
saxparser.setContentRandler(p)
saxparser.parse (' F: \\autos. >oal')
print(p.toDict(})
Run I* source

•C:\Proflraa m«9\PythBn 3.1\pythoa.exe* C:/0aets/3lcvvallrtc/Pyeh#roPrajB«a/
(' Marcedes ' 300.000 ‘ Porsche ' 180.000 ' Ferd ' 130.000

En este caso el manejador PrecioAutos sobrescribe los métodos characters y
endElement. El primero se dispara cuando el analizador sintáctico encuentra
caracteres en el documento y el segundo indica el final de un elemento. Las
variables _marca y _precio funcionan como componentes de filtro que contribuyen
a tomar solo ios trozos de caracteres que corresponden a las etiquetas marca y
precio. Como el análisis sintáctico se realiza de arriba hacia abajo siempre se
toma cada marca con su correspondiente precio.

6.1.5 Tomando valores de atributos
Sumando complejidad al documento anterior supongamos que se desea conocer no
solo el precio de los autos sino también la moneda en la que son vendidas. Aunque
una nueva etiqueta <moneda> </moneda> dentro de <auto>... </auto> pudiera ser
una alternativa viable dicha solución provoca que una nueva etiqueta sea creada en
el documento. Una solución más compacta sería crear un atributo moneda en la
propia etiqueta precio. Los atributos se definen dentro de la etiqueta de inicio como
pares llaves valor, definiendo el valor entre comillas, por ejemplo moneda=’’EUR'’, El
documento autos.xml con esta modificación serla el siguiente:

<?xml version="1.0" encoding='’UTP-0"?>
<autos>

<auto>
<marca> Idarcedas </niarca>
<ptecio moneda=''EUR'’> 200.000 </precio>

</auto>
<auto>

^arca> Forscb* </niarca>
<precio raoneda="BUR'’> 180.000 </precio>

</auto>
<auco>

<niarca> íord </raarca>
<precio inoneda="USD"> 120.000 </precio>

</auto>
</autos>

132

Procesamiento de ficheros

Un código que reconozca ahora la moneda asociada a cada precio se puede
observaren las siguientes líneas:

class PrecioAutOB(ContentRandlec) :

autos B []
_precio B Falsa
_marea = Falsa

da£ startElament(self, name, attrs):
if name = 'masca':

self .__marea - True
if name = 'precio':

self ._jprecio = True
self.autos.append(attrs.getValue('moneda*)}

def characters(self, characters):
if 3elf._marca:

self.autos.append(characters)
if self._ptecio:

self.autos.append(characters)

def endElement(self, name):
if name = 'marcs':

solf._marca = False
if name = 'procio':

self._precio — False

def toDict(self):
result - {)
tr Pasa la listn de autor a tin diccionario
for i in cange(0, len(self.autos), 3):

result{solf.autos[i]] b \
sell. autos [i+2J + ' ’ + self. autos [i-fl}

return result

p B FreeioAutos(}
saxparser = make_parser()
saxparser.setContentRandler(p)
saxparser .parse (' F: \\autoa. :cml')
print(p.toDict())

Rtfi P sva ____________________________________ _
’C:\fto9rta niejNtVUm J.l\prtft=n.eie‘ C:/Ua*fS/3lfi'viU«r/Pycü»roíto3e«a/eii^le»/»estee.py
i< Itorca^ 'I ' 3DD.C0D ZOi', ‘ Ponche 'l ‘ HQ.000 ETO', ' fonl '■ ' 130.000 OSD'tB ' *

La diferencia entre este código y el presentado en la sección anterior resulta
del uso. en el método startElement, del parámetro attrs, un objeto de la interfaz
Attributes que contiene todos los atributos de una etiqueta. Algunos de los
métodos que ofrece este objeto se enumeran a continuación:

133

" getLength(); retoma el número de atributos de la etiqueta.

" getNames(): retorna los nombres de los atributos.

■ getType(name): retorna el tipo del atribulo, normalmente 'CDATA’.

■ getValue(name): retorna el valor del atributo name.

También Implementa algunos métodos de mapeo como keys(), values(),
itemsO, get(), copy() y__contains__()

Python fácil

6.1.6 Principio y fín de un XML
Los métodos startDocument y endDocument notifican del inicio y fin del
documento. Resultan útiles cuando se desea realizar preprocesamíento o
posprocesamiento, por ejemplo cuando se analizan varios documentos XML y se
desea distinguir uno del otro. Estos métodos son añadidos al manejador
PrecioAutos descrito en secciones previas.

def StartDocument(self):
print('Conien:a XIO,')

def endDocument(self) :
print {'Fin de XtIL')

p - PrecioAutos()
saxparser = make^arser ()

saxparser•satContentHandler(p)
saxparser.parse('F:\\autos. xnl'}
saxparser.parse('F:\\autos.xml')

Rui r*

►► ♦
■ *

S 'Eá

'C:\Prograa FllesNPychan
Coelenza mfl.
rin de XML
Ceelense XML
rio XML

A partir de la próxima sección se estudiarán formas de análisis sintáctico para
otro tipo de documento bastante popular, un tipo de documento que utilizamos cada
día y que representa parte indisoluble de la web; se trata de los documentos HTML.

6.2 Procesamiento de HTML
El Lenguaje de Marcado de Hrpertexto (HTML en inglés) es el lenguaje de facto de
la web y un descendiente, ai igual que XML, de SGML. La primera descripción del
lenguaje fue publicada por Tim Berners-Lee en 1991 y desde entonces ha crecido
su aceptación, ampliación y capacidades a un punto tal que en el presente no se
concibe la navegación en Internet por otra vía que no sea accediendo a los
ficheros HTML que sirven de base a sitios en todo el mundo.

Un documento HTML consta de 2 partes fundamentales, un encabezado y un
cuerpo. En el encabezado se definen el titulo de la página, el DocType y

134

Procesamiento de ficheros

usualmente se enlazan los ficheros de estilos (CSS), los scripts (aunque se
sugiere ubicarlos al final de la página para que pueda cargar más rápido) y se
definen las secciones de estilos y scripts cuyo código se encuentre contenido en la
propia página.

<hcad>
<title> sjMiplo </tltle>
<link hEcr°''eaa/bootstr«p.c3j" rclcatyl^ahtat" nedia="acr€*n" type="t**t/c»»">

</head>
<body>

<!— Cuerpo del docusento (eaco ca un coEcntatio) -->
<hl> Bol» Python </hl>
ocript type="t«*t/j*VMcript" src-"j#/Jqu*ty-1.9.0.nln.3o'X/3cript>

</body>

En python existe un módulo para el análisis y manejo de documentos HTML,
este es el módulo htmi. En las siguientes secciones se describirán varias
situaciones en las que se toma provecho de sus métodos y propiedades.

6.2.1 Identificando etiquetas en HTML
Para iniciar el estudio de analizadores sintácticos orientados a documentos HTML
un código que identifique las etiquetas de este tipo de documentos debería ser
una alternativa válida. Para ello se creará un manejador que herede de la clase
HTMLParser y se sobreescrtbirán los métodos handle_starttag y handle_endtag
que notifican del comienzo y fin de etiquetas respectivamente. El HTML
suministrado al parser corresponde con el de la sección anterior.

from html.parser import HTMLParser

class EtiquetasHTML(HTMLParser]:

def handle_starttag(self, tag, attrs):
printC'Coniienro do otiqueta % tag)

def handle_endtag(self, tag):
printC'Fin de etiqueta ís" % tag)

h = EtiquetasBTt-Qi 0
£ = opon('F:\\e3enpl0.html', mode='rt’)

while True:
linea = £.readline()
if not linea: break
h.feed(linea)

h.close 0

135

Python fácil

Rji 1^ cene*
^ ’Ct\Pt09r49 rll<9\PYX^^].l\pythca.eie*

CcalB7i£0 da etiQoaLB head ^ Cdelcnzo da aUciacCa UUe
II r' da atienta Utle
— Cmlenro óo atlQueta UntS ^ Pld da etlqaata bead
— Caolenza da eUqueU bod/ÍÍ Cealenxa da etiqueta hi
^ Ca fin da etlqoata bl

CoBlenio da etiqoata script ® Fib da atlquata script
Fla da etiqueta bod/

La función predefinida open, que se ha empleado en el código anterior, abre un
fichero cuyo camino se suministra como argumento y devuelve un objeto de tipo
File. El método readline de la clase File devuelve una cadena que corresponde a
una línea (hasta encontrar la primera ruptura de línea \n) del fichero en cuestión El
argumento opcional mode define la forma en que se abre el fichero, en este caso
la cadena rt indica que se abrirá en modo lectura (r = read) como texto (t = text) El
método feed suministra al analizador sintáctico partes del texto que deberá ser
considerado El analizador lleva a cabo el análisis de una parte de este texto y
almacena el resto en un buffer para un posterior llamado a feed o para cuando se
realice un llamado al método close que indica al parser que no existen más datos
para ser analizados

6.2.2 Cantidad de enlaces que apunten a Google
Considere que se cuenta con una página \web como la que se observa a
continuación y se desea obtener el total de enlaces que apuntan a Google
(WWW google com).

<he¿)d>
<cicle> Cja=vlo </citlc>
<link href="css/bootatx«p.c3s" rel="atyl*ah*«t" s'edia="8eE«arv" type="t«xt/c3a">

</head>
<bady>

<1— Cuerpo del doctrrenco (esto es un cctentario) -->
<hl> Bol» Python </hl>

<iicg 3tc="cojl.'anr jpg" widch="80" heighc="0O" />

<Í!tg 3rc='nalecon jpg" Hidth="60" heiglic="80" />

<lffg src="habana jpg" width="80" height="0O" />

<a hre£="http.//mfw.nub*lo.coa">

<urg scc="univ_habana jpg" widch="80" height="80" />

</body>

136

http://wvw.at*ekov6rfloM.con
http://vww.codaptoj*ct.cosi

Procesamiento de ficheros

Una solución a esta problemática puede lograrse mediante un analizador
sintáctico que filtre las etiquetas que representan enlaces y realice un examen
de cada una incrementando un contador cada vez que encuentre un enlace
que apunte a www Qooale com Dicha solución puede apreciarse en la próxima
clase que representa el manejador e implements los métodos handle_starttag
y handle_endtag El primero se encarga de inicializar la variable de conteo (al
encontrar la etiqueta body) y luego lleva a cabo su actualización a medida
que encuentra enlaces que apunten a Google El segundo, que se dispara cuando se
encuentran las etiquetas de cierre, imprime el valor de la variable conteo al
momento de haber hallado la etiqueta de cierre de cuerpo

class FiltrosHTML(BTKLParser):

def handle_starttag(self, tag, attrs)¡
if tag = 'body':

self.conteo = 0

return
if tag |s 'a': return
for nombre, valor in attrs-

if nombro = 'href':
if valor = 'http //\r.ni google con':

self.conteo += 1

def handle_endtag(sclf, tag):
if tag = 'body'.

print('Enlaces a Google ', self.conteo)

h = FiltrosH'niLO
f = openI'F We^jeraplo .htcil' , inodo='rt')

while True:
linea = f,readline()
if not linea: braa)c
h.feed(linea)

h.cloaeO

137

Python fácil

Run 1^ sauree
^ I‘C:\Progiaa FUeaXPythaa 9.1

^ ^ jBalaee* ft Google: 1

Una mejora al código anterior puede resultar de considerar la dirección
buscada en los enlaces como una variable.

class FiltrosBTML(HTKLParsor):

def __^init__(self, dirección) :
BTMLParser.__init__(self)
self.dirección = dirección

def bandle^starttag(self, tag, attrs):
if tag = 'body':

self.conteo = 0

return
if tag 1= 'a': return
for nombre, valor in attrs:

if nombre ~ 'href:
if valor » self.dirección:

solf.conteo += 1

def bandle_endtag(self, tag):
if tag “ 'body':

print('Enlaces a Google:', sclf.conteo)

h = FiltrosBTML('http://:i“fm.google. com')
f = open (' F: We^eraplo .html' , moda='rt')

while True:
linea = f.readlineO
if not linea: break
h.feed(linea)

h'. cl'oseO

Para desarrollar esta mejora se ha implementado el constructor de la clase
FlltrosHTML el cual debe realizar, por cuestiones internas de inicialización, un
llamado al constructor de la clase HTMLParser. La variable self.direccion
representa ahora la dirección a encontrar en los enlaces de la página HTML y su
valor se compara con el del atributo href.

6.2.3 Construyendo una matriz a partir de una tabla HTML
Las tablas fueron uno de los primeros elementos incluidos en el estándar HTML
dado que los creadores del lenguaje eran científicos que tenían a las tablas como
una forma básica de visualizar datos, Una tabla puede verse como una matriz de 2
dimensiones donde se tiene una cantidad n de filas y una cantidad m de
columnas, Una situación bastante interesante pudiera tener lugar cuando se

138

http://:i%e2%80%9cfm.google

Procesamiento de ficheros

intenta llevar una tabla HTML a una matriz Python, este precisamente es el
objetivo del siguiente ejemplo y para ello se considera la siguiente tabla:

<head>
<ticle> Tabla </citle>
<link h£cf=''bootatrap.caa'' tcl="atylashaat" mcdÍ3°''ae£a«n'' typc="taxt/esa">

</hcad>
<body>

<div clas9^’*eontaliM£" style»*Mldtb:100px">
<cable class=’’tabla tabla-bordarad tabla-atrlpad''>

<tbody>
<tr>

<Cd> 1 </td>

<td> 2 </Cd>
<td> 3 </td>

</tt>
<tr>

<Cd> 4 </cd>
<td> 5 </td>
<td> 6 </cd>

</tt>
<cr>

<td> 7 </Cd>
<td> 8 </td>
<td> 9 </cd>

</tr>
</tbody>

</table>
</div>

</body>

UNIV6RSI0A0 TECNÍCft OEl NOWE
biblíoteca

ftntm ibarrn ■ Ecuador

La tabla anterior representa una matriz de 3 x 3 y para construir la matriz en
Python se desarrolla el parser HTML que se muestra a continuación:

class TablasimSL(HTI-ILPars«r) :

data ■ Falsa

139

Python fácil

Rui «aura
^ I ■C:\Proaraa mesXPychDO 3.1

^ ^ j Bnlttcc» a Coegle; 1

Una mejora al código anterior puede resultar de considerar la dirección
buscada en los enlaces como una variable

class FiltrosHTKL(HTMLParsor):

def __init__{self, dirección):
BTMLParser.__init__{self)
self.dirección = dirección

def handle^starttag(solf, tag, attrs):
if tag = 'body':

self.conteo ~ 0
return

if tag != 'a': return
for nombra, valor in attrs:

if nombre ~ 'href:
if valor <== self .dirección:

self.conteo += 1

def handle_endtag(self, tag):
if tag — 'body':

print(‘Enlaces a Google:', self.conteo)

h = FiltrosHTML('http://vr.n/. google. com')
f - open (' F: Wejenplo htnl', modo='rt')

while True:
linea = f.readline()
if not linea: break
h.feed(linea)

h. cl'ose'O

Para desarrollar esta mejora se ha implementado el constructor de la clase
FiltrosHTML el cual debe realizar, por cuestiones internas de inicialización, un
llamado al constructor de la clase HTMLParser. La variable self dirección
representa ahora la dirección a encontrar en los enlaces de la página HTML y su
valor se compara con el del atributo href.

6.2.3 Construyendo una matriz a partir de una tabla HTML
Las tablas fueron uno de los primeros elementos incluidos en el estándar HTML
dado que los creadores del lenguaje eran científicos que tenían a las tablas como
una forma básica de visualizar datos. Una tabla puede verse como una matriz de 2
dimensiones donde se tiene una cantidad n de filas y una cantidad m de
columnas Una situación bastante interesante pudiera tener lugar cuando se

138

http://vr.n/

Procesamiento de ficheros

intenta llevar una tabla HTML a una matriz Python, este precisamente es el
objetivo del siguiente ejemplo y para ello se considera la siguiente tabla-

<hcad>
<tltle> T«bX« </ticle>
<link hccí-"bootatrap.c9*'' nieüa="flete«n'’ type="t**t/ca»">

</head>
<body>

<div clas5="eont*li4*t" seyle="widtb:100p*">
<catolc class=''tabl« tabla-bordarad tabl«-atElp«d'‘>

<cbody>
<tE>

<td> 1 </td>

<td> 2 </td>
<td> 3 </td>

</cr>
<tr>

<td> 4 </td>
<td> S </td>
<td> 6 </td>

</tr>
<tr>

<td> 7 </td>
<td> 8 </td>
<td> 9 </Cd>

</tr>
</tbody>

</table>
</div>

</body>

La tabla anterior representa una matriz de 3 x 3 y para construir la matriz en
Python se desarrolla el parser HTML que se muestra a continuación:

class TablasHTm.(HTMLPaES«r):

data » Falsa

UNIVERSIDAD TECNICA OELNOWE
BIBLÍOTECA
ibarrn • Ecuador

139

Python fácil

d*C hMdl*_atartta9(sol£, ta^, attcs):
1£ tag ■■ 'hoad':

3ol£.natrlt ■ []
•li£ tag « ‘tr':

self.matriz.appand([])
cll£ tag 'td':

sel£._data ■ True

da£ handla_data(solf, data);
if sAlf.^data:

3olf.natriz(l«n{solf.natrit)-1).appand(data)

=olf._data ■ ralaa

h - TabiasHTMLO
£ ■ 6pan('E:\\ojonplo.ht-0.‘, nodati'rt')

whila Trua:
linaa ■ f.raadllnaO
if not linaa: braak
h.faad(linaa)

h.cloaa 0
for fila in h.nattiz:

print(fila)

Rui r* «oírte
C:\tythonSUpytt0c.exe
r 1 • J • 3 M

■ I ♦ I* 4 • 9 • 6 ■!

II g (■ 7 • B • 9 •)

Como se puede apreciar el código es bastante sencillo, simplemente se procesan
las etiquetas de cuerpo (body) para inicializar la matriz y la variable de datos y luego
las etiquetas tr y td que identifican la existencia de filas y datos respectivamente y
crean de esta forma nuevas filas en la matriz y rellenan los datos de las mismas.

6.2.4 Construyendo una lista a partir de una lista HTML
Teniendo en cuenta el código anterior construir un analizador sintáctico que realice
una tarea similar al anterior pero esta vez sobre una lista parece bastante simple.
Considere la siguiente tabla HTML:

<beBd>
<zlcle> Tabla </cicle>

</beBd> ^
<body>

<div cla3B**aantatn«r* acyle~*vldtb:100pz">

<1±> newton </ll>
 Blnatoln </ll>
<11> Oallleo </ll>
 Copemlco</ll>
<11> Boolldaa </ll>

</div>

</body>

140

Procesamiento de ficheros

• Nemon
• Euutcui
• CsUIeo
• Copsraico
• Eudid«>

El código de dicho analizador se expone a continuación:
class ListaHTML(B^lLFarsar):

_data B False

de£ handle_starttag(sel£, tag, attrs):
if tag «s 'head':

self.lista B {]
elif tag =*» 'li':

seif._data ° True

de£ handle_data(sol£, data):
if sel£._data:

self.lista.append(data)
self, data = False

h B ListaHTl'lLO
f B opan('ErWe^errplo .html', raodeB'rt')

while True:
linea a f.readlineO
i£ not linea: break
h.feed(linea)

h.close {)
print(h.lista)
Run source __________________ _________

I ^ [T:\Pythoa31\python.ere Cí/Usets/aniBldo.CAIIDAL/PycJiamProjecte/testtna
' , t' Uewton ■ Einstein ’ Galileo ' Cc^mico', ' Euclides ']

B ¡4> I

6.3 Procesamiento de texto plano
Un fichero de texto plano es un fichero constituido por un conjunto de caracteres
sin formato alguno y codificados según un sistema de codificación que usualmente
es uno de los siguientes: UTF-8, ASCII, ISO-8859-1 o Latln-1.

141

Python fácil

Para abrir un fichero en Python se hace uso de la función open que retorna un
stream (flujo) y cuenta con la signatura que se observa a continuación;

open (fichero, mode='r', buffering=None, encoding=None, errors=None,
newline=None, closefd=True)

donde mode puede tener uno de los siguientes valores;

r Abierto para lectura (predeterminado)

'W Abierto para escritura, truncando el fichero primero si existe

’a’ Abierto para escritura, añadiendo al final del fichero si existe

Además, los valores anteriores pueden utilizarse en combinación con los
siguientes para modificar el modo en que se abre el fichero.

't' ¡Modo texto (predeterminado)

'b' [Modo binario

V lAbierto para actualización (lectura and escritura)

El resto de los parámetros definen en este orden: la política de buffering, la
codificación utilizada en el fichero, la forma en que se manejan los errores de
codificación/decodificación, la manera en que funcionan los cambios de lineas y
determinar si cerrar o no un descriptor de ficheros suministrado para el argumento
fichero. Varios de los parámetros anteriores se aplican en dependencia del modo
seleccionado. En e! próximo ejemplo se puede observar cómo se carga el fichero
de texto plano mostrado anteriormente y cómo se lee su primera línea.

fichero = open('F:\\fichero.txt')
print(fichero.readline())

142

Procesamiento de ficheros

I ^ '*C:\Progr»a ríleaXPyttsa 3ri\j>yiteii.‘Bn*
I KBtc u OH fleten» te teito plA&o

La función open devuelve un objeto File que tiene entre sus métodos los
siguientes;

1

close
f,close()
Cierra el fichero. Ningún otro método del objeto puede ser llamado
luego de close. Múltiples llamados a f.close se permiten.

closed f.closed es un atributo de solo lectura cuyo valor es True si el fichero ha
sido cerrado y False en caso contrario.

encoding
f.encoding es un atributo de solo lectura cuyo valor es None, si I/O en f
utiliza el sistema de codificación por defecto, en otro caso es una
cadena que define la codificación utilizada.

flush

f.flush(}
Realiza una solicitud al sistema operativo para que el buffer del fichero
sea vaciado, de este modo el fichero visto por el sistema es el mismo
procesado por Python. En dependencia del sistema y del fichero que
sirva de base al objeto File puede o no lograrse este efecto.

fileno Devuelve un entero, que es el descriptor de fichero a nivel de sistema
operativo.

mode f.mode es un atributo de solo lectura que representa el valor de la
cadena mode utilizada en el llamado a open que creó el fichero.

name f.name es un atributo de solo lectura que representa el valor de la
cadena filename utilizada en el llamado a open que creó el fichero.

newlines

f.newlines es un atributo de solo lectura útil para archivos de texto
abiertos según "universal-newlines reading." Puede ser una de las
cadenas '\n', V, or '\r\n' (donde las cadenas son los separadores de
línea encontrados hasta ahora en la lectura del fichero); una tupia,
cuyos elementos son los diferentes tipos de separadores de línea
encontrados hasta ahora; o None, cuando ningún separador de linea
ha sido encontrado mientras se lee el fichero o cuando f no fue abierto
en modo 'U'.

read

f.read(s/ze=-1)

Lee hasta size bytes del fichero y los devuelve como una cadena. Lee y
devuelve menos de size bytes si el fichero termina antes de leer esta
cantidad de bytes. Cuando size es menor que 0 lee todos los bytes
hasta el final del fichero. Devuelve una cadena vacía si la posición
actual en el fichero está al final o si el valor de size es igual a 0

143

Python fácil

readline

freadíine(s/ze=-1)
Lee y devuelve una línea del fichero (hasta el primer fin de línea, \n,
incluyéndolo). Si size es mayor ó igual que 0, readline lee a lo sumo una
cantidad size de bytes. En este caso, la cadena devuelta puede que no
termine con \n. \n puede también encontrarse ausente del fichero si el
método lee hasta el final del mismo. Devuelve cadena vacia si la posición
actual corresponde al final del fichero o size es igual a 0.

readlines

f.readlines(s/ze=-1)
Lee y devuelve una lista con todas las lineas del fichero donde cada cadena
termina en \n. Sí size>0, readlines se detiene y devuelve la lista coleccionado
hasta un total de size bytes en lugar de leer hasta el final del fichero. |

seek

f.seek(pos, /?ow=0)
Define la posición actual en el fichero al entero de desplazamiento pos
considerando un posible punto de referencia que es how. Cuando how es 0,
el punto de referencia es el comienzo del fichero; cuando es 1, la referencia
es la posición actual y cuando es 2, la referencia es el final del fichero.
Cuando el fichero se abre en modo texto, seek pudiera definir la
posición actual de manera inesperada, dadas las traducciones entre
os.llnesep y \n. Este conflicto no ocurre en plataformas Unix. Cuando el
fichero se abre en modo 'a' o 'a+', todos los datos escritos en el fichero
se concatenan a los datos que se encuentran presentes en el fichero, a
pesar de cualquier llamado a f.seek.

tell

f.telIC)
Devuelve como un entero en bytes la posición actual del fichero la cual
se traduce en el desplazamiento de bytes leídos que existe a partir del
inicio del fichero. ¡

truncate

ítruncate((s/z©])
Trunca el fichero. Cuando size está presente, trunca el fichero para que
sea de a lo sumo size bytes. Cuando size se omite, utiliza f.tell() como
el nuevo tamaño del fichero.

r

wnte f.write(s)
Escribe los bytes de una cadena s en el fichero.

wrítelines
/■.writelines(/)
Wrítelines escribe cada una de las cadenas de / en el fichero, una a
continuación de la anterior.

Un objeto File que resulte de abrir un fichero en modo lectura de texto es
también un iterador que tiene por elementos las líneas del fichero de texto, de
manera tal que el ciclo:

for I in f:
representa una forma sencilla de iterar sobre las líneas de un documento de

texto. Si consideramos un fichero como el que se observa a continuación se puede
ver lo simple que resultaría el código para leer cada línea.

144

Procesamiento de ficheros

Esto es un fichero de texto plano'
un libro de Python
javascript Fací!
HTML y CSS Facil|

fichero = op«n('F Wfichero txt')
for 1 in fichero:

print(l)
Run sojte2

*C"\Progrña Fllía\Python 3.1\p/thoa.exe”

B *
Esto es im fichero de texto plano

II on libro de Python

OsvaScrlpt racU

BDIL y CSS EacU

X
0*

WEWOTECNfCfl DEL NOME

^ biblioteca5^̂
 Ibarra » Ecuador

Interrumpir el ciclo antenor pudiera dejar la posición del fichero en un valor aleatono
debido a cuestiones relacionadas con el buffenng Durante las siguientes secciones se
analizaran algunos ejemplos del uso de la función open en la lectura de determinados
ficheros, también se descnbirá la forma de escnbir hacia un fichero de texto

6.3.1 Leyendo un fichero de texto con formato CSV
Un fichero CSV (del inglés Comma-Separated Values) es un tipo de documento
que representa datos tabulares donde las columnas se separan por comas y las
filas por saltos de linea y los datos que contengan una coma, un salto de linea o
una comilla doble se distinguen encerrándolos entre comillas dobles El siguiente
ejemplo corresponde a un fichero CSV

1, Arnaldo, Pérez, Castaño, 26, calle 25 No 1058, Habana, Cuba

2, Regla, Castaño. González, 54, calle 25 No 1058, Habana, Cuba

3, Arnaldo, Pérez, Urna, 53, calle 25 No 1058, Habana. Cuba

4, Adrián, Pérez, Castaño, 24, calle 25 No 1058, Habana, Cuba

5, Nilda, Lima, Chaviano, 72. calle 25 No 1058, Habana, Cuba

6, Ana, Rodríguez, Chaviano, 83, calle 25 No 1058, Habana, Cuba

7, Fernando, Gómez, Chaviano, 70, calle 25 No 1058, Habana, Cuba

8, Candad, Castaño, Chaviano, 65, calle 25 No 1058, Habana, Cuba

9, Alberto. Pérez, Lima, 65. calle 25 No 1058, Habana, Cuba

10, Hilda, Castaño, Chaviano, 65, calle 25 No 1058, Habana, Cuba

145

Python fácil

Los ficheros CSV resultan muy cómodos para almacenar Información extraída
de base de datos debido a su naturaleza Inherentemente tabular. Supongamos
ahora que se desea leer un fichero que contiene los datos anteriores y extraer del
mismo la información para crear por cada línea una clase Persona con los
siguientes campos; nombre, apellidos, edad, dirección, ciudad, país. La siguiente
función llevaría a cabo dicha tarea;

de£ extrae_petsonas(camino) :
fichero e> open (camino)
personas = {]
for 1 in fichero:

casaos = 1. split {’,’)
p = Persona O
p.nombre - casaos[1]
p.apellidos - eampos[21 + ean^ostS]
p.edad — cancos [4]
p.dirección = caiq}os(5]
p.ciudad = canpos{6}
p.pais — campos[7]
personas.append(p)

for p in personas:
print(p)

extraejpersonas{'F:\\fichero.txt’)

tUfi 1* S0(xcs2
Fllea\Pycbon 3.1

XniAlilo Mrez CaauAo■ RcQla Cuta&o Conzílez
II Arnaldo Pénz Lima

Adrián Piras CojUñogi [J m ifU mm Chovlmno
■;r ^ Ana Rodriguez Chavlono

Femando Cimet Quvlono
X ^ Caridad Castaño Qiavlano

Alberto Páres Limaa
La función anterior abre el fichero de texto y luego comienza su lectura línea a

línea dividiendo las cadenas que representan a cada línea según el carácter
Después se extraen los campos correspondientes del arreglo que resulta de dividir
cada cadena de línea y se crean objetos Persona ios cuales son almacenados en
una lista de personas que finalmente se imprime.

6.3.2 Escribiendo a un fichero de texto
Supóngase ahora que se desea crear y escribir a un fichero de texto en lugar de
leer de él. Para realizar esta operación al igual que sucede con la lectura de
ficheros se utiliza la función open utilizando en este caso el modo 'w' (writing).

with open(’F:/python.txt', 'w') as file:
filo.write('Python Fácil')

146

Procesamiento de ficheros

' Til» l& fcnntt Vitw H«tp

iPython Fácil

Cuando se abre un fichero de texto en modo escritura y este fichero no existe,
la función open lo crea automáticamente. El método write (detallado en la sección
anterior) del objeto File escribe la cadena 'Python Fácil' en dicho fichero.

También es posible escribir una lista de cadenas utilizando e! método
wntelines del objeto File que como se mencionó anteriormente las escribe una a
continuación de la otra sin carácter intermedio.

with open('F:/python.txt', ’w’) as file:
file.writelines(['Python Fácil','JavaScript Fácil',

'HTIIL y CSS Fácil'])

]. ftt F9m«t Vcffw

Ipython FaciÍJavascript Fácil HTML y css Facií

Como el método writelines no añade separadores de línea automáticamente
estos deben ser añadidos de forma manual por el programador en la secuencia
suministrada al método.

with open('F:/python.txt', 'w') as filo:
filo.writelines(['Python Fácil',

'\n',
'JavaScript Fácil',
'\n' ,
■HTIIL y CSS Fácil'])

El resultado del código anterior serla el siguiente fichero de texto plano:

Piembi-hcsTpei
python Fácil
JavaScript Fácil
HTML y css Fácil

147

python fácil

En la próxima sección se profundizará en el estudio del procesamiento de
ficheros de tipo CSV pues Python incorpora en sus últimas versiones un parser
para este formato.

6.4 Procesamiento de CSV
Debido a su elevado uso. en la actualidad el formato CSV cuenta con cobertura en
muchos de los lenguajes de programación modernos. Python es uno de estos
lenguajes y el soporte al formato se halla representado por el módulo csv.

El módulo CSV ofrece funciones que facilitan enormemente el código que
corresponde al procesamiento (lectura y escritura) de ficheros CSV que
considerando la simpleza del formato no implica por lo general grandes
complicaciones ni tampoco muchas líneas de código. Para un fichero como el
siguiente:

1, Arnolds, Pír«z. CaiuAo, 2S. Ct3« 2S ro lOSO, Kibjn}, Cuba
2. Rtgla. CaitalVo, Conailai, S4, cal. 2S Ua JOSa, HaOiru, Cuba
2. Amaldo, P<raa, Lima. S). cata 25 rto lose, Habana. CiAa
4, parea. CaitaAe, 24. cal* 2S No I05B, Habana. Cbba

rU4a. Una, Oravuno, 72. caU 2S Na lOSB, Habana. CiAa

El código que se observa a continuación realiza la lectura del archivo
completo, de arriba hasta abajo y por cada fila.

ir^ort CSV

Isctor « csv.r«ad«t{open("E:\\ejemplo.csv", n«wline=’’))
for fila In lactor:

print(fila)

Rist H sarbb
A :ci\(vbbcaU\pysbsn.exe C:/(7aer9/iE&ilbb.aniAL/ÍYehtsPr9]eeci/t<ietn;/9sutce.py

' Anuido' ' Mrei’ , * , ' 2$', ' calle 29 Oo 1098', ' Babona', ‘ Cuba']
■ ¡ vr. ' RoglA'/ Cu tobo' , ' Coniálei' , ' 94', ■ calle 29 Uo 1098 , ' Babana', ’ Cuba']
II a ¡ i’3'. ' Anuida' ’ Páre»' f * LllfcS* r * 92', ' calle 29 Qa 1090', ' □abana', ' Cuba']

' Adrián', ' Piral', ' CuUAo’, ' 24', ' eaUe 29 Uo 1098', • Habana', ‘ Cuba']
s ' Dlldl', Usa', ' Quvlano', ’ 72', ' calle 29 Uo 1098', Habana', Cuba']

La función reader recibe un objeto que soporte el protocolo Iterator y devuelva
una cadena cada vez que se realiza un llamado a su método next(), los objetos de
tipo fichero como en el código previo (retornado por open) y las listas son
candidatas a ser proporcionados como parámetros a la función reader que luego
devuelve un objeto que itera sobre las líneas del otro objeto suministrado como
argumento. Siempre que se realice el llamado con un objeto de tipo fichero se
debe abrir con newl¡ne=".

148

Procesamiento de ficheros

Como se mencionó anteriormente también es posible trabajar con una lista en
lugar de un fichero.

lector B csv.reader(t
'l,Arnaldo,Perez, JavaScript Fácil’,
'2,Arnaldo,Petez, HUSL y CSS Fácil',
'3,Arnaldo,Perez, Python Fácil'

])
for fila in lector:

print(fila)
Rui Kxrcr

■ ^
II S

Cs\PythQn3l\python.exe C!/Oseto/anialiJo.OlünAL
I'i'. ■Ain&ldo', 'Perer’, ' JavaScript Fácil']
ca-. 'Amaldo', 'Perei', ' BTUL y CSS FaeU']
1'3', ■Amaldo', 'Perea', ’ PyUu» FacU'l

Para escribir a un fichero CSV se puede emplear la función csv.writer que
recibe como parámetro un fichero que tenga un método wrile(). En el próximo
código se agrega la fila '6, Michael, Jordan. 51, USA, USA, USA’ al archivo
ejempio.csv mostrado anteriormente.

escrib = csv.writer (open('S; Wejen^lo.csv', 'a'))
escrito.writerow(t'6’] + ['Michael Jordan'] + [■']

+ ['51'] + ['USA'] + ['USA'] + ['USA'])

[l, Amaldo, Pérez, Castaño, 26, calle 25 No 1050, Habana, Cuba
2, Regla, Castaño, González, 54, calle 25 No 105B, Habana, Cuba
3, Amaldo, Pérez, Lima, 53, calle 25 No 105B, Habana, Cuba
4, Adrián, Pérez, Castaño, 24, calle 25 No IDSS, Habana, Cuba
5, Nilda, Lima, Chaviano, 72, caBe 25 No 105B, Habana, Cuba
6, Michael Jordan„51,USA,USA,USA

Fíjese en que el fichero se abre en modo append (concatenar) para comenzar la
escritura al final del fichero y evitar que sea borrado el contenido actual. Observe
también que la cadena suministrada al método wríterow (escribe una fila al archivo)
resulta de concatenar un conjunto de listas donde cada lista tiene una cadena y
deviene en una lista que posee todas las cadenas de cada lista como elementos.

6.5 Procesamiento de ficheros comprimidos
A pesar del incremento de capacidad que han adquirido los dispositivos de
almacenamiento en los últimos tiempos, la compresión de ficheros continúa siendo

149

Python fácil

un esfuerzo computacíonal muy aceptado para ahorrar recursos. Python facilita el
desarrollo de programas que Involucren compresión al Incluir módulos dedicados
al trabajo con archivos comprimidos. En las siguientes subsecciones se analizará
la forma en que se puede llevar a cabo el procesamiento de diferentes formatos de
compresión en Python.

6.5.1 Archivos Zip
El formato de compresión zip fue creado por el fundador de Pkware, Phil Katz y ha
devenido en un estándar para la compresión de archivos y en especial para la
compresión de documentos, imágenes y programas. Las distribuciones de Python
incluyen un módulo llamado zipfile que brinda facilidades para procesar este tipo
de ficheros. Algunas de las clases y funciones que ofrece este módulo se listan a
continuación;

is_zipfile

is_zipfile(fí/ename)
Devuelve verdadero si el fichero indicado por filename se
considera un zip válido, juzgando por los primeros y últimos bytes
del fichero en cuestión; de lo contrario, devuelve falso.

Zipinfo

class Ziplnfo(ff/ename='NoName', date_f/me=(1987,12,12,0,0,0))
Los métodos getinfo e infolist de instancias de ZipFile devuelven
instancias de Zipinfo para suministrar información acerca de
miembros del archivo. Los atributos más útiles suministrados por
una instancia de Zipinfo son:

comment
Una cadena que representa un comentario en el archivo
miembro

compress_size
Tamaño en bytes de los datos comprimidos en el archivo
miembro

compress^type
Un código entero que representa el tipo de compresión del
archivo miembro

datejime
Una tupia con seis enteros que representa la fecha de la
última modificación del fichero: los elementos son año,
mes, día, hora, minuto, segundo.

file_size
Tamaño en bytes de los datos descomprimidos para el
archivo miembro

filename
Nombre del fichero en el archivo

150 1 i

Procesamiento de ficheros

ZipFile

class ZipRIeífí/ename, mode=V.compress/on=zipfile.ZIP_STORED)
Abre un fichero ZIP llamado según la cadena filename. Mode
puede ser V, para leer un ZIP existente; 'w', para escribir a un
nuevo ZIP o truncar y sobreescribir uno existente; o 'a', para añadir
a un fichero existente.
Cuando mode es 'a‘, filename puede nombrar a un fichero ZIP
existente (en ese caso nuevos miembros son añadidos al fichero
existente) o a un fichero existente que no sea ZIP. En el último
caso, un fichero estilo ZIP es creado y añadido a un fichero
existente. El objetivo principal de este último caso es permitirte
construir un fichero .exe autoextraíbie (i.e., un ejecutable de
Windows que se descompacta cuando se ejecuta).
compression es un código entero que puede corresponder a dos
atributos del módulo zipfile.
zÍpfile.ZiP_STORED solicita que el archivo no utilice compresión
zipfile.ZIP_DEFLATED solicita que el archivo utilice el modo de
compresión por deflación (el más usual y efectivo en ficheros .zip).

cióse

z.close()
Cierra el fichero z. Asegúrese que un llamado a close existe, de lo
contrario un fichero ZIP incompleto e inusable puede quedar en
disco. Este final forzoso generalmente se logra mejor con una
sentencia try/finally.

getinfo
z.getinfo(name)
Devuelve una instancia de Zipinfo la cual suministra información
acerca del archivo miembro nombrado acorde a la cadena name.

infolist
z.infolist()
Devuelve una lista de instancias de Zipinfo, una por cada miembro
en el archivo z, en el orden de las entradas en el archivo.

namelist
z.namelist()
Devuelve una lista de cadenas, el nombre de cada miembro en el
archivo z, en el orden de las entradas en el archivo.

1
'printdir
¡
1

z.printdir()
Ofrece como salida un directorio textual del archivo z al fichero
sys.stdout.

t
1

read

1

z.read(name)
Devuelve una cadena que contiene los bytes descomprimidos del
fichero nombrado según la cadena name en el archivo z. z debe
ser abierto para V o 'a'. Cuando el archivo no contiene un fichero
llamado name, read dispara una excepción.

UNIV6RSIDA0TECNÍCÚOEI NORíE
^ BIBLIOTECA
^■KCb Ihnrra . PnnaHnr

151

Python fácil

testzip

z.testzip()
Lee y revisa los ficheros en el archivo z. Devuelve una cadena con
el nombre del primer miembro del archivo que se encuentra
dañado, o None si el archivo está intacto

write

z.write(///ename, a/rname=None, compress_type=Hone)
Escribe el fichero nombrado por la cadena filename al archivo z,
con nombre de archivo miembro arcname. Cuando arcname es
None, write utiliza filename como nombre de archivo miembro
Cuando compressjype es None, write utiliza el tipo de
compresión de z; de lo contrario, compress_type es
zipfile ZIP_STORED o zipfile.ZIP_DEFLATED, y especifica como
comprimir el fichero z debe abrirse para 'w' o 'a'

writestr

z.wrilestr{z/nft), bytes)
zinfo debe ser una instancia de Zipinfo especificando al menos
filename y date_time bytes es una cadena de bytes writestr
añade un miembro al archivo z utilizando la metadata indicada por
zinfo y los datos en bytes.
z debe ser abierto en modo 'w' or ‘a’. Cuando se tienen datos en
memoria y se requiere su escritura al archivo z, resulta más simple
y rápido utilizar z writestr en lugar de z.write. El último requiere que
el programador escriba los datos primero a disco y luego elimine el
fichero en disco. The following example shows both approaches,
each encapsulated into a function and polymorphic to each other.

import zipfile
Import time
Import os
def data_to_zip_direct{zip. datos, nombre)

zinfo = zipfile Ziplnfo(nombre, time localtime()[6))
zinfo compress_type = zipfile ZIP_DEFLATED
zipwritestr(zinfo, datos)

def data Jo_zipJndirect(zip. datos, nombre)
fiob = open(nombre, 'wb')
ftob wnte(datos)
flob close()
zip.wnte(nombre)
os unlink(nombre)

zf= zipfile ZipFiie(’z zip', 'v/, zipfile ZIP_DEFLATED)
datos = 'sting \nand russlans\n mp3\n’
dala_to_zlp_direct(zz, datos, 'direct b(t')
data_to_zipJndirect(zz, datos, ‘Indirect txt')
zf closet)

Además de ser más rápido y conciso, dataJo_zip_direcí es más
fácil de manejar dado que trabaja en memoria y no require que el
directorio actual de trabajo permita la escritura como sucede con
data_to_zipJndirect Por supuesto, el método write también tiene
sus usos cuando se tienen los datos en un fichero en disco y
simplemente desea añadir el fichero al archivo.

152

Procesamiento de ficheros

Considere ahora el siguiente fichero .zip.

1^ Ar^.>oto *
Ce«riAr4£i Hrr#ppv«*sij Fi.cnrn Op*«c»o

(S
'•f* EuKif 4M3rtit Wcrm«c^ Sga

1

^ iMbt.'MJPC
mi4ce<vJP3

■

iTj-e Tetil tl2S 730 tytci tn 4 f^ncrei

El siguiente código realiza la lectura de los ficheros en el comprimido
Archivo.zip.

izpart zipfila

íip = zipfila.ZipFile('F://Atchivo.sip’)
for noobre in zip.namaliat()i

print(nombre)
zip.close(}

Rixi P aurceZ
•C:\Piograa FUeaVPython 3.1

■ * cojlnar.JPG
II habana.JPG_
Ü [J

También se pudo haber utilizado printdir() para este propósito o el método
infolistO c]ue devuelve instancias de la clase Zipinfo con las propiedades detalladas
previamente.

import zipfila

zip = zipfila.ZipFila {'F://Archivo.zip')
for inf in zip.infolistO:

print(inf.filename, inf.date_time, inf.filB_aize)
zip.close()

Rim coufceZ
►►
B

♦ ■C:\Progran Flles\Python 3.1\pychM.eie* C:/Osers
unlvhabana.JPG (J013, T. 13, S, 13, 36) 2«S937
COjlBSr.JK (3014, 3, 16, 6, 39, IB) 62796B

II babana.JPG (3013, 3, 13, 10, 31, 14) 2483213

tí
tsalecon.JPG (3014, 4, 9, 6, 13, 34) 572340

§3

153

Python fácil

En la próxima sección trataremos el procesamiento de ficheros correspondientes a
otro formato de compresión bastante popular, el formato TAR.

6.5.2 Archivos Tar
El formato TAR por si solo no es un formato de compresión y se utiliza con
frecuencia en entornos UNIX para agrupar diferentes ficheros, directorios en un solo
archivo. Su nombre deviene del uso para ei que fue concebido: agrupar archivos en
cintas magnéticas y de ahí su denominación completa Tape ARchiver. Suele
utilizarse de conjunto con los compresores gzip, bzip2 o Izip para obtener un archivo
comprimido extensión tar.gz, tar.bz2 o tar.lz. A continuación se listan algunas de las
clases, funciones que se incluyen en el módulo tarfile mediante el cual las
distribuciones de Python brindan soporte al procesamiento de este tipo de archivos.

¡sjarfile

is_tarfile(f?/ename)
Devuelve verdadero si el fichero nombrado según la cadena
filename parece ser un fichero TAR válido (quizás con
compresión), juzgando por los primeros bytes; de lo contrario,
devuelve falso.

Tarinfo

class Tarlnfo(name=")
Los métodos gelmember y getmembers de instancias de
TarFile devuelven instancias de Tarlnfo, suministrando
información acerca de miembros del archivo. También es
posible construir una instancia de Tarlnfo con el método de
instancia de TarFile gettarinfo. Los atributos más útiles
suministrados por una instancia de Tarlnfo t son:
linkname

Una cadena que representa el nombre de fichero del
objetivo si Ltype es LNKTYPE o SYMTYPE

mode
Permisos y otros bits de modo del fichero identificado por t

mtime
Tiempo de la última modificación del fichero identificado
por t

name
Nombre en el archivo del fichero identificado por t

size
Tamaño en bytes (descomprimido) del fichero identificado
por t

type
Tipo de fichero, una de tantas constantes que representan
atributos del módulo tarfile (SYMTYPE para enlaces
simbólicos. REGTYPE para ficheros regulares. DIRTYPE
para directorios, etc.)

154

Procesamiento de ficheros

'

Para chequear el tipo de t, en lugar de realizar un llamado a
Üype, es posible realizar llamados a los métodos de i Los
métodos más utilizados son:
í.isdir()

Devuelve verdadero si el fichero es un directorio
Lisfile()

Devuelve verdadero si el fichero es regular
Mssym()

Devuelve verdadero si el fichero es un enlace simbólico

’open

open{fílename, mode=Y, f¡leobj=None, bufsize=^Q2AQ)
Crea y devuelve una instancia f de TarFile para leer o crear un
fichero TAR mediante un objeto tipo fichero fileobj. Cuando
fileobj es None, filename debe ser una cadena nombrando a
un fichero; open abre el fichero teniendo en cuenta el modo
definido que por defecto es Y, y f envuelve al objeto fichero
resultante. Un llamado a f.close no cierra fileobj si f fue abierto
con un fileobj que no es None. Este comportamiento de f.close
es significativo cuando fileobj es una instancia de
StringlO.StringlO: es posible llamar a ff/eob/getvalue luego de
f.close para obtener los datos archivados y probablemente
comprimidos como una cadena. Dicho comportamiento
también implica que tiene que realizarse un llamado a
fileobj.close explícitamente luego de llamar a f close.
mode puede ser V, para leer un fichero TAR existente con
cualquier compresión (en caso de existir); 'w', para escribir un
nuevo fichero TAR o truncar y sobreescribir uno existente sin
compresión o 'a' para añadir a un fichero TAR existente sin
compresión. Para escribir a un fichero TAR con compresión,
mode puede ser 'w:gz' para compresión gzip o 'w:bz2' para
compresión bzip2. Las cadenas de modo especial 'rf or 'w|'
pueden emplearse para leer o escribir ficheros TAR no
comprimidos, utilizando un buffer de bufsize bytes y 'r|gz',
'rjbz2', 'w|gz', y 'w|bz2' pueden emplearse para leer o escribir
dichos ficheros con compresión.

' Una instancia f de TarFile suministra ios siguientes métodos:

add
!

f.add{filepalh, amname=None, recursive=irue)
Añade al archivo f el fichero nombrado por filepath (puede ser
un fichero regular, un directorio o un enlace simbólico).
Cuando arcname no es None es utilizado como el nombre del
archivo miembro en lugar de filepath. Cuando filepath es un
directorio, add añade recursivamente todo el subárbol del
sistema de archivos con raíz en ese directorio a menos que se
defina recursive como False.

UNiVERSIOAO TECNÍCú OEl «JOWr

biblioteca, 155
Ibarra » Ccuadof j

Python fácil

addfile

f.addfi\e{tannfo. /r/eobpNone)
Añade al archivo ^un miembro identificado por tarínfo, una
instancia de Tarínfo (los datos son los primeros farinfo.size
bytes del objeto tipo fichero fileobj considerando que íileobj no
sea None).

close

f close()
Cierra el archivo f. Debe realizarse un llamado a close o de
otra forma un fichero JAR incompleto e Inutilízable puede ser
lo que quede en disco. Esta finalización obligada tiene un ¡
mejor desempeño sí se realiza mediante una sentencia
try/finally.

extract

f.extract(member, path-.') I
Extrae el archivo miembro especificado por member (un
nombre o una instancia deTarInfo) en un fichero
correspondiente del directorio path (de manera
predeterminada el directorio actual).

extractfile

f.extractfile(member)
Extrae el archivo miembro especificado por member (un
nombre o una Instancia deTarInfo) y devuelve un objeto de tipo
fichero y de solo lectura con métodos read, readline, readlines,
seek, y tell.

1

getmember
f.getmember(name)
Devuelve una instancia de Tarínfo con información sobre el
archivo miembro especificado por name.

getmembers

f.getmembers()
Devuelve una lista de instancias de Tarínfo, una por cada
miembro en archivo f, en el mismo orden de las entradas en el
propio archivo.

getnames

f.getnames()
Devuelve una lista de cadenas, los nombres de cada miembro
en el archivo f, en el mismo orden de las entradas en el propio
archivo.

(

gettarinfo

1

f.gettarinfo(name=None, arcname=None, ff/eob/=None)
Devuelve una Instancia de Tarínfo con Información acerca del
objeto abierto fíleobj, si no es None o de lo contrario el fichero
cuyo camino se encuentra definido por la cadena name.
Cuando arcname no es None, es utilizado como el atributo
name de la instancia Tarínfo resultante.

156

Procesamiento de ficheros

f.list(vert)ose=true)
Ofrece como salida un directorio textual del archivo f al fichero

list sys.stdout. Si el argument opcional verbose es False, ofrece
como salida solamente los nombres de los miembros del
archivo.
—

Para mostrar un código que ejemplifique el uso del módulo tarfile primero
considere un .tar como el siguiente:

I Afchfvo CemAA^n Herim«t>t Ajvá*

ID (ii -Id ® I '
* üliMfa Cempreb4T Vrr Ivicer A4^vec Wermn^ i B*a
I QQ 9 I ie'ui*-L9J • mh#yoTA*»CZP t»m¿A8 6otCfrpfirud3 2XU<239b)1tl «
' II
j i*. 1
1 1

RJ j. deja
P repartas

1S •« %<iKUarLtia urptu Tetal J tiTp«toy2U.¿47b>tn I

El próximo ejemplo utiliza el método getnames() para obtener los nombres de
los miembros del archivo anterior.

import tarfile

títr = tarfile .open(' F: / /do jo-release-1.9.1. tar. gz')
for inf in tar.getnames(}:

print(inf)
tar.close()
Run r* MJC£2

♦ •C:\Proiian fllesXPython a.Upyihon.eie’ C:/üaecs/Sirywallrer/Pyc.’iaroProíect9
dojo-r«lease'1.9.1
úojo-release'1.9.1/dl]it

II úojo-releaao-1.9.1/dljit/package.l9an
— <Jo3o-Telea9«-1.9.1/dijlt/Droti>ownllenu.jj
m dolo>nleaje*1.9.1/c!ijlt/TM>ltlp.}«.uscc9t«s(ed.3«
— do)o-releasa-1.9.l/dl31t/rora
;í s do}D-releue-1.9.1/dl]lt/roim/5Uder.3i.iaietBpreaied.]a
X do]o*relejuo-1.9.t/dljit/roT«/roiB.}a.i2nc<aq)reased. jf

do]o-nlaue*1.9.1/<U3lt/rom/ ezpandlr>gTeitXrea>lialxi.li(D dojo-mle4ae*t.9.1/dl]lt/(on/UuBberTaztliox. ja.unco^reiied.Js
dú]o-r«leaae-1.9.1/(ll]it/roia/ roraValueWlclget.Ja.uncc^reajed.ji
do3o-rele4je-1.9.1/dl)lt/foT»/0»boBulton.}a
dolo-roleaae-1.9.1/dlJit/roiB/_rortllaln.3>.iinecdpreííed. j»

En el próximo capítulo se describirán numerosos algoritmos y estructuras de
datos que implementados en Python pueden contribuir a comprender mejor
tópicos que se adentran en el campo del diseño y análisis de algoritmos

157

Ejercicios del capítulo
1. Considere un documento XML como el que se muestra a continuación

Python fácil

r» tíÉ iMipi
oJBQ ,

Snnáñf Mapa Apa WgfiM Wndov t

'.'ül Jf a ef»'bl \ »|C?5”I(ZD'> CD'^I

1 •
' 2 clzal ver9icn»“l.0* encoiin7»"Urr-0"3:í

3 3<4U10S>
i 1 3 <auro>
5 ^atca> Maread*! </i4arca>
6 <preclo C3nedj-*IUR"> 300.000 </pr«eio>

<anno> 1990 </anno>
e </auto>
9 l 1 <au:o>

10 <sarca> Fosich* </Dacea> t
11 <procio roncdaB*cv!t''> 100.000 </pxcclo>
12 <atuio> 1999 </armo>
13 </auCo> 1
14 E <auto>
IS <iurca> roxd </oatca>
16 <prcclo concda»"USD"> 120.000 </preclo>
n <anno> 2010 </anno>
15 </auto>
19 </autos>
10 -

tnpa*itU>ta«L«i|br«»i«S b<n a IaiI CM'I UiO OcAUTiOin X>SBirn4 MS

Realice el procesamiento de las etiquetas anno, imprimiendo su
correspondiente valor.

2. Considere la siguiente página HTML:

<head>
<citle> Ejercicio </citle>
<link href="bootstrap.css" rel="stylesheet" media=
"screen" type="text/css">

</head>
<body>

<div class="container" style="width:100px">

</div>
</body>

Realice un procesamiento del documento mediante el cual modifique el
src de cada imagen. La página que resulta del código anterior se
observa a continuación:

158

Procesamiento de ficheros

3. Considere un documento XML como el siguiente:

1 M Ivn V>v I-ctOw) Wflll latí UKn hm Iten Wi.f I z D

lUsAtaa*! .'l-l
> |<7E3l veralen**1.0* eac?dlr.g-*«l6d®*í-J2í2* 1> 1
: 3<ci=unldjdea> 1
3 j <cc=unldsd tbr«vlaturs>’Crl>*> 1
4 <nccí]re>CMtlXlA f l^sn</n3&bte> 1
5 <cludad)uBltanccs»*13S090*>S«liBun</ciulJil>

f « <clulad hablcancea«“15(000'>Mea</eiudAd>
7 <cludiil tisBi unte; >*150000 *>luzgef</eiudid>
0 <eludad Ra&i canee 3»’450000*>VkllAdAUd</dudada
9 <cludid hdbltdntes>'35000*>ta9er*</eludad>

10 <ciudAd hdt>iCdntesa*34000*>ftTÍla</cluil>d>
11 «ciudad li»Bltantes>*M000*>Ioda</cludad>
12 «dudad h9bluntF3>*iooooo*>ral«a«la</ctul9d>
1} </cc:unid9d>
n !l «ccunldid ftbtevlatuca«*Em'>
15 <ns:bre>Xltx«au!uxa</riia&rB>
16 «eludid hiblCaneei-'135000’>CkTear«i</cludad>
n «ciudad habí unces > *256000’>Bada]et«/cludad>
la «/ccaunldad>
19 b <cc=unldad abtevÍ4Cuca>*6JLL*>
20 «ncgbfexl>HcU</naüire>
21 «ciudad b4bliantc3>*53SOOO*>Lu Cenuta</cludail>
22 «ciudad tiabitantes>*100000*>lud»</cludad>
23 «ciudad hiibU i'ites>*6000a*>raat«rbdzi</cludad>
24 «ciudad habUantesa *96000’>«r«Bda</Ciudad>
2S </ccranldad>26 ;!d «cccunidad obttvlotuiu>’XST*>
:i <nt=bre >JU tuclu</n:=bre>
20 «ciudad hable mees>*335000*>47lido</clud9d>
29 «ciudad hablejnlcs>*200000*>CldeTB</cludal>
30 «/cceunldada
J1 «/cas-jnidad«9>

IsiaCMUM hwn U>t UtI MíO [MVMmi UTM M

Cree una clase comunidad, otra ciudad y recree la estructura arbórea
del XML en una lista de comunidades.

159

Python fácil

4. Procese un fichero de texto plano como el siguiente:

fierro t>1 •

\vww.google.com
mvw.nubelo.com
ivmv. stackoverf 1 ow.com
mvw.codeproject.com
www.recruiter.com
www.amazon.com
mvw.ebay.com
mvw. free! anceri. com

.

El fichero debe contener una lista de uris, una por cada linea y se debe
crear una función que genere otro fichero como el primero pero con un
conjunto de urIs eliminadas según una lista llamada prohibidos que se
suministra a la función como argumento.

5. Escriba en no más de dos líneas un código que genere un fichero de
texto como el que se puede apreciar en la siguiente imagen;

6. Procese un CSV como el siguiente:

n> U* torch VM Ur>gM;< tAh^l

' fl£íSO . »^Uí«r.'‘3cia ■

1 10, Hesal, S-3lar *
2 23, Jordan, S*acaz
3 S, setnj, 5-star
4 11, Chris Bocel, S-scar ^
5 33, Colczane, S-scar
C 1, Pavarocci, S-scar
1 55, Soigea, S-atar J

9 -

Ulil CtJil On\V>-mnn ua BU

160

El procesamiento consiste en crear una lista de objetos de una clase
Persona con los atributos; número, nombre y calificativo. También debe
imprimirse el nombre de cada persona hallada en el CSV.

http://www.recruiter.com
http://www.amazon.com

CAPÍTULO 7.
Estructuras de datos y
algoritmos

En este capítulo se describirán algunas de las estructuras de datos más conocidas
y sus posibles implementacíones en Python. De igual modo se describirán
diferentes algoritmos de ordenamiento, de grafos y de naturaleza matemática que
pueden servir al lector para consolidar los conocimientos adquiridos hasta el
momento.

7.1 Estructuras de datos
Una estructura de datos es una forma de estructurar e interrelacionar un
conjunto de datos definiendo además sobre estos un conjunto de operaciones.
Uno de los grandes beneficios que puede ofrecer una estructura de datos es la
mejora en el tiempo de ejecución y por ende en la complejidad temporal de un
algoritmo. Conociendo distintas estructuras de datos, el programador puede
decidir cuál utilizar en un determinado momento logrando una simplificación en
sus tareas dado que la estructura de datos puede contener entre sus
operaciones muchas que resten trabajo al desarrollador y otorguen mejoras
temporales a los algoritmos involucrados. Entre las estructuras de datos más
populares se encuentran las matrices, pilas, colas, listas, listas enlazadas,
conjuntos, grafos (incluye árboles) y las tablas de hash, muchas de estas serán
analizadas a lo largo de este capítulo.

7.1.1 Pilas
Una pila como estructura de datos funciona exactamente cómo funcionarla un
conjunto de objetos superpuestos verticalmente en la vida real. Precisando la
analogía, considere que se cuenta con un conjunto de elementos donde el
primero que se adquiere siempre es el último en ubicarse en una pila y donde
siempre se ubica uno nuevo en el tope de la pila. Esta estructura tiene un
mecanismo de acceso UFO (del inglés Last in First Out) o 'el último en llegar es
al primero en salir'. Las operaciones distintivas que se le asocian son pop() para

161

sacar el elemento en el tope de la pila y pushQ para empujar un elemento en el
tope. Cada vez que se realiza una operación push() la pila aumenta de tamaño y
el tope se modifica siendo ahora el elemento añadido. Lo mismo sucede cuando
se realiza una operación pop(), solo que en estos casos el nuevo tope será el
objeto debajo del elemento removido, generalmente la operación pop() retorna el
objeto desapílado. Otra operación que suele ímplementarse en una pila es
peek() que devuelve el elemento que constituye el tope de la pila. A continuación
se presenta un esquema genérico de una pila.

Tope de
la pila

Python fácil

Donde a, b, c, d, e, f, g, h son todos elementos de la pila siendo h el tope de la
misma. Las operaciones descritas previamente sobre la pila del esquema anterior
tendrían los siguientes resultados:

■ PeekO = h

■ Popo = h
Luego de hacer pop() el esquema quedaría como se observa a

. . continuación:

162

Estructuras de datos y algoritmos

Después de apilar el elemento x, el esquema quedarla de la
siguiente forma:

UNIVERSIDAD TECNICA OEl NOfWE

BIBLIOTECA

Ibarra • Ecuador

163

python fácil

Finalmente para ímplementar la estructura de datos en Python se crea una
clase pila que contenga los métodos descritos previamente. Para ello se emplea la
técnica de extensión de tipos por inclusión que fue descrita en el capítulo 3 y fue
ejemplificada medíante la creación de una clase donde todas las operaciones se
llevaban a cabo sobre una lista que era tomada o incluida como atributo y que
almacenaba los elementos de la colección. Procedimiento simiiar se adopta para
crear la clase pila que se observa a continuación;

olass pila:

•lama ■ []

daf __init__(self) :
self.alams *■ []

daf faantldad<scl£) :
raturn len(sel£.alama)

daf apila(self, x):
self.alama.appand(x)

daf daaapila(sel£):
raturn self.alama.popO

daf ftopa(self):
raturn self.alama[-1}

topa ■ proparty(fgat “ ftopa)
cantidad ■ proparty(fgat » faantidad)

p = pilaO

p.apila(l)
p.apila(2)
p.apila(3)
p.desapila {)

print(p.tope)
print(p.cantidad)
lv.n H Bxa

w • 1
Ci\7fogna rtlBiVtvUwa].Upirtt»>ue
a •
a

Recuerde el lector que una expresión como x[-1] donde x es una secuencia
retorna el último elemento de x lo cual explica el código de la función ftope(). Se
recomienda que a modo de ejercicio el lector implemente la clase anterior pero
añadiendo mecanismos de protección contra errores, como por ejemplo velar por
que no se intente desapilar de una pila vacía.

164

Estructuras de datos y algoritmos

La pila es probablemente una de las estructuras de datos más utilizadas en el
ámbito de la programación. La utilizamos inconscientemente cuando definimos
algoritmos recursivos dado que los lenguajes de programación implementan este
mecanismo mediante una pila que almacena los llamados recursivos. También se
utiliza en la evaluación de expresiones en notación posfija y probablemente varias
de las ideas que la sostienen las empleemos en diferentes programas con
bastante frecuencia.

En la próxima sección analizaremos una estructura de datos conocida como
cola que cuenta con un funcionamiento similar al de la pila pero considerando un
mecanismo de acceso diferente.

7.1.2 Colas
Al igual que sucede con la pila, una cola en programación encuentra una analogía
casi perfecta con lo que sería una cola en el mundo real. Entrando en detalle,
puede considerarse que una cola es un conjunto de objetos que se ubican uno a
continuación del otro y donde el orden de acceso a estos es lineal, es decir, se
hallan ordenados por orden de llegada o según el tiempo que han permanecido
encolados, siendo el primero el objeto que más tiempo ha pasado en la cola. En
este sentido las colas son tomadas como estructuras FIFO (del inglés First In First
Out) o ‘el primero en salir es el primero en llegar'. Las operaciones básicas en una
cola son encolar un elemento, que se traduce en ubicar al nuevo elemento al final
de la cola, y desencolar, que extrae y devuelve el primer elemento de la cola.
También es posible solicitar dicho elemento mediante la operación front(). A
continuación se puede observar el esquema de una pila.

Final de la cola

165

Fíjese el lector en que el diagrama anterior es equivalente al de una pila, esto
es porque !a diferencia entre una pila y una cola no reside esencialmente en la
estructura que dan a los datos sino en las operaciones que realizan sobre ellos. La
estructura empleada en ambos casos es la misma, un arreglo o lista de elementos.
Las operaciones básicas sobre esta cola tendrían los siguientes resultados;

■ Pronto = h
■ Queue(x) o encolar(x).

python fácil

,.i' ,1

. •
< I' »•

166

DequeueO o desencolar().

Estructuras de datos y algoritmos

La implementación de esta estructura de datos se realiza a través de la clase
pila según se aprecia en el siguiente código;

class cola:

elems []

da£ __init__(self) :
sclf.alems = []

de£ encola(self,x):
self.olems.appand(x)

da£ desencola(self):
1£ solf.cantidad > 0:

self.elems.pop(0)

de£ fcantldad(self):
return len(self.elems)

167

python fácil

de£ fprimero(self) :
if self.cantidad > 0:

return self.eleas[0]

primero = property(fget s fprimero)
cantidad ~ property(fget = feantidad)

c B colaO
c.encola(l)
c.encola(2)
c. encola(3)
c.encola(4)
e.eneela(5)
c.desencolaO
print(c.primero)
Rui f* test

^ C:\Pythoe31\pyUioa.ejce
■ * ’

Actualmente existen algunas variaciones de la cola tradicional, una de estas
variaciones es la cola circular en la que cada elemento cuenta con dos vecinos
(antecesor y sucesor) a diferencia de la cola tradicional en la que ni e! elemento
frente ni el elemento final cuentan con más de un vecino. El próximo esquema
ilustra la estructura de una cola circular.

La cola del esquema tiene al elemento a por principio y al elemento h por final.
Observe que la propia estructura circular hace que cada elemento necesariamente
tenga dos vecinos. En este tipo de cola es posible añadir, eliminar elementos y
realizar rotaciones teniendo en cuenta que existe una posición que se prefija de
antemano y en la que se considera estará el elemento frente. En los siguientes
esquemas se han realizado rotaciones a la derecha y a la izquierda
respectivamente.

168

Estructuras de datos y algoritmos

Para añadir un elemento este se ubica siempre al fínal de la cola, o sea, a
continuación del primer elemento de forma tal que su vecino derecho sea el
antiguo final de cola. La eliminación por teoría ocurre siempre en el frente y
cuando se elimina dicho elemento el que le sigue pasa a ser el nuevo frente. Los
siguientes esquemas muestran la adición del elemento / y la eliminación del frente,
para ello se ha tomado como base el primer esquema de cola circular que se ha
mostrado en esta sección.

Luego de insertar el elemento i.

169

Python fácil

Al eliminar el frente.

La ímplementación en Python de la clase cola.circular sería la siguiente;

olass cola_alroular (oola):

da£ __init__(solf) :
aupar (} .__init O

daf rotaoion_daraoha(self):
iC lan(self.alama) <■ 1: raturn

170

Estructuras de datos y algoritmos

antacasor = self.alama[-1]
for 1 in ranga(lan(sol£.alems)] :

taasp o self.eleas[i]
sel£.alems(r] a antacasor
anfceeaaor “ te«p

daf rotacion^izquiarda{sQlf):
iC len(sel£.elams) <o 1: zatum

antacasor = sol£,elems(0]
for i in ranga(lan(solf.aXems)-l, -1, -1) ;

temp B self.alemsli]
self.elemsti] = antacasor
antecesor = ten^

e — cola^circularO
c.encola(1)
c.encola(2)
c.encola(3)
e.eneola(4)
c.aneolatS)

c.zotaclon_rzquaerda()

print(e.primero)

Rin H tone
C:\Pi«ctaa FilesNPythao 3.1\python.exe

El método rotacion_derecha almacena el valor del elemento que antecede al
actual según indica el ciclo que se realiza e intercambia ei valor del antecesor para
la posición actual consiguiendo asi un desplazamiento a la derecha para cada
elemento de la cola El otro método, rotacionjzquierda realiza un procedimiento
similar pero ejecutando el ciclo de atrás hacia delante, o sea, desde la última
posición hasta la primera en la cola

Una facilidad que puede añadirse a la clase anterior es un método generador
que permita realizar iteraciones sobre la lista una cantidad de veces definida por
un valor vueltas que recibiría el método como argumento La implemenlación de
este generador se muestra a continuación

d«£ 6l«ssontos(sclf, vusltas) :
i = 0
V a 0
while 1:

yield sol£.el«ffls[i]
i+=l
i£ i is self.cantidad:

i s 0
v+=l
x£ V 1.S vueltas: return

171

Python fácil

for o xn c.«l«iaentoa (2):
print(e)

*C:\frs^ia flleaVfycftaa 3.1

La última variación de la cola tradicional que se estudiará en este libro es la cola
con priorídad en la que se asocia un valor prioritario a cada elemento de la colección
Las colas con prioridad se encuentran fácilmente en la vida real, por ejemplo, en un
almacén en el que los diferentes productos que llegan deben acomodarse con
preferencia antes que otros por sus características particulares; o en un hospital,
donde los pacientes deben ser atendidos según la gravedad de la enfermedad con
que lleguen a urgencias. En la implementación de una cola con prioridad es
necesario que cada elemento incorpore un valor de prioridad para conocer el orden
que llevarán los elementos de la estructura, dicho valor suele ser un número entero y
aquellos elementos que tengan los mayores valores aparecerán al principio de la
cola. A continuación se muestra el esquema de una cola con prioridad.

Para añadir un elemento a esta estructura sería necesario encontrar su
posición según la prioridad que este defina. Por ejemplo, la cola del esquema
luego de insertar x con prioridad 3 quedaría de la siguiente forma.

172

Estructuras de datos y algoritmos

Dado que se supone que la cola se ha de mantener ordenada luego de cada
inserción, entonces la eliminación se realiza del mismo modo que se lleva a cabo
en una cola tradicional.

Para apoyar la implementación y obtener un código más expresivo se ha
creado la clase elemento que contiene un atributo valor y otro prioridad. De esta
forma la clase cola_prioridad contiene una lista de elementos como pares valor,
prioridad.

Glass elemento:

prlosldad = 0

valor ■ None

daf __ínit__(solf, V, p> :
self.prioridad = p
self .valor => v

def __^str__(self) :
return " <p=’’ + str (self .prioridad) + \

” + "v=" + 3tr(solf.valor) + ">"

M B'BL.orecA
Ibarra • Ecuador 173

Python fácil

class cola_prierldad <cola):

daf __Inlt__(self) :
supero •__init__()

da£ ancola(solf, x):
posición ■ self.__indax^mayor^elem(x)
self.eloms.insert(posición, x)

de£ __lndex_mayor_elem(3elf, x):
posición “ 0

for 1 in range(self.cantidad):
if self.elems [1].prioridad < x.prioridad:

break
posición +- 1

return posición
cprioridad = cola_prioridad()
el s elemento(1,1)
e2 = elemento(2,2)
e3 = elemento(3,3)
e4 - elemento(4,4)
cprioridad.encola(e2)
cprioridad.encola(e3)
cprioridad.encola(e3)
cprioridad.encola(e4)
cprioridad.encola(el)

for e in cprioridad.elems:
print(a)

Run r* tara

C:\Pcoflraa FlleaNPython S.lVpytíicn.exe
(^4, v«41■ ♦ {p*3. v-3)

II S (p-3, v«31
(I^J, V-2)S 3 (P-1, v-1)

7.1.3 Listas enlazadas
Las listas enlazadas son estructuras de datos constituidas por un conjunto de nodos
que se conectan de manera lineal por medio de referencias (los enlaces son
referencias) y donde cada nodo contiene no solo referencias a su antecesor y al
próximo nodo en la lista sino que también almacena cualquier valor que se le defina
Se dice que las listas enlazadas al igual que los árboles (estructura que se estudiará
próximamente) son tipos de datos autorreferenciados debido a que los nodos que la
componen contienen referencias a otros nodos, todos del mismo tipo. Entre los tipos
de listas enlazadas más conocidos se encuentran las simples y las doblemente
conectadas. El siguiente esquema representa una lista enlazada simple

174

Estructuras de datos y algoritmos

En una lista doblemente conectada cada nodo tiene referencias a su sucesor y
a su antecesor.

175

python fácil

Uno de los grandes beneficios que ofrecen las listas enlazadas es que permiten
realizar inserciones y eliminaciones en un tiempo constante, dicho de otra forma, el
tiempo computacíonal que conllevan estas operaciones en la estructura es
insignificante. Por ejemplo, para realizar la inserción de un nodo x simplemente se
coloca la referencia de su antecesor apuntando a x y luego la referencia de x
apuntando ai sucesor del actual antecesor de x. La eliminación del nodo x solo
requiere que la referencia a su antecesor ahora apunte a su sucesor de manera tal
que el nodo no pertenezca a la secuencia lineal que define la lista enlazada. Una
posible desventaja a destacar en esta estructura de datos es que la búsqueda
generalmente debe realízame en tiempo lineal, o sea, en el peor caso deben
recorrerse todos los elementos para encontrar un nodo en particular. Estas situaciones
pueden aprecíame en el siguiente ejemplo en el que se inserta entre los nodos con
valores 3,4 del esquema previo un nodo con valor 3.5 y luego se elimina ei nodo 3.

176

Estructuras de datos y algoritmos

Observe que en el caso de la eliminación el nodo no es borrado
instantáneamente de memoria sino que deja de ser referenciado. Si tenemos en
cuenta que Python es un lenguaje con gestión automática de memoria, más tarde
el recolector de basura se encargará de liberar la memoria que ocupa el nodo, que
luego de la operación de eliminación ha dejado de ser referenciado. La
implementación en Python de esta estructura se apoya en el tipo nodo que
representa su elemento constituyente.

class nodo:

^valot = Nono
_proximo = Hone

def __init__(self, v, p = Nona) ;
self.^víú.or = V
self ._proxijno « p

def _damevalor(self):
return self._valor

def _definevalor(self, v):
self,_valor = v

def _dameproximo (self) :
return self,_proximo

def _defineproximo(self, v):
self._proximo = v

valor ~ property(fget=_damevalor,
fset = _^definevalor)

proximo = property (fget=_dameproximo,
fset = _dafineproximo)

De este modo una lista enlazada es una cadena de referencias de tipos nodos
con diferentes operaciones definidas.

class lista enlazada:

_pr,imero = Nono
^ultimo = None
cantidad = 0

def __init__(self, v) :
self.primero = nodo(v)
self ._ul timo = self. j>rimero
golf ._^cantidad += 1

177

python fácil

daf _damao«ntld«d(self}:
raturn self._aantldad

daf añadlr(self, x):
nuave ■ nedo(x)
self._ultlmo.peexlme ■ nuavo
self .__ultimo ■ nuavo
self ._aantldad +b l

da£ insertar(self, x, pos):
if pos < 0 or pos > self.cantidad

raise Exception('pos '
'fuera de rango’)

actual ■ sel£._primaro
nuavo m nodo(x)
if pos is 0:

nuevo .proximo ■» self ._primero
self,_primaro = nuavo

alse:
i » 0

xhila i < pos - 1:
actual B actual.proximo
i += 1

tamp B actual.proximo
actual.proximo b nuavo
nuavo .proximo ■= temp
if pos is self.cantidad:

self._ultimo B nuavo
self .__cantidad 'fB 1

de£ posición(self,x):
tenp = self ._primero
i B 0

while 1:
if ten^.valor is x:

return i
if temp.proximo is None:

return -1

i += 1

temp = tesp. proximo

178

Estructuras de datos y algoritmos

d*£ «llnilnarCself, x) :
posición ■ self.posicion(x)
if posición is -1: return None
if posición is 0:

self .^rimero • self ._ptimero. proximo
else:

actual ■ self._primero
i B 0
while i < posición - 1:

actual = actual .proximo
i-fal

actual.proximo = actual.proximo.proximo
if posición is self.cantidad • 1:

sol£._ultimo B actual
self ._oantidad -= 1

def elementos(self):
actual B self ._jrimaro
while actual is not None:

yield actual._valor
actual B actual.proximo

cantidad b property(f^et b _dameeantidad)

1 B lista__enlazada (1)
1.añadir(2)
l.añadirO)
l.insertar(2.3,2)
1.eliminar(3)
for e in 1.elementos():

print('elemento',e)

print("cantidad",1.cantidad)

>► ♦
■ 4-

IL
a e3

C;\Pre9tda Filea\Pytbaa).l\pythos.exe
elcsento 1
eleaento 2
alcMnto 3.3
cosUdad 3

Entre las operaciones que se han definido en la clase lista_enlazada se
encuentran: la adición, que consiste simplemente en hacer que la referencia del
último elemento de la lista apunte al nuevo nodo, la inserción, descrita en
esquemas anteriores, la eliminación que en este caso elimina el primer nodo cuyo
valor coincida con el valor suministrado como argumento, posición que actúa como
un método de búsqueda retornando la posición en la lista del nodo con valor x o *1

179

python fácil

en caso de que no exista ningún nodo con este valor. Finalmente se ha creado
una función generadora para recorrer los elementos de la lista.

Para Implementar una lista enlazada cada elemento debe tener dos
referencias, una que apunte a su antecesor y otra a su sucesor, de este modo la
clase nodo quedarla de la siguiente forma;

alasa nodo:

_valer •* Nona
_^roxlrno ™ Nena
^antarlor ™ Nona

daf __init__(solf, v, p ■ Nona):
sel£.__valor ■ v
self._ptoximo ■ p

daf _danavaler(self):
return sclf._valor

daf _daflnavaler(self, v):
self._valor » V

daf _damaproxlmo(self):
return solf.proximo

daf _daflnaproxlmo(self, v):
self .^proximo ■ v

daf __dameanteeasor (self) :
return self.^anterior

daf ^deflnaanteoasor(scl£, v):
self._antarior = v

valor ■> property (fgatB_dajnavalor,
fset ■ _deflnevalor)

proximo ■ property (fge ta_dajneproxlmo,
fsat ■ ^deflnaproxlmo)

anterior ■> property (fgata_damaantaoe9or,
fsat o ^dafineantaoesor)

La clase llsta_enlazada_doble hereda lógicamente de la clase lista_enlazada
(analizada previamente) pues estas comparten diferentes atributos (cantidad,
añadir, insertar, etc.) bajo el mismo código.

180 i

Ü
} I

S

Estructuras de datos y algoritmos

class lista_enlazada^doble(lista^anlazada):

def init (self, v):
supero .__inlt__(v)

def añadir(self, x):
temp « self .__ultimo
n Apz'ovechajnoc ei codigo del padre
supero . añadir (x)
self._ultimo._anterior = ten^

def insertar(self, x, pos):
supero .insertar(x,pos)
i o 0

actual B self._primero
while i < pos - 1:

actual s actual.proximo
i += 1

actual.proximo.anterior » actual

def elementos_reverso(self):
actual = self._ultimo
while actual is not None:

yield actual.^valor
actual a actual. anterior

1 a lista_enlazada_doble(1)
1.insertar(2,0)
1.añadir(3)

for e in 1.elementos () :
print(e)

for e in l.elementos_reverso():
print (e)

ftui r* iKt
A CS\PvtfcOD3l

■ * 1
II

■tí

'iNlVFRSininTFCNfCiOEl MORTF
BIBLIOTECA

. Ibarra • Ecuador
181

Python fácil

Fíjese en que haciendo uso de la herencia se ha reutílízado el código de la
clase padre (lista_enlazada) para que los métodos añadir e insertar sean muchos
más compactos y elegantes. La operación de eliminación se deja al lector como
ejercicio, también se deja la programación de un mecanismo de control de errores
que garantice que la Información suministrada como argumento sea la correcta de
acuerdo a los requisitos del programador.

7.1.4 Listas ordenadas
Las listas ordenadas son estructuras de datos muy similares a las listas
tradicionales pero con la particularidad de que los elementos siempre se
mantienen en orden. Las operaciones como la adición y la eliminación velan
porque este orden se mantenga. A continuación se muestra un esquema de una
lista ordenada;

Observe el lector que este esquema corresponde al de una lista clásica pero
con la característica de garantía de orden que existe entre sus elementos y que la
lista tradicional no proporciona.

La implementación de una lista ordenada en Python se observa a
continuación:

alass liat«_ordanada:
_«lams ■ []

daf __init (solf, alama ■ ti):
self, alema = alema

daf _aantldad(self):
return len(sQl£._elama)

daf _elamantos(solf) :
return solf. elema

182

Estructuras de datos y algoritmos

def aftadlr(self, v) :
if self.cantidad ia 0\
or \
self.cmpív, self._alams
[self.cantidad -11) > 0:

self._al«ms.append (v)
else:

for i in range(len(self.^elams)}:
if self .di^(self .^elems [i] ,v) > 0:

self._elems.insert(i,v)
break

def elimina(self, v):
try:

i m solf._elems.index(v)
except:

return None
if self.cantidad > i >« 0:

self._elems .pop(i)

dof cng>(self, x , y) :
if X >- y:

return 1
else:

return -1

cantidad — property (fget " _^oantidad)
elementos - property(fget — ^elementos)

El método cmp se ha creado con la intención de facilitar la definición de
cualquier función de comparación que se requiera en correspondencia con el tipo
de dato o la lógica que se esté implementando. De este modo cmp proporciona
diferentes vías para personalizar la clase lista_ordenada y para hacerlo de una
forma transparente y elegante, simplemente implementando la lógica que seguirá
la comparación de los elementos de la lista.

1 a llsta^ordenads()

l.añadir(2)
l.añadir(l)
l.añadir(-l)
l.añadir(O)
l.alimina(O)

£or e in 1.elementes:
print(a)

183

Python fácil

Rif) H test
C:\Pythoa31\python

m 1
II 2

En la lista anterior los elementos se ordenan de menor a mayor. Para realizar
el ordenamiento en orden inverso (de mayor a menor) solo sería necesario
modificar el método cmp de la siguiente manera;

d«f cmp(sel£, x , y):
X < y:
r«tum 1

•19«:
return -1

1.añadir(2)
1.añadir<3)
1.añadir(-3)
l.añadir(22)
1.añadir(23)
1.añadir(-1)
1.añadir(0)

Rlfl tBrt

A ^ C:\Pyxhs&91\pytho&

■
, 1“
♦ 32

II s?

B Ci ,0

^ 1-1

X

En la próxima sección se comenzará el estudio de una de las estructuras de
datos más importantes en el área de las Ciencias de la Computación, una
estructura que ha encontrado aplicaciones en disimiles ramas y que en la
actualidad es empleada en muchos de los sistemas que utilizamos diariamente.
Esta estructura es el árbol.

7.1.5 Árboles
Los árboles son estructuras de datos jerárquicas y autoreferenciadas que se
emplean con mucha frecuencia en el desarrollo de aplicaciones. Quizás el ejemplo
más conocido de su uso sea en e! directorio de carpetas y ficheros de Microsoft
Windows, donde claramente existe un orden de pertenencia pues una carpeta
llamada Archivos de programa puede contener y ser padre de distintas
subcarpetas (Adobe, AIMP2, etc.).

184

Estructuras de datos y algoritmos

^ G9 Equipo
^ fil Disco local (O)

^ Jj Archivos de programa

> Adobe
t> lXI AIMP2

^ Apache Software Foundation
^ LÜ Apache22

t> bin
tXi cgi-bin

^ conf
Ji extra

P original

I> error

htdocs

> icons
J:) logs

[> manual

Un árbol es un caso particular de una estructura conocida como grafo, que es
mucho más general y no cuenta necesariamente con las características de un
árbol, de manera que puede decirse que todo árbol es un grafo pero no todo grafo
es un árbol Sus particularidades principales son las siguientes:

■ Si el árbol tiene n nodos entonces tiene n -1 aristas o uniones.

• Un árbol no puede tener ciclos.

Formalmente, un árbol es un par <V, A> donde V es el conjunto de vértices o
nodos y A es el conjunto de aristas o uniones. Una arista es a su vez un par <a, b>
donde a y b son vértices que pertenecen a V, En caso de contar con el siguiente
árbol:

V={1,2. 3, 4, 5, 6}

A = {(1.2),(1,3). (2, 4), (3. 5), (4. 6)}

Su representación gráfica serla la siguiente:

185

python fácil

Los vértices 5, 6 que no tienen hijos se conocen como hojas.

Un camino en un grafo es una secuencia de vértices tal que dos vértices
consecutivos en la secuencia se hallan conectados por una arista. Por ejemplo, un
único camino entre ios vértices 6 y 5 del árbol anterior sería 6, 4, 2, 1, 3. 5. Un
camino como 6, 4, 3, 5 no sería válido dado que no existe arista entre 4 y 3.

Un ciclo es un camino que comienza y termina en el mismo vértice. La
siguiente figura muestra un grafo que contiene el ciclo 1, 2, 3.1.

t

Un requisito implícito que cumple todo árbol es el hecho de ser conexo. Se
dice que un grafo es conexo cuando existe camino entre todo par de vértices. La
siguiente figura muestra un grafo no conexo:

186

Estructuras de datos y algoritmos

Un grafo se dice acíclico cuando no contiene ningún ciclo. Los árboles son
grafos acíclicos y la adición de una arista cualquiera provocará que se cree un
ciclo, el lector puede comprobarlo si se añade una arista al primer árbol
presentado en esta sección.

Cuando se cuenta con un grafo que tiene varios árboles independientes o no
conexos se dice que se está en presencia de un bosque. Definiéndolo de otra
^orma un bosque es un conjunto de árboles. A continuación se ilustra un ejemplo:

187

Python fácil

0

il) © ©
Se conoce como grado de un vértice v a la cantidad de aristas que tienen

como extremo a v. En la figura anterior grado (1) = 2, grado (2) = 1. En un árbol
necesariamente algún vértice debe tener grado 1 (hojas), de lo contrario el árbol
tendría un ciclo y entraría en contradicción con el hecho de ser acíclico.

Un subárbol de un árbol T resulta de tomar un subconjunto de los vértices de T
y un subconjunto de las aristas de T de manera que el grafo que resulte de este
par sea un árbol. El árbol de la próxima figura contiene a un subárbol con vértices
1. 3, 5 y aristas (1,3) y (3, 5)

Todos los nodos del árbol tienen padres excepto la raíz que es el nodo que
tiene como descendientes al resto de los vértices del árbol, en la figura anterior el
nodo 1 es la raíz del árbol. Cuando sucede que (a, b) es una arista del árbol
decimos que los vértices a y b son adyacentes o vecinos.

Como se ha podido observar hasta ahora, los árboles y en general los grafos
se modelan visualmente por puntos que representan los vértices y por lineas que
unen estos vértices y representan las aristas del grafo. Esta representación

188

Estructuras de datos y algoritmos

permite modelar una enorme cantidad de situaciones de la vida real. Por citar un
ejemplo, imagine una situación en la que cada vértice constituye una ciudad y la
raíz simboliza el punto de partida de un recorrido que se desea realizar a la
ciudad más cercana. Para completar este modelo sería necesario que cada
arista Incluyese un peso que constituya el tiempo que tomaría un traslado de la
ciudad X a la ciudad y. Para estos casos cada arista o unión entre nodos puede
verse como un par ((a. b), p) donde p es el peso o, según el ejemplo anterior, el
tiempo que relaciona a los vértices a y P. Grafos como estos son conocidos
como grafos de costo.

Entre las operaciones que suelen asociarse a un árbol se encuentran las
siguientes:

" Adición de un árbol como hijo.

■ Búsqueda de un vértice

■ Eliminación de un subárbol.

)¡ Habana

La adición consiste en añadir en la lista de hijos de un determinado vértice del
árbol todo un subárbol que se recibe como argumento. En la siguiente figura el
subárbol con raíz 5, destacado en verde, se añade al nodo 3.

189

Python fácil

í 11
Adfcián

La búsqueda suele realizarse recorriendo todos ios vértices del árbol y existen
dos recorridos fundamentales. El primero es conocido como búsqueda en
profundidad y se ejecuta a través de un método recursivo que aplica la técnica de
backtracking o vuelta atrás, recorriendo cada vértice en el orden en que los
encuentra y luego sus hijos hasta que se llega a un nodo sin hijos o a un nodo
cuyos hijos han sido todos recorridos. En ese caso se aplica backtracking para
regresar al padre del vértice cuyo recorrido acaba de finalizar.

Este recorrido también es aplicable a grafos, pero con algunas
particularidades. En la próxima figura se puede ver el ejemplo de un recorrido en
profundidad, los números que aparecen al lado de los vértices denotan el orden
obtenido.

190

Estructuras de datos y algoritmos

Fíjese en que el recorrido es el siguiente: a, b, e, c, f, d. Comienza en el vértice
a y luego continúa en b que es el primer hijo de a que no ha sido visitado, luego
pasa al vértice e que al carecer de descendientes retorna (por backtracking) el
control al nodo b que no tiene más hijos que el vértice e (visitado) y retorna el
control del recorrido al nodo a que luego pasa el control al nodo c (su próximo hijo
no visitado) y asi sucesivamente.

El segundo recorrido es la búsqueda a lo ancho que se aplica con mucha
frecuencia para recorrer árboles pues su estructura y la forma del recorrido lo
favorecen. Dicho recorrido se prefiere sobre la búsqueda en profundidad que se
emplea con mayor asiduidad en grafos no arbóreos.

El recorrido a lo ancho se lleva a cabo en los vértices del árbol por niveles o
por profundidades. La profundidad de un vértice v es la cantidad de nodos que
existen entre v y la raíz, incluyéndola. En el árbol del ejemplo anterior la
profundidad de fes 2.

Es posible pensar en un recorrido a lo ancho como en el recorrido que se
llevaría a cabo en un edificio de varios pisos donde se comienza desde el piso
más alto que es el primero en ser visitado, para luego visitar el segundo más alto y
así sucesivamente hasta llegar al primer piso que es el último en ser visitado. Esta
situación se puede observar en el siguiente ejemplo donde el recorrido que se
obtiene es a, b, c, d, e, f.

>

' ! a'i

Todas las operaciones sobre árboles se realizan medíante procesamiento de
referencias En la operación de adición, descrita anteriormente, una referencia a
un árbol es adicionada a una lista de árboles hijos para un determinado vértice, de
sste modo es posible pensar en las aristas como en las referencias que apuntan a
diferentes árboles y cuando se elimina un subárbol realmente se elimina el enlace
o la referencia que se tiene con este dato. Esta situación puede apreciarse en el
próximo ejemplo donde se elimina el subárbol con raíz 5.

“I

.Ocirra ■ ■ i.«i.iuui
191

Python fácil

Para crear esta conocida estructura de datos en Python creamos la clase árbol
que contiene las operaciones previamente analizadas.

alas9 árbol:

_valor ■ Nona
_hijos ■ Nona

daf__Init__(self, v, hjos ■ ti):
self.valor ■ v
self._hijos = []
for h in hjos:

sol£._hijos.appand(árbol(h)}

daf añada__hijo (self, v) :
self .__hijos . appand (v)

daf busaar(scl£, v):
return solí.recorrido(buscar = v)

daf alimina_hijo(self, v):
return self. recorrido (eliminar ■= v}

def recorrido(self, imprimiraFalse, buscar a None,
eliminar » None):

4 r.-.r.l ■zll-7ZV¡--.V :?.l .'lil-'i-?!
if eliminar is not None and\

eliminar is self.valor:
self.valor ■ None
seIf._hijoa a {]
return

192

Estructuras de datos y algoritmos

o m oola()
o.onoolaCself)

«hilo o.santidad > 0:
it Pars innrrJnir el recorrido
1£ Iripzlmlr:

print(o.pelmazo.valor)
Ir Para cucoatr.ir sa cubarbol
1£ buaoar is not Hona and buaoar la o.prlmaro.valoz:

return o.primero
aotual m o.primero
for 1 in rangeU«n(aatual._tai3ea)):

• r.'ir.. .• ui.
i£ eliminar is not Kone and \

eliminar is astual._hijes[1}.valor:
aotual.^hijos.pop(1)
return True

e.encola(aotual._hijos[1]}
o.desencola O

de£ danehljos(colf):
return =Qif._hljos

de£ damevalor(:cl£):
return :olf._valoz

def deflnevalor(SQl£, v):
iol¿._valor ■■ V

def atr__(=ol£) :
return str(self.valor)

a - árbol(1)
a.aAade_hljo(árbol(2, (4,5)))
a. añade_)iljo (árbol (3))
a.allrilna_hljo (2)

print('Encontrado', a.busoar(3))
a.recorrido(inprlnir>True)

(Un sauce

►► •í* “C:\Ptooraa FlleaVPython 3.1\python.e*e*
Encontrado 3

□ * 1
¡g m 3

Fijese en que en la clase árbol el método recorrido es fundamental, tanto es
asi que las operaciones de búsqueda y eliminación requieren de la realización de
un recorrido para llevar a cabo su propósito. Para reutilizar al máximo el código de
la clase se han dispuesto las variables buscar y eliminar como argumentos en el
método recorrido Dichas variables representan los valores de los subárboles a
encontrar y eliminar respectivamente Él recorrido en este caso es a lo ancho y se

193

emplea una cola para almacenar los hijos de los nodos que se van visitando. Las
colas se emplean en los recorridos a lo ancho pues su funcionamiento permite
fácilmente simular este recorrido. Por otro lado, las pilas se utilizan en recorridos
en profundidad dado que estas son las estructuras que simulan la recursividad. La
condición de parada se alcanza cuando la cola queda vacía, es en este momento
que la estructura ha sido totalmente recorrida. La siguiente figura muestra el árbol
creado en el código anterior.

python fácil

Durante esta subsección se estudiarán varias de las clases de árboles más
importantes en Ciencias de la Computación. Entre estos vale mencionar los
binarios de búsqueda, los rojos y negros, ios AVLs y los QuadTrees.

7.1.5.1 Binarios de Búsqueda
Un árbol binario es un caso particular de la conocida estructura en la que cada
vértice tiene a lo sumo dos hijos, uno izquierdo y otro derecho. Cuando todos los
vértices que no son hojas tienen dos hijos se dice que el árbol es completo y
cuando están a la misma altura se dice que es perfecto. La altura se define como
la máxima profundidad del árbol La próxima figura ilustra un árbol binario perfecto
y completo de altura 2.

subárbol eliminado

194

Estructuras de datos y algoritmos

Las operaciones que se definen sobre esta estructura son las mismas que se
definen sobre un árbol tradicional, las implementaciones son incluso más sencillas
al contar cada nodo con a lo sumo 2 referencias a otros árboles binarios.

alass arbolblnarlo:

_hijolzq a Hone
_hljoder B None
_valor ■» None

def init__(self, v, Izq ■ None, der ■ None):
self.__valor = v
self._hijoder » der
self .^hijoizq = izq

def aftadehijo(self, hijo.

def busear(self, v):
return self.recorrido(buscar = v)

def eliminar(self, v):
if V is self.valor:

self B None
return self.recorrido(eliminar » v)

def recorrido(self, buscar b Hone, eliminar a None):
if buscar is None and eliminar is None:

print(self.valor)
if buscar is not Nona and \

buscar is self.valor:
return self

else:
jS f>nra ellmin.nz* nodos
if eliminar is not None:

if eliminar is self.hijoizq.valor:
self.hijoizq - None

if eliminar is self.hijoder.valor:
self.hijoder ■ None

return

else:
self._hijoizq a hijo

if derecho:
self._hijoder = hijo

derecho a False):

195

Python fácil

S Para buxicar nodou
if self.hljoixq is not Nona:

Izq ■ self.hljoizq.rooorrldo(busoar « busear)
If Izq Is not Nona:

raturn izq
if sQlf.hijodar is not Nona:

dar ■ coif.hijodar.raoorrido(buscar « buscar)
raturn dar

daf _dainavalor (self) :
raturn self._valor

daf _damahijoizq(scl£):
raturn self.__hijoizq

daf _damahijodar(self}:
raturn self._hijodar

daf ^dafinahijoizq(sGlf, v):
self._hi3oizq ■ v

daf _dafinahijodar(self, v):
self,_hijodar « v

valor ■ property (fgat = _^damavalor)
hijoizq m proparty (fgat ■> _damabi joizq, fset => _definehijoizq)
hijoder ■ property (fgat ■ _damahijodar, fsat »» _dafinehijoderl

abb m arbolbinario(1,
arbolbinario(2, arbolbinario(4)),
arbolbinario(3))

abb.añadehijo(arbolbinario('x'}, derecho» True)

abb.recorrido()

Rin sQura

y> ♦ •C:\Progtfta rilesVPythan 3.1

m 2
II 4

D3 tí
X

En la implementación de la clase arbolbinario el método recorrido es recursivo
y se realiza en profundidad visitando siempre primero el subárbol izquierdo y luego
el derecho. El árbol que resultarla después de las operaciones mostradas en el
código anterior sería él'siguiente: ‘

Estructuras de datos y algoritmos

Un árbol binario de búsqueda es un caso particular de árbol binario donde para
cada subárbol se cumplen las siguientes invariantes:

■ Un árbol vado se considera un árbol binario de búsqueda.

■ En un vértice x, el valor de la raíz de su subárbol derecho siempre es
mayor que el valor de x.

■ En un vértice x, el valor de la raíz de su subárbol izquierdo siempre es
menor o Igual que el valor de x.

En la figura que aparece a continuación se puede observar un ejemplo de
árbol binario de búsqueda cumpliendo las invariantes anteriores.

Observe que el menor valor estará siempre en la hoja del subárbol que resulta
de tomar siempre los nodos conectados con los menores valores en el árbol. De
igual forma el mayor valor estará en la hoja que resulta de tomar el subárbol de
vértices conectados con mayores valores en el árbol.

INlVERSinAfiTECNlCfiOEL NORÍE
1 BIBLIOTECA
I ^íáSi_ Ibarra • Eci>>>oor

197

Python fácil

Subárbol con los
nodos conectados con
los menores valores.

Menor valor Mayor valor

De este modo los árboles binarios de búsqueda establecen una relación de
orden entre sus elementos y teniendo en cuenta esta relación y ia estructura del
propio árboi, un recorrido a lo ancho devolvería los elementos ordenados. En
todos los ejemplos anteriores se han presentado árboles binarios donde los
valores son numéricos pero en general cualquier conjunto de valores ordenadles
es totalmente válido y pueden ser números, letras o cualquier conjunto de
símbolos con una función de orden definida.

Las operaciones sobre este tipo de árboies binarios deben velar por que las
invariantes anteriores no se pierdan en ningún momento y principalmente en
operaciones que modifiquen la estructura del árbol (inserción, eliminación). Como
se ha visto previamente, los recorridos resultan fundamentales para todas las
operaciones en estas estructuras y los árboles binarios de búsqueda no escapan a
esta regla.

La búsqueda en árboles binarlos depende en gran medida de la relación de
orden que se haya estabiecido entre los elementos y dicha relación se utiliza para
guiar el proceso de búsqueda. Esta operación se resume a continuación:

198

Estructuras de datos y algoritmos

1. Se compara el valor buscado v con el valor del nodo raíz del árbol
actual. En caso de ser iguales se retorna el árbol actual.

2. Si sucede que el valor del nodo es mayor que v entonces se continúa la
búsqueda en el hijo derecho del árbol actual.

3. Si sucede que el valor del nodo es menor o igual que v entonces se
continúa la búsqueda en el hijo izquierdo del árbol actual.

4. Si se alcanza una hoja y su valor no es v entonces el valor no existe en
el árbol y el procedimiento termina.

En la próxima figura se puede observar un ejemplo de la ejecución de la
operación de búsqueda considerando como valor a inquirir ai número 3.

1. Árbol con raíz de valor 6, como 3 < 6, entonces la búsqueda continúa
en el hijo izquierdo.

2. Árbol con raíz de valor 4, como 3 < 4, entonces la búsqueda continúa
en el hijo izquierdo.

3. Árbol con raíz de valor 2, como 3 > 2, entonces la búsqueda continúa
en el hijo derecho.

4. Árbol con raíz de valor 3. como 3 = 3, entonces la búsqueda termina y
se retorna este árbol.

La inserción de un nodo también se sostiene sobre la relación de orden que se
mantiene en la estructura. La lógica del método de inserción considerando como
entrada un valor del conjunto ordenadle v serla la siguiente;

Ejecución:

199

python fácil

1. Si el árbol está vacío, entonces se añade un nuevo nodo con valor v
como raíz.

2. Si V es menor o igual que el valor del nodo de la raíz del árbol,
entonces el procedimiento continúa en el subárbol izquierdo.

3. Si V es mayor que el valor del nodo de la raíz del árbol, entonces el
procedimiento continúa en el subárbol derecho.

4. Cuando se alcanza una hoja se crea un nuevo árbol con valor v y se
pone como hijo derecho del nodo hoja si v es mayor que el valor de la
hoja, de lo contrario se pone como hijo Izquierdo. El procedimiento
termina en este punto.

Como se puede observar, las inserciones ocurren siempre en los vértices
hojas. La próxima figura ilustra el proceder para la inserción del valor 8 en un árbol
binario de búsqueda con nodos 1,2, 3,4, 5, 6, 7, 9.

La complejidad de las operaciones de un árbol binario de búsqueda recae
completamente en la operación de eliminación, que como se ha mencionado
previamente debe mantener el orden existente en la estructura y, por tanto, debe
tener en cuenta la casuística que esto deriva. Los casos serían los siguientes:

■ Se elimina un nodo hoja, en el siguiente ejemplo se borra el vértice 5.

200

Estructuras de datos y algoritmos

■ Se elimina un nodo con exactamente un subárbol hijo, en este caso el
subárbol que pertenece al nodo a eliminar se define como hijo de su
padre. En el siguiente ejemplo se borra el vértice 4 y el subárbol con
raíz 2 pasa a ser hijo del nodo 6 que es el padre del vértice 4.

■ Se elimina un nodo con exactamente dos subárboles hijos, En este
caso el valor del nodo a eliminar se sustituye por el menor valor que se
encuentre en su subárbol derecho y el nodo hoja que posee este valor
es eliminado. De esta forma la eliminación al igual que la inserción
tiene efecto en las hojas del árbol. En la figura que se observa a
continuación se presenta un ejemplo donde se elimina el vértice con
valor 6.

201

python fácil

6)

Como se habla visto en secciones anteriores los recorridos a lo ancho y en
profundidad resultan perfectamente aplicables a cualquier árbol. Variaciones de estos
recomdos son los conocidos como inorden, preorden y postorden, todos en
profundidad. La diferencia entre cada uno de ellos radica en ei momento que se
selecciona para considerar que un nodo ha sido visitado. En un recorrido inorden los
nodos se imprimen o se consideran visitados cuando se recorren por primera vez
mediante la técnica de backtracking o vuelta atrás, así se garantiza que se obtendrán
ios valores ordenados de menor a mayor. En un recorrido preorden los vértices se
consideran visitados a medida que se desciende por el árbol, desde la primera vez
que se pasa por ellos y sin tener en cuenta la vuelta atrás de la recursividad
Finalmente en un recorrido postorden los nodos se toman como visitados cuando se
sube por el árbol mediante el retroceso que origina la técnica de vuelta atrás y
precisamente en el momento en que no podrán ser recorridos nuevamente.

¡í 8

Inorden: 1,2, 3, 4, 6, 7, 0. 9

Preorden: 6, 4, 2,1,3, 8, 7, 9

Postorden: 1, 3, 2, 4, 7, 9, 8, 6

202

1 3

Estructuras de datos y algoritmos

Para implementar el tipo árbol binario de búsqueda en Python se ha creado la
clase arbol_binario_busqueda que hereda de árbol_binario. También se ha
añadido a la clase arbolbinario el método eshojaO que contribuye a obtener un
código más expresivo.

daf eahoja(zolf):
return self.hijodar Is Nona \

and self.hijoizq Is Nona

class azbol_binario_busqueda (arbolbinario) :

daf __init__(self, v, izq = None, dor = None):
supero.__^init__(v, izq=izq, der=der)

def insertar(self, v):
i£ V > self.valor:

if self.hijoder is not None:
return self.bijoder.insertar(v)

else:
self.hijoder - arbol_binario_busquoda(v)

if V <= self.valor:
if self.hijoizq is not None:

self.hijoizq.insertar(v)
else:

self.hijoizq « arbol_binario_busquada(v)

daf buscar(self, v):
if solf.valor is v:

return self
if self.valor < v:

if self.hijoder is not None:
return self.hijodet.buscar(v)

else:
if self.hijoizq is not None:

return self.hijolzq.busoar(v)

def eliminar(self, v) :
U El %'sloz- CO encuentr/i ou el hijo dor.

if self.valor < v:
if solf.hijoder.valor is v:

if self .hijoder.eshojaO :
self.hijoder «■ None
return

203

python fácil

if self.hijodar.hijedar Is Mona:
" si no fc2é>nc hijo dor. y no oa
(f una ho:ía entonces delso tener
ff hzjo itcmierdo
sQlf.hljodax ■ 3olf.hljodar.hljolzq

allf 3olf.hljodar.hijoizq Is Mona:
ff 5i no tioao hijo itq. y no es
U una hoj.i entonces debo tener
n hijo derecho
solf.hijodar m solf.hljedas.hijodac

alsa:
Tzono dos hijos
1£ oolf.hijodar la not Mona:

nvalor ■ \
self .hljodaz._manoz_valer (allmlnasTrua)

alsa:
avalor ■ \
self.hijolzq._mayor_valor(allmlna*True)

self.hljodar.valor ■ nvalor
alsa:

self .hl jodar. aliininar (v)

{f Ul %'.ilor so oncuoatr.i oa ol hijo icq
allf self.valor >« v:

n Z1 valor se oacueatra en ol nodo actual.
If self.valor Is v:

if self.aahojaO :
self.valor “ Mona

allf self.hljodar Is Nona:
self.valor ■ self.hljolzq.valor
tamp B self.hljolzq
self.hljolzq ■ tamp.hljolzq
self.hljodar > tamp.hljodar

allf self.hljolzq is Mona:
self.valor - self.hljodor.valor
tamp B self.hljodar

... self.hljolzq b tamp.hljolzq
^ self.hljodar “ tamp.hljodar

alsa:
if self.hljodar Is not Nona:

nvalor ■ \
self .hi jodar ._manor_valor(aliniinaBTry*l

alsa:
nvalor » \
self. hljolzq.^mayor_valor{alimlna-Trua)

self.valor b nvalor

204

Estructuras de datos y algoritmos

S Sí el hijo ize¡. tieso v.ilor v.
•lif self.hljolzq.valor Is v:

Si 00 UB.i hojo.
If self.hlJolzq.ashojaO:

solf.hljolzq “ Hone
return

if self.hijoizq.hijoder is Kone:
^ si oo Close hlje dor y so eo
rf uss hoja eotcscoc debe Cesor
hlJO izq.
self.hijoizq <■ solf.hljoizq.hijoizq

elif self.hijoizq.hijoizq is Hone:
Si no tieno hlJo isq. y so eo
6 US.1 hoja cnteneaa debo ccocr
^ hzjo derecho
solf.bijoizq m self.hijoizq.hijoder

else:
V ricno doo Jiljoo.
if SQlf.hijoder is not Hone:

nvalor " \
solf. hi joder. _menor_valor(eliainai«True)

else:
nvalor ■ \
self.hijoizq.^mayoB_valor(alinina>True)

self.hijoisq.valor “ nvalor
else:

self.hijoizq.elininar(v)

def _rranor_valor(self, elimina = False):
actual m solf
if solf.hljoizq.hijoizq is not None:

actual ■ self.hijoizq
while not actual.eshojaO :

actual actual.hijoizq

valor ~ actual.hijoizq.valor
if elimina:

actual.hijoizq “ Kone
return valor

def _mayor_valor(sole, elimina ■ false):
actual ■ solf
if solf.hijoder.hljoder is not Kona:

actual sclf.hijoder
while not actual.eshojaO:

actual ■ actual.hijoder

valor - actual.hijoder.valor
if elimina:

actual.hijoder •• Kone
return valor

205

Python fácil

d*£ inordsn(=olf):
if self.ashoja0:

print(self.valor)
also:

if solf.hijoizq Í9 net Nona:
self.hijoizq.inordan()

print(self.valor)
if self.hijodar is not Nona:

self.hijodar.inordan <)

daf praordan(self):
if self .ashojaO :

print(self.valor)
alsa:

print(self.valor)
if self.hijoizq is not Nona:

self.hijoizq.praordan()
if self.hijodar is not Nona:

self.hijoder.praordan{}

daf postordan(self):
if self .ashejaO :

print(self.valor)
alsa:

if self.hijoizq is not Nona:
self.hijoizq.postordan()

if self.hijodar is not Nona:
self.hijodar.postordan()

print(self.valor)

abb m arbol_binario_busquada(6)

abb.insartar(4)
abb.insartar(2)
abb.insartar(1)
abb.insartar(3)
abb.insartar(8)
abb.insartar(7)
abb.insartar(9)
print('Recorrido inordon’)

abb.inordanO

print("Recorrido preorden')
abb.praordanO

print('Recorrido postordon')
abb.pos tordan()

206

Estructuras de datos y algoritmos

■C:\Proflrai» rilesVPythoo 3.1
ftecoTTldo lAorden
1
3
3
4
6
7
e
9

j ^ j BecDtTldo preorden
*4

2
1
3
B
7
9
Recorrido pojtorden
1
3
3
4
7
9
8
e

Fíjese en que aunque el código de los recorridos inorden, preorden y
postorden pudo haberse compilado en un método para reutílizar todas las líneas
que estos comparten, no se hizo así en aras de ofrecer claridad y legibilidad al
código de los recorridos y de esta forma facilitar al lector su comprensión. Se
sugiere tomar como ejercicio práctico la tarea de crear un método que reutilíce el
código de los recorridos y de los métodos _menor_elemento y _mayor_elemento
que devuelven el menor y el mayor elemento en un árbol binario de búsqueda.

El código del método de eliminación es complejo por la casuística que implica.
Diferentes ejemplos de su ejecución pueden verse a continuación;

íJodo cou tíos hi^OD

abb.«liminar(6)

print('Rocorrido inordan'>
abb.Inordan()

’C:\Frogrfta FllesXPytlioD 3.1

■ •f
RecorridA inorden
1

II 2

m 4

(á 7

X
3* 9

207

python fácil

n A'ecío coa ua boIo hijo
abb.«llmlnar(4)

print('Recorrido inorden’)
abb.Inorden()

"C:\Ptoffrfta Flle9\Pyct]on 3.1
Recorrido inorden■ * 1

II 2

ü tí 6
& 7

9 9

fr üoáe Jjojii
ebb.ellmlner(9)

print(‘Recorrido inorden‘)
ebb.Inorden()

•C:\Prograa FllesSPython 3.1
Recorrido inorden■ * 1

II 2

m 4

J a» 6

X,® e

En las próximas subseccíones se analizarán los árboles AVL y los árboles rojo
negros que son casos particulares de árboles binarios de búsqueda donde se
mantiene una nueva invariante relacionada con la altura de cada subárbol.

7.1.5.2 AVL

Un AVL es un árbol binario de búsqueda que mantiene su altura equilibrada y que
debe su nombre a sus creadores, ios matemáticos rusos Georgi Adelsón<Velskl y
Yevgeni Landis, autores del articulo publicado en 1962 donde daban a conocer los
principios de esta estructura. La invariante que se Incorpora a un AVL es la
siguiente:

■ En todo momento la altura de su hijo izquierdo y de su hijo derecho
debe ser a lo sumo 1. Formulado serla así;

I altura (hijojzq) - altura (hÍjo_der) | <= 1
Para lograr mantener el balance en la altura una nueva operación conocida

como rotación se añade a la estructura. La rotación puede ser a la derecha o a la
izquierda dependiendo del subárbol que tenga la mayor altura y, para conocer este

208

Estructuras de datos y algoritmos

dato, un nuevo atributo (que depende de la altura) debe almacenarse en cada
nodo. En general las operaciones en un AVL son exactamente las mismas que en
un árbol binario de búsqueda, la diferencia radica en que una inserción o una
eliminación pueden conllevar un desbalance en altura y, por tanto, la ejecución de
una rotación.

En general existen cuatro tipos de rotaciones: la rotación a la derecha, la
rotación a la izquierda, la rotación doble a la derecha y la rotación doble a la
izquierda. Cada una de estas se describe a continuación:

■ Rotación a la derecha: consiste en tomar el nodo raíz del árbol r y
ponerlo como hijo derecho de su hijo izquierdo i. Luego el hijo derecho
de i pasa a ser el hijo izquierdo de r.

Luego de ia rotación a la derecha sobre r.

209

Python fácil

■ Rotación a la izquierda: se realiza de manera análoga a la rotación a la
derecha.

Luego de la rotación a la derecha sobre r. •

• Rotación doble a la derecha: tiene lugar cuando la realización de una
sola rotación provoca que el árbol continúe desbalanceado en altura
por lo que resulta necesario llevar a cabo una segunda rotación. Las
combinaciones siempre son rotaciones derecho-izquierdas y rotaciones
izquierdo-derechas y en este caso se trata de la segunda combinación.
Se ha demostrado que al momento de realizar una inserción el número
de rotaciones que es necesario realizar es a lo sumo 2, de modo que
una rotación doble representa el caso de mayor complejidad luego de
insertar un nodo. La eliminación puede provocar que se realice una
cantidad de rotaciones igual a log(n) {n es la cantidad de nodos) que.
teniendo, en cuenta que se trata de un árbol balanceado, resultaría en
un número aproximado a su altura. Fíjese en cómo en el siguiente
esquema existe un desbálance en r. Su hijo derecho tiene altura n
mientras que el izquierdo tiene altura n + 2.

210

Estructuras de datos y algoritmos

Se puede comprobar que después de la primera rotación (a la
izquierda) que se muestra a continuación persiste un desbalance en
altura.

wemotecwmoei wbíe

biblioteca

— — *faarra • Ecuador

211

Python fácil

Luego de la segunda rotación (a la derecha) el desbalance desaparece

Como es posible comprobar el árbol se encuentra ahora equilibrado por
altura.

" Rotación doble a la izquierda; se realiza de manera análoga a la
rotación doble a la derecha. La diferencia con respecto a la anterior es
que primero se realiza una rotación a la izquierda y luego una rotación
a la derecha.

212

Estructuras de datos y algoritmos

Luego de la primera rotación (a la derecha).

Como puede comprobarse, luego de la rotación doble el árbol resultante queda
balanceado. Para implementar la clase avi debe considerarse en cada nodo un
campo factor de equilibrio que tome valores del conjunto admisible {-1, 0, 1} donde
cada valor indica lo siguiente;

• Valor 1, el hijo derecho tiene altura n + 1 y el hijo izquierdo altura n. El
valor resulta de la diferencia (n + 1) - n

■ Valor 0, el hijo derecho y el izquierdo tienen la misma altura.

■ Valor -1, el hijo derecho tiene altura n y el hijo izquierdo altura n + 1. El
valor resulta de la diferencia n - (n + 1).

213

Python fácil

Cuando el factor de equilibrio toma un valor fuera del conjunto admisible
entonces es necesario realizar una o varias rotaciones. Los nodos hojas siempre
tienen factor de equilibrio y altura de valor 0.

Las condiciones necesarias que conllevan a la realización de alguna de las
rotaciones analizadas son las siguientes;

• Rotación derecha: cuando el factor de equilibrio del nodo es igual a -2
y el de su hijo izquierdo es -1.

• Rotación izquierda; cuando el factor de equilibrio del nodo es igual a 2
y el de su hijo derecho es 1.

■ Rotación doble derecha; cuando el factor de equilibrio del nodo es
igual a -2 y el de su hijo izquierdo es 1.

• Rotación doble izquierda; cuando el factor de equilibrio del nodo es
igual a 2 y el de su hijo derecho es -1.

Como se señaló previamente las operaciones de inserción y eliminación son
básicamente las mismas de un árbol binario de búsqueda exceptuando las situaciones
donde exista desbalance que deben resolverse mediante alguna de las rotaciones
estudiadas. La implementación de la clase avi se presenta a continuación:

alass avl(arbol_bln«rle_busqu«da):
^faotor_«qulllbrio => 0
altura ■ 0

Factor de equilibrio -1

Altura (4)-2

def __init__(aolf, v, izq» Nona, dar-None):
suparO .__init__{v, izq»izq, dar»dar)
self.faator_aquilibrie ■ 0
self, altura ■ 0

214

Estructuras ds datos y algoritmos

d«f insertar(self, v):
if V > self.valor:

if self.hi)odar is not Nona:
self,hijodor.insertar (v)

else:
self, hi joder =■ avl(v)

if V <■ self.valor:
if self.hijoizq is not None:

solf.hijoizq.insertar(v)
else:

self.hijoizq ■ avl(v)
self.resuelve^dasbalance()

tf RealizA las rotaciones ncceaariaa
H y actualiza el factor de equal,
def re8uelve_desbalance(self):

self.aotualiza^factor^aquilib ()

if Rotación a la derecha
if self.es_rotaoion_der():

self.rotaeion^dereoba()
/' Kotacion a la izguiei'da
elif self.es_rotaoion_izq(>:

self.rotaoion_izquierda0
elif solf.es_rotaoion_doble_der(}:

self.zotaaion_doble_der()
elif self .es__rotaaion__doble_lzq() ;

self.rotaoion_doble_lzq()

daf aetualixa_faotor_equlllb(self):
hder “ solf.hljeder
hizq ■ solf.hijeizq

If not hder and not blzq:
return

if not hder:
3olf._altura bizq.^^altura + 1
seif.factor_equllibrlo = -(solf ._altura)

elif net hizq:
solf._altuta - hder._altura + 1
self.faator^equllibrlo •» self._altura

else:
ool£._altura = max(hder._altura,

hizq._altura) + 1
cQl£.£aotot_equilibrio -\
hder._altura - hizq._altura

215

Python fácil

H Decido ji oi'csCuAr un.i I'otjicioti dor.
d«£ •s_rotaalon_<l*r(sol£) :

ratuxn sole.£aotor_«qulllbrlo la -2 and\
solf.hijolzq.eaotor_«quilibrle la -1

H Cocido Ji o'foctu.ir uu.i cotacioa Izq
d«e •a_rot«olon_lcq(soie):

zatum 3el£.£«otor_«quillbzlo la 2 and\
3ol£.hl3ed«r.£aotor_«qulllbrle la 1

ff roeido si oiocttiji* ma.i dd’lo rotacioa dor
ámt •s_rotaolon_debl«^d«r(sol£);

zaturn self.£«etez_«qulllbzlo la -2 and\
col£.hljelzq.£aator__aquillbzle la 1

Decido cl oiccCuar ima dcbio rccacioa ir<j.
d«£ •a_zot«olon_ddbl*_lzq(3ol£):

zatum aaie.£aetor_aqulllbzlo la 2 and\
soie.hljedar.£aotor_aquillbrlo Is -1

da£ zot*aioD_dar*ehs(3oie):
(7 Proro-TiJi Ji to
1£ solf.hljolsq la not Kona:

tamp " sole,valor
sole. valor m self.hljolzq.valor
hlzq “ scie.hljolzq
hdar ■ soie.hljodar
solf. hljodar • avKtamp, Izq^ono, d*r»hdaz)
1£ hizq.hljodar Is not Nona:

zolf.hl^odar.hljolzq ■ hizq.hljodar
If hlzq.hljelzq la not Nona;

soie.hljolzq a bizq.hljolzq
nolf.hijodar.actuallza^£aotoz_aqullib ()
sole.aotuallza_£aotoz_aqullib 0

do£ zotaolon_lzqularda(self):
a As.-ilogs .1 rot.icaon_dorecha
(i ProrccT-iiaito

1£ scie.hljodar Is not Nona:
tamp m sole.valor
sole. valor a self.hljodaz.valor
hlzq ■ scie.hljolzq
hdar ■ solf.hljodar
solf. hljoizq - avKtamp, lzq»hlzq, dar-Nona)
1£ hdar.hljolzq Is not Nona:

self.hljoizq.hljodar - hdar.hljolzq
If hdar.hljodar Is not Nona:

solf.hljodar - hdaz.hljodar
solf.hljoizq.aatuallza_£aetor_aqulllb()
sole.aotuallza_£aotor_aqulllb 0

216

Estructuras de datos y algoritmos

def rotaoion_deble_der(solf):
self.hijoizq.rotacion_izq()
self.rotaelon_derecha(}

def rotaclon_doble^lzq(3elf):
self.hijoder.rotaoion_der()
self.rotaoion_izquierda O

a De igual forma a co.-no serla en ua abb
pero coBsideraodo las rotaciones necesarias
n cuando se sube por el árbol,
def eliminar(self, v):

U Zl valor se encuentra en el higo dor
if self.valor < v:

If self.hijoder.valer la v:
If self.hijoder.eshoja():

self.hijoder = None
self.aotuallza_faotor_equllib()
return True

If self.hijoder.hijoder la None:
(f Si no tiene hijo der. y no os
un.T 2:oJa onCocces debo Conor
If hijo izcpiiordo
solf.hijoder » self.hijoder.hljeizq

ellf self.hijoder.hijoizq la None:
iS? si no Clone higo izq y no cs
if una hoga onConcoo debo tenez-
if hi Jo doreciio
self.hijoder = self.hijoder.hijoder

else:
/S riont? dos hijos
if self.hijoder la not None:

nvalor
solf.hijoder._menor^valor(ellmina-True)

else:
nvalor
self.hijoizq._mayor_valor(ellmlna-True)

self.hijoder.valor - nvalor
self.aotualiza_faotor_equillb ()

else:
if self.hijoder.ellminar(v):

self.aotualiza_£aotor_equilib ()
ff valor so eucueuCi.a eu el hzjo irr/
elif self.valor >■ v:

If El valor se eucueutr.i en el neJa .ictii.il
if self.valor ia v;

217

Python fácil

if scl£.«shoja():
nclf.valor ■ Mona

•Ilf self.hljodar Is Non*:
3olf.valor • 3Ql£.hl3olzq.valor
t«rnp “ solf.hljolzq
solf.hljelzq ■ bttir^.hijoizq
sol£.hljod«r t«mp.hljod*r

•lif sclf.hljolzq Is Nona:
self.valor * self.hijodar.valor
tan^ m sclf.hljodar
self.hljolzq • tamp.hijolzq

solf.hljodar ■ tamp.hijodar
•Isa:

if solf.hljodar is not Nona:
nvalor
self.hijodar._manor_yalor(alimlnaaTrue)

•Isa:
nvalor -\
self,hljolzq.^mayer_valor(allmlnaaTrue)

self.valor ■ nvalor
return True

fif S2 cl JjiTo izq. tiene vslor v
•lif self.hljolzq.valor is v:

4* 52 03 una hoja,
if solf.hijolzq.ashoja():

self.hljolzq “ Nona
return

if self.hljolzq.hijodar Is None:
If Si no ticno hijo do2\ y no oj
if ujaa hoja oafconces debo toner
a hijo izq
GGlf.hljoizq ■ self.hijoizq.hijoizq

allf self.hijoizq.hijoizq is Nona:
ff Si no tiene hijo izq. j' no es
(7 una hoj.i entonces efehe tener
ff hijo derecho
self.hljolzq ■ self.hijoizq.hijodar

•Isa:
if Tiene doc hijos.
if self.hijodar is not None:

218

Estructuras de datos y algoritmos

nvalor
solf.hijod«r.^m«nor_v*lor(•limina«True>

•Isa:
nvslor b\
SGlf .hljoizq._mayot__v*lor (•llmina-Ttu»)

self.hijolzq.valor * nvalez
else:

If self.hljoizq.eliminar(v):
self.aotuallza_faotor^equllib()

tf Par.-í resolver cu¿ilquier protlc.-ns ac
tt dcobalaaeo que pueda haiser surgido
self.reBUelve_desbalanca()

def _dame£aotor(self}:
return self ,_faotor_equilibrio

def ^de£inefaabor(self,v):
self ._^£aotor_equlllbrio = v

faator_^equlllbrlo » property (fget
fset = _de£ine£aotor)

a a avl(4)
a.insertar(6)
a.insertar(1)
a.insertar(S)
a.insertar(7)
a.inserbar(8)
if dimaando nodo B.
a.eliminar(8)
/; Kecoz'rldo pz'eoi'dcn.
a .preorden ()

a : ^

II S
gi:tí

“C:\ProorsB rilesVPythoo 3.1
6
4
1
9
1

damefaator.

Mantener el árbol balanceado propicia que las operaciones de búsqueda,
inserción y eliminación tengan un tiempo compulacional logarítmico a diferencia de
lo que ocurre con las listas, colas, pilas y otras estructuras que tienen tiempo lineal
en los peores casos.

7.1.5.3 Rojo negro
El árbol rojo negro (al igual que el AVL) es un árbol binario autobalanceado creado
en 1972 por el profesor alemán Rudolf Bayer donde cada nodo tiene un atributo
color que puede tomar los valores rojo o negro. En este sentido se puede decir

219

que es un atributo binario y aunque se adoptan las palabras rojo, negro para
identificarlos en general cualquier par de valores diferentes puede utilizarse. Las
invariantes que debe seguir un árbol para considerarse rojo negro son las
siguientes:

■ Debe cumplir todas las invariantes de un árbol binario de búsqueda (los
valores del subárbol derecho deben ser siempre mayores que el valor del
nodo raíz y los del subárbol izquierdo deben ser menores o iguales).

■ Todo nodo tiene dos posibles colores: rojo o negro.

■ La raíz es negra.

■ Todas las hojas son negras y no tienen valor (su valor es None).

■ Un nodo rojo debe tener siempre dos nodos negros como hijos.

■ Todo camino desde la raíz de un subárbol a cualquiera de sus nodos
hojas siempre tiene la misma cantidad de nodos negros.

Restringiendo la forma en que los nodos pueden colorearse desde la raíz
hasta las hojas, los árboles rojo negro garantizan que ningún camino tendrá el
doble de longitud que cualquier otro. Los nodos hojas se conocen como nodos
externos y el resto, que al contener valores resultan de verdadero interés, se
conocen como nodos internos. Las operaciones de búsqueda, inserción y
eliminación, al igual que sucede con el AVL resultan en un tiempo de complejidad
temporal logarítmico dado el balance en altura que mantiene la estructura. A
continuación se ilustra un ejemplo de árbol rojo negro:

Python fácil

220

Estructuras de datos y algoritmos

Cuando se modifica (insertan, eliminan nodos) un árbol rojo negro, surgen
situaciones que pueden llevar al incumplimiento de algunas de las invariantes
antes mencionadas. Estas situaciones requieren de la ejecución de una función
para reestructurar el árbol a un estado en ei que se busque cumplir con todas las
invariantes que se supone debe cumplir para considerarse como rojo negro. Esta
operación, analizada en detalle en la sección dedicada al árbol AVL es conocida
como rotación y en los árboles rojo negro se realiza de igual forma que se
realizaría en un rojo negro. Algunos árboles que incumplen las invariantes
anteriores se presentan a continuación.

La inserción en la estructura se realiza en una primera etapa como se
realizaría en un árbol binario de búsqueda. La segunda etapa corresponde a un
proceso de coloración que se ejecuta luego de haber insertado el nodo hoja y que
comienza asignándole color rojo. Posteriormente, para garantizar que se cumplan
las invariantes antes mencionadas se verifican las propiedades de algunos de sus
nodos vecinos. Este proceso resulta necesario porque la inserción puede provocar
que se incumpla la siguiente invariante:

■ Todo hijo de un nodo rojo debe ser negro (puede darse el caso de que
se inserte el nuevo nodo como hijo de un nodo rojo).

Para realizar la recoloración de nodos se tienen en cuenta las relaciones que
posee el nuevo nodo con su padre, su tío y sus abuelos tomando estas relaciones
como si se tratase de un árbol genealógico. Para facilitar la implementación de
esta estructura también se añade a cada nodo el atributo p que representa una
referencia al padre.

221

Python fácil

Existen 5 situaciones que pueden encontrarse cuando se inserta un nuevo
nodo X en un árbol rojo negro. Estos casos se describen a continuación;

■ Caso 1: Si X es la raíz del árbol entonces se pinta de color negro.

" Caso 2: Si el padre y el tío de x son rojos, entonces ambos nodos son
pintados de negro y el abuelo de rojo. El procedimiento debe continuar
en el nodo abuelo porque la nueva coloración puede haber provocado
una violación de las invariantes (la raíz debe ser negra o todo hijo de
un nodo rojo debe ser negro).

222

Estructuras de datos y algoritmos

Caso 3: Si x es hijo derecho de su padre que tiene color rojo y es hijo
izquierdo de su padre (abuelo de x) y además el tío de x tiene color
negro. En este caso se realiza una rotación a la izquierda sobre x para
convertirlo en el caso 4. El procedimiento debe continuar en x.

Luego de la primera rolación (a la izquierda) para llegar al caso 4

Python fácil

(Caso 4) Luego do la segunda rotación (a la derecha) y la nueva coloración

El procedimiento termina pues la reestructuración y el cambio de color
no introducen ninguna violación de las invariantes

■ Caso 4 Si X es hijo izquierdo de su padre que tiene color rojo y es hijo
izquierdo de su padre (abuelo de x) y además el tío de x tiene color
negro Se realiza una rotación a la derecha sobre x y se intercambia su
color con el del padre

La operación de eliminación resulta más compleja que la operación de
inserción y la dificultad principal surge cuando se elimina un nodo negro La
eliminación de un nodo rojo se puede llevar a cabo de igual forma que se
realiza en un árbol binario de búsqueda, ninguna complicación emerge en este
caso porque la cantidad de nodos negros en todos los caminos se mantiene
ningún nodo rojo se ubica adyacente a otro y la raíz permanece negra porque
el nodo eliminado era rojo y por tanto no podía ser la raíz antes de la
operación Los casos que implican cierto grado de complejidad involucran la
eliminación de un nodo negro x y son detallados a continuación

■ Caso 1 Si el nodo w, hermano de x, tiene color rojo, entonces,
considerando que los hijos de w deben ser negros, intercambiamos los
colores del padre de x y w para finalmente llevar a cabo una rotación
izquierda en el padre de x El nuevo hermano de x (hijo de w previo a la
rotación) tiene ahora color negro y el caso queda convertido en algunos
de los casos 2, 3 o 4 examinados seguidamente

224

Estructuras de datos y algoritmos

225

Python fácil

■ Caso 2; Si el nodo w (hermano de x que se supone negro) y sus hijos
tienen color negro, cambiamos el color de w a rojo. Ahora existe un
desbalance en la cantidad de nodos negros provocado por el cambio
de color de w. El procedimiento debe continuar en el padre de x y debe
considerar todos los casos posibles (del 1 al 4).

226

Estructuras de datos y algoritmos

■ Caso 3: Sí w (hermano de x) es negro, su hijo izquierdo es rojo y su hijo
derecho es negro. Se intercambian los colores de w y de su hijo
izquierdo y se realiza una rotación a la derecha sobre w. El nuevo
hermano de x es ahora un nodo negro que tiene un hijo derecho rojo,
situación que corresponde al caso 4.

227

Python fácil

■ Caso 4: Si w (hermano de x) es negro y el hijo derecho de w es rojo,
entonces recolorando y realizando una rotación a la izquierda en el
padre de x se elimina el nodo negro que le sobra a x

228

Estructuras de datos y algoritmos

Fíjese en que un árbol rojo negro siempre se encuentra balanceado según la
altura negra de sus subárboles, considerando como altura negra al número que
representa la mayor cantidad de nodos negros desde la raíz hasta un nodo hoja y
siempre se cumple que la longitud de la rama más larga del árbol es menor o igual
que el doble de la longitud de la rama más pequeña. Para resumir veamos
algunas de las situaciones que resultarían en un árbol rojo negro inválido.

Las únicas relaciones válidas de un nodo rojo con sus hijos son las siguientes;

229

Python fácil

Las relaciones válidas de un nodo negro con sus hijos se muestran a
continuación;

A A
A A A

Finalmente, la implementación de la estructura en Python es la siguiente:

class arbol^rn(arbel_binario_busqueda):
_padre = Nono
_color = Nono

dof __init__<sel£, v, c, p = Nono, isq = líono, dor = None):
suporO .__init__(v)
celf,_colot = c
Eclf.^adro = p

dof insortar(self, v):
if V > self.valor:

i£ self.hi^oder ia not Nono:
self.hi3odor.insertar(v)

else:
Eolf.bijodor = arbol_rn(v, ’ro]o', p = self)
self .hijodor .^convortir_m 0

if V <= self.valor:
if self.hijoizq is not Nono:

self.hi^oirq.insortar(v)
elso:

solf.hijoizq = arbol_rn(v, 'ro^o', p = self)
! .j.i/JCiz.i ’jjx'.iij.-íJfoj
sel£.hljoizq._convortir_rn()

230

Estructuras de datos y algoritmos

daf _convertir__m(self) ;
^ c.ido 2
if self.ea_raiz();

self,color — 'negro'
else:

padre - self.padre
abuelo = padre.padre
tio = None
if abuelo:

if abuelo.hijoizq:
if abuelo.hijoizq.valor ia padre.valor:

tio ~ abuelo.hijoder
else:

tio — abuelo.hijoizq

if not tio and abuelo:
tio = arbol_m (None, ' negro')

í cnso 2
if padre.color is 'ro^o' and tio.color is 'ro^o':

padre.color = 'negro'
tio.color = 'negro'
abuelo.color = 'zo^o'
abuelo .^convertir_m ()

cnso 3
if padre.color is 'zo^o' and tio.color is 'negro':

i£ self is padre.hijoder and \
abuelo.hijoizq is padre:
self.rotacion_izquierda{)
self. _conve r tir_rn()

C.150 4
if padre.color is 'rojo' and tio.color Is 'negro':

if self is padre.hijoizq and\
abuelo.hijoizq is padre:
abuelo.rotacion_derecha()
abuelo.hijoder.color = 'rogo'

def es_raiz(self):
return self.padre is None

def _dainocolor (self) :
return sclf._color

def _dofinecolor(seif, v):
self, color = V

231

Python fácil

def ^damspadre(self) :
return sel£._padro

def _definepadro{sel£, v):
self._padre = v

color = proparty{fget=_dainacolor,
fset=_de£inacolor)

padre = property(fgets^damepadre,
£aet= deflnepadre)

am = arbol_tn(3,'negro')
arn.insertar(2)
am.insertar(l)
am.insertar(5)

am. inorden 0
print(’color',arn.color, 'valor:', arn.valor)
print('color',am.hijoizq.color, 'valor;', arn.hijoizq.valor)
print('color',arn.hijoder.color, 'valor:', arn.hijoder.valor)
print('color', am.hijoder .hijoder .color, 'valor: ' ,

arn.hijoder.hijoder.valor)
Run 1* soircí

♦ *C:\Pro7tfte fileaVPythoo
■ ♦ 7

II Éí 3

color necro valor: 2
— color negro valor: 1
jí

U color negro valor: 3
X color rojo valor: S

La implementación de la operación de borrado se deja al lector como ejercicio.
En el código anterior se crea el árbol rojo negro en la variable arn y el estado final,
sin considerar los nodos None, es el siguiente.

Estructuras de datos y algoritmos

Fíjese en que las dos últimas inserciones corresponden a casos analizados
previamente y poseen soluciones que implican la ejecución de rotaciones.

7.1.5.4 Trie

Un Trie (del inglés retrieval) es una estructura utilizada con frecuencia en el área
de la Recuperación de Información (Information Retrieval) para almacenar de
manera eficiente cadenas de texto y lograr optimizar la búsqueda, inserción y
eliminación de patrones. Un texto en este contexto se entiende como un conjunto
de palabras formadas por caracteres o símbolos de un alfabeto finito y que
siempre terminan en el carácter especial $, suponiendo además que $ no
pertenece ai alfabeto. Un Trie permite que los textos sean preprocesados en
espacio de manera eficiente y que subsecuentes búsquedas sobre el mismo texto
no requieran preprocesamiento. Además las operaciones de inserción y
eliminación tampoco implican un nuevo preprocesamiento. Para lograr todo esto la
estructura se basa en la reutílización de prefijos de textos previamente agregados
para de esta forma optimizar el uso de espacio.

En esencia un Tríe es un árbol n-arío donde n es la cantidad de símbolos del
alfabeto y donde cada palabra se encuentra representada por un camino desde la
raíz hasta una hoja y sus diferentes prefijos por un camino desde la raíz hasta un
determinado nodo.

O ©
L Q—Q 0

----0H-O—O—©

—G>©>©i)-<D
En un Trie la raíz siempre es un nodo con valor'' que marca el comienzo de

todas las palabras almacenadas en el Trie. La operación de búsqueda en esta
estructura es lineal y solo conlleva un recorrido por los caracteres del texto a

UNIVERSIDAflTECMÍCAnEl HOME
BIBLIOTECA
Ibarra • Ecuador

233

encontrar Además, resulta superior en eficiencia al compararse con la búsqueda
realizada por otras estructuras como las listas o los árboles binarios de búsqueda

Python fácil

La búsqueda de la
palabra ‘sobre’ implica
que se recorran todos los
elementos de la lista

La búsqueda en un Trie resulta tan eficiente porque la propia estructura
almacena los textos de forma tal que si dos de estos comparten un prefijo x,
entonces ese prefijo solo se almacenará una sola vez en la estructura,
garantizando de esta forma un uso óptimo del espacio y proveyendo búsquedas
guiadas en todo momento por prefijos del texto a encontrar En el Trie
presentando anteriormente, la búsqueda del patrón ‘sobre’ se realizaría
comenzado por la raíz para luego seguir en el hijo con valor 's', luego en su nodo
hijo 'o' y así sucesivamente hasta llegar al nodo con el símbolo especial $, si no se
logra llegar a este nodo entonces se supone que el texto no se encuentra en la
estructurao

L-O

T
KEMD-GMD

La inserción de un texto x, se realiza en un procedimiento de dos fases,
primeramente se busca el camino que representa el prefijo más largo que
comparten los textos incluidos en el Trie y el texto x Seguidamente se incluyen los

234

Estructuras de datos y algoritmos

caracteres que no pertenecen a este prefijo como nuevos nodos del Trie
comenzando desde el último nodo que representa el último carácter del prefijo
común. Considerando el siguiente Trie, en caso de insertar la cadena 'sobre'
entonces el prefijo común aparecería destacado en verde mientras que el camino
azul se toma como la inclusión que debe realizarse de nuevos nodos finalizando
con el nodo $.

G) O O ©
(0—0 0

Camino común

C)—0~~0~G)~0~0“~©
©—O ©

©H©-©>—© Q ©
—©©D—G©© ©

Nuevos nodos

©©©©)©D

—©—©—©—©
Para eliminar un texto x, se comienza realizando una búsqueda cuyo resultado

debe coincidir con el texto x. de lo contrario este no se encuentra en el Trie y no

235

Python fácil

existe ningún paso futuro a ejecutar Una ve2 encontrado x, se van eliminando de
derecha a izquierda (comenzando por S) todos los nodos que representan
caracteres de x y que poseen un solo hijo Si un nodo de x es hoja entonces se
supone que solo se relaciona con el propio x y no con ningún otro texto, entonces
es borrado Observe cómo se elimina el texto 'sobre' del siguiente Trie

O—©“©“©"^O o~~o

©-©©)©©©-©
©©D©©0—©

0©D~0~©

©-©©>©)

236

Estructuras de datos y algoritmos

Finalmente la implementaclón de la estructura de datos en Python es la
siguiente;

elass nodo:

^v»lor « ‘
_hi3o8 ■ {]

dof __inlt__{solf, V):
sol£._valor ■ v
3olf._hijoa ■ []

d«£ •limlnar_hljo(sel£, v):
for i In rango(Ion(self._bljos)}:

1£ solf._hl3os[t].^valor v:
sol£._hljos.pop(1)
break

daf damavalor(sol£) :
return solf._valor

def doflDevalor(sel£, v):
5olf,_valor “ V

valor «• proporty(fget ■ damavalor,
faetaidaflnevalor)

class trie:

_rair = None

def __init__(self) :
3olf._raiz • nodoC''’)

def busoar(sol£, t):
prefijo m aclf.prefljo_comun(t)

nodo — profijoCO]
long " prefijo[l]
for h in nodo._hij08'

If h.^valor ~ and long is lan(t):
return True

return False

def prefijo__oomun(sol£, t) :
aotual - 3cilf._rai*
i - 0
encontrado “ False
nodos ”

237

Python fácil

for oar«iat*r In fc:
for hijo in actual._hijoa:

if hijo.^valor is oaeaotar:
actual - hijo
i 1
encentrado " Trua
nodes.appand(hijo)
break

if not encontrado: break
encontrado » False

return (actual, i, nodes]

de£ insertar{zcl£, t):
prefije “ self.prefije_aomun(t]
nodo__oomienzo « prefijo [0]
comienzo ■ prefijo(1]

for i in range(comienzo, len(t)}:
nedo_oomienzo.^hijos.append(node(t[i]))
1 ■ len(nodo^oomienzo._hijos)
node_aomienzo ■ nodo_oomienzo.^hijos [1 - 1]

ncdo_oomienzo ._hijos.append(nodo ('$'))

def eliminar(self, t):
prefijo ■ self.pte£ijo_comun(t)
nodo - prefijo[0]
long ■ prefijo(l]
nodos - prefijo[2]
for h in nodo.^hijos:

if h.^valor ’$' and long is len(t):
- Sci-r.iui'o iicdos hoT-.-

nodos.append(h)
nodos.Insert(0,solf. raiz)
nodos “ list(reversad(nodos))
ff riinia.indo de dr^rcclu- n i=cp.iiord.-i

for 1 in range(len(nodos)}:
if len(nodosti] .Jhijos) is 0:

nodos (i+1] . eliminar_hi jo (nodos [1] .__valor)
break

t ■ trie (}
t.insertar('sting')
t.insertar('sofa')
t. insertar('sobre'}
t.insertar('arnaldo'}

238

Estructuras ds datos y algoritmos

print(t.buscar('arnaldo‘))
print(t.buscar('arnaldon‘))
print (t.buscar(’atinger'>)
print(t.buaaar('sting))

t.aliminax('arnaldo'}
t.eliminar('sofa')
print(t.buscar(‘arnaldo‘))
print(t.buscar(’sofá’))
Rui t* tañe

^ *Cs\ProgT»a rilej\Pyt£cD 3.1
Tn»

* ♦ r«lje

II 3 rau«
. Tnie

3 3 raiM

- ruM

7.1.5.5 Quadtree

Un Quadtree es un árbol 4-ario (cada nodo tiene a lo sumo 4 hijos) utilizado para
representar puntos en dos dimensiones en el piano. Para ello particiona en 4
regiones iguales una zona cuadrada que constará a su vez de varias subdivisiones
del mismo tipo según sea necesario y termina en los nodos hojas que representan
en sí los puntos.

Cada partición crea un nuevo nivel en el Quadtree y cada una de estas puede
verse como otro Quadtree. Los nodos hojas tienen un color pues el Quadtree es
utilizado para representar imágenes Se puede considerar que el primer nivel se

239

encontrará en las coordenadas R = [xmin: xmax] x (ymin. ymax] y que el punto
medio por donde se realizará la primera partición estará en P = ((xmax +
xmin)/2;(ymax+ymin)/2).

La búsqueda de rango en un QuadTree es una de las operaciones que con
más frecuencia se le solicita a la estructura y se realiza en base a una región A
que se recibe como entrada La salida es el conjunto de puntos que pertenecen al
QuadTree y se encuentran en dicha región.

Python fácil

Región para búsqueda de rango

El proceso de búsqueda comienza por la raíz del QuadTree y una
comparación de su región R con la reglón A. De esta comparación pueden
desprenderse varios casos*

• Si la intersección de R con A es vacía, entonces no es necesario
recorrer el subárbol pues ninguno de los hijos tendrá tampoco puntos
que se encuentren en A

■ La región A contiene completamente a R, entonces debe retornarse
como respuesta cada una de las hojas del subárbol.

■ La región A no tiene intersección vacía con R, entonces se continúa el
procedimiento recursivamente en cada hijo del subárbol

La inserción es una de las operaciones más sencillas en un QuadTree y recibe
como entrada un punto P a incluir en la estructura. Se comienza desde el subárbol
raíz y se procede recursivamente accediendo al descendiente que posee la región
por donde debe incluirse el punto P. Si este descendiente no tiene hijos entonces

240

Estructuras de datos y algoritmos

se particiona la región (en 4 partes iguales) y se continúa recursivamente hasta
llegar a las coordenadas de P, punto que luego es insertado.

Pto P = (2,2)

La implementacíón de esta estructura en Python se presenta a continuación:

olass punto:

color B Nona
ooord B Nona

da£ __init__(aelf, x, y, o):
solf.coord B [x,y]
self.color B o

da£ damexcoord(sel£):
raturn aelf.coord[0)

da£ damayooord(aclf):
raturn self.coordtl]

X B property(fgatBdamaxooord)
y B property(fgatBdamaycoord)

241

python fácil

olasa quadtraa:
Rcaioaoi}
sup_lzq K Nona
8up_dar m Nona
Inf^izq “ Nona
inf_dar ■ Nona

pto_madio a Nona
oolor a Nona
Coora'enad.'ís
xmax a Nona
xmin a Nona
ymax a Nona
ymln a Nona

daf __inlt (=el£, xmax, xmin, ymax, ymln) :
If xmax - xmin !■ ymax - ymin:

zaisa Exeaption(' Las longi.tudas deben ser'
'iguales')

self.pto_madlo a ((xmax+xmln)/2,{ymax4ymln)/2)
solf.xmax - xmax
self.xmin a xmin
self.ymax a ymax
solf.ymin ■ ymin
self.color a 'blanco'

daf insarfear(self, p) :
if self.partanaca(p):

if solf.xmax - solf.xmin <a 1 and \
self.ymax - solf.ymin <a 1:
self.oolor a p.color
raturn

if self.vaoioO:

self.divida()
self,aup^izq.inaartar(p)
self. aup_^dar. insertar (p)
self.inf^izq.insertar(p)
self.inf_dar.insertar(p)

242

Estructuras de datos y algoritmos

daf divida(sol£):
3Qlf.aup_^i*q - quadtraa(salf.pto_madio[0],salf.Kmin,

aelf.pto^madiotl],aolf.ymin)
sclf.aup_dar - quadttaa(aolf.xmax.self.pto madio[0],

self .pto^mediodJ ,aeif .yinln)
self.inf_ixq ■ quadtraa(aelf.pto_madio[0],3alf.xmin,

self. yrnaac, self. pto_ma dio t X1)
sel£.ln£_dar * quadtraa(aoXf.max,self.pfco_madlo[0],

sol£.ymax,self.pto^madiod])

tf Cei^joXve n-u<? m cí p:wto p portonoco si ^uadJree
daf partanaca(scl£, p):

1£ solf.xmln <■ p.x < solf.xnax aad\
self.ymin <= p.y < self.ymax:
zaturn True

ratuxn Falsa

daf vacio(self):
if ocl£.aup_izq is Nona:

return True

q " quadtraa(4,2,4,2)
q.lnsartar(punto(2,2,'negro‘]}
q.insertar(punto(3,3,'negro')}

El QuadTree que resulta de las operaciones realizadas en el código anterior
(inserción de puntos (2,2) y (3,3) de color negro) es el siguiente;

243

Python fácil

Se propone al lector que piense e implemente la operación de eliminación en
un QuadTree La próxima sección detallará una estructura ampliamente utilizada
en Ciencias de la Computación y que resulta además en una generalización del
árbol Se trata de los grafos

7.1.6 Grafos
Un grafo es un par <V, E> donde V es el conjunto no vacío de vértices o nodos y E
es el conjunto de aristas Además, (a, b) pertenece a E si y solo si a y b
pertenecen a V Se atribuye su formulación al famoso matemático Leonhard Euler
en el artículo que presentara en 1736 y donde daba respuesta a la interrogante de
los puentes de Konigsberg ¿Es posible, partiendo de un punto cualquiera y
cruzando una vez por cada puente, llegar al lugar de partida? La respuesta a esta
pregunta era negativa y yacía en el estudio de la teoría de grafos Actualmente los
grafos como estructuras de datos son empleados para modelar y obtener
soluciones a una gran cantidad de problemas Entre los grafos mas utilizados en la
modelación de problemas se encuentran los grafos ponderados Un grafo se dice
ponderado cuando cada arista tiene asociada un peso que puede ser un numero
real, entero, positivo entero, etc Los grafos ponderados suelen emplearse para
modelar problemas de optimización muchas veces vinculados necesariamente con
heurísticas y metaheurísticas debido a su alta complejidad computacional Entre
estos problemas vale mencionar el conocido problema del viajante El problema
del viajante intenta solucionar la problemática de ofrecer a una persona un
recorrido que pase por n ciudades recorriendo cada ciudad una sola vez y donde
el recorrido concluya en la misma ciudad donde comenzó En este caso las
ciudades pueden verse como nodos del grafo y las conexiones entre estos como
el tiempo o la distancia que existe entre una ciudad y otra

244

Los gratos se representan computacionalmente considerando las relaciones
de adyacencia entre sus nodos Existen dos representaciones fundamentales,
estas están basadas en una matriz de adyacencia y en una lista de adyacencia

La matriz de adyacencia, como el nombre sugiere, consiste en una matriz
donde el valor de cada celda (i, j) define la relación entre los nodos i y j Este valor
puede ser True para denotar que i, j se encuentran conectados o puede ser un
valor numérico en caso de tratarse de un grafo ponderado Para el grafo
presentado al comienzo de esta sección (ejemplo del viajante) la matriz de
adyacencia sería la siguiente

Estructuras de datos y algoritmos

Nodos
La Habana Nueva York Barcelona Adelaide R Janeiro

La Habana 0 2 5 -1 2

Nueva York 2 0 4 7 -1

Barcelona 5 4 0 12 -1

Adelaide -1 7 12 0 3

R Janeiro 2 -1 -1 3 0

Fíjese en que las celdas con números negativos indican la ausencia de
conexión, de modo que a partir de la matriz de adyacencia se puede representar el
grafo teniendo en cuenta solo las ansias con pesos mayores o iguales a cero La
tabla anterior podría representar el plan de vuelos de una aerolínea, expuesta a
los pasajeros con la intención de hacerles saber el tiempo de vuelo al que estarían
sometidos una vez abordado el avión

Otra forma bastante utilizada para representar grafos es la lista de adyacencia
Nuevamente, como el nombre indica, se emplea una lista que tiene por elementos
pares de la forma (n, adyacentes(n)) donde n es un nodo del grafo y adyacentes
es una lista con los nodos adyacentes a n Para el ejemplo del grafo modelado
previamente la lista de adyacencia serla la siguiente

La Habana Nueva York | Barcelona | R Janeiro

Nueva York La Habana | Barcelona | Adelaide

245

Python fácil

Adelaide Nueva York | Barcelona | R Janeiro

Barcelona ------- La Habana | Nueva York | Adelaide

R Janeiro ------- Adelaide | La Habana

De manera general la representación que se escoja dependerá en gran
medida de la aplicación a desarrollar En grafos donde la cantidad de aristas sea
un número cercano a n(n-1)/2 (máximo posible de aristas en un grafo) la
representación por matriz de adyacencia consume bastante memoria y en todos
los casos proveen un acceso inmediato a los datos al depender únicamente de la
indexación No sucede así con las listas de adyacencia en las que puede
requerirse un recorrido por todos ios adyacentes de un nodo para venficar el valor
o la existencia de una arista y en el peor caso este recorrido visitará cada nodo del
grafo Una posible implementación de un grafo basado en matriz de adyacencia se
presenta a continuación

elaas grafo.

_n • 0

dof __init__(golf, n):
for 1 In rango(n):

3olf._n “ n
3ol¿._natriz appand([])
for J in ranga(n).

=olf._natrir(i).appand{-l)

daf Insartarlaolf, l, j, p];
if solf._n < 1 < 0 or solf.^n < j < 0-

raiaa Exception(Modos incorrectos')
cois.^matriztl]til “P

def borrar (self. i ,j);
If soií.^n < 1 < 0 or self._n < j < 0:

*aiaa Exception('Nodos incorrectos')
3ol£.^matrir{i][j] m -l

daf iit7)rl>na_ariafca8 (SQlf) ;
for i In range(sol£. n):

for 3 In ranga (self .__n) ;
If self.^matrirti]13) >■ 0:

printc r + atr(i) +
+ atr(3) +))

246

Estructuras de datos y algoritmos

g m gr»£o(4)
g.lna«rtar(l.l,2)
g inB«Etar(2,l.,l)
g lEiprlina__arl9tBa<)
Rm 1r* Birct

» 1 4 í"C-\Pto9xia mes

■
^ 1
♦ (J,l|

il 1

A lo largo de este libro se han analizado variaciones de grafos y, en especial,
su caso particular más conocido, los árboles Hasta el momento se ha considerado
que no existe dirección en las aristas que conforman el conjunto E o lo que es
equivalente, que la arista (a, b) = (b, a) Los grafos en los que se cumple esta
condición son conocidos como grafos no dirigidos que difieren de los dirigidos en
los que puede darse el caso que la arista (a, b) sea diferente de la arista (b, a) La
distinción estara dada en estos casos por la onentación o dirección que tengan las
aristas Observe que en un grafo no dirigido se cumple que (a, b) = (b, a) porque
las aristas carecen de dirección La próxima subsección estará dedicada al estudio
de los grafos no dirigidos

7.1.6.1 Dígrafos

Un grafo dirigido o digrafo es un par <V, E> donde V es el conjunto (no vacío) de
nodos, E es el conjunto de aristas y donde cada arista es un par ordenado La
diferencia principal entre un grafo dirigido y otro no dirigido es precisamente que en
el primero las ansias son pares ordenados mientras que en el segundo no lo son

En los dos grafos anteriores, el de la izquierda que es no dirigido y el de la
derecha que es dirigido, se puede evidenciar el efecto que tienen sus diferencias
conceptuales En el grafo G existe el camino {1, 2, 3} mientras que en G’ el camino
al comenzar en el nodo 1 puede continuar en 2 o 3 dado que así lo indica la
dirección de las aristas que salen de 1 Luego si continua en el nodo 2 no podría
continuar en 3 porque no existe arista que salga de 2 hasta 3 La definición de grado
de un vértice en un grafo dirigido cambia ligeramente de la versión no dirigida y se
divide en dos componentes el grado de salida y el grado de entrada El grado de

247

salida de un nodo v indica la cantidad de aristas que salen de v hacia otros vértices,
y el grado de entrada, la cantidad de aristas que vienen de otros vértices y terminan
en V En el ejemplo anterior (digrafo G'), el grado de salida del nodo 2 es 0 y su
grado de entrada es 2

La representación computacional utilizada para gratos dirigidos es la misma
que se emplea para gratos no dirigidos, simplemente cambia la interpretación que
se le atribuye a las estructuras. Por ejemplo la matriz de adyacencia para el
dígrato G' sería la siguiente.

python fácil

Nodos
2 3

1 False True True

2 False False False

3 False True False

La interpretación que se le atribuye a la tabla anterior es que si existe una
celda (tila, columna) con valor verdadero entonces debe existir una arista que va
desde el nodo que se identifica con 'tila' al nodo que se identifica con ‘columna’.
Observe que en un dígrato puede existir un vértice inalcanzable, esto es, un
vértice desde el cual no exista camino comenzando por alguno de los nodos
restantes.

ningún cummi) liucia I,

Cuando en un dígrato se cumple que cualquiera de los dos vértices es alcanzadle,
se dice que es tuertemente conexo

Un dígrato se dice que es adclico cuando no existe camino que comience en
un nodo, termine en ese mismo nodo y no repita vértices. Los gratos dirigidos

246

aciclicos son utilizados en muchas aplicaciones para indicar precedencia entre
procesos Estas aplicaciones suelen basarse en un ordenamiento lineal de los
vértices conocido como orden topológico

Se dice que un conjunto de vértices están ordenados topológicamente cuando
se cumple que al existir la arista (a, b) en G entonces el nodo 'a' debe aparecer
primero en este ordenamiento que el nodo ‘b’ En la siguiente figura se muestra un
grafo dirigido y seguidamente su orden topológico

Estructuras de datos y algoritmos

Durante secciones venideras estaremos describiendo una sene de algoritmos
que se enmarcan en campos tan disimiles como la teoría de números y la teoría
de grafos La intención será mostrar al lector las formas de pensar y analizar sobre
las que puede abordarse el desarrollo de un algoritmo para obtener buenos
resultados en cuanto a eficiencia e impíementación

7.2 Algoritmos
Un algoritmo es una secuencia finita de pasos que puede recibir una entrada y
devolver una salida Buscando analogía con la vida real un algoritmo puede verse
como la receta de cocina de un pastel La recela cuenta con un conjunto de
prerrequisilos, azúcar, coco, etc y luego de una secuencia de pasos devuelve una
salida que sería el pastel en sí Entre los algoritmos más conocidos se encuentran
el algoritmo de Euclides y el algoritmo de la división

Los algoritmos pequeños suelen ser representados gráficamente mediante
diagramas de flujo que pueden brindar una visión bastante clara del
funcionamiento del algoritmo y de los pasos que involucra El siguiente diagrama
muestra gráficamente un posible algoritmo para tomar agua del refrigerador

249

Python fácil

La forma de representar gráficamente los distintos elementos de un algoritmo
varía en función del sistema de diagrama empleado, En el ejemplo anterior el
símbolo de rombo identifica una condicional.

Otro componente utilizado con frecuencia para describir un algoritmo es el
pseudocódigo (el prefijo pseudo significa ‘falso, ficticio'). Un pseudocódigo es una
manera de escribir un algoritmo donde se mezclan construcciones sintácticas del
lenguaje natural (que empleamos para comunicarnos en la vida cotidiana) con
construcciones de los lenguajes de programación, en definitiva la idea es dejar
plasmado con claridad y legibilidad el funcionamiento del algoritmo. El
pseudocódigo que se observa a continuación corresponde con el algoritmo de la
toma de agua del refrigerador.

Algoritmo tomar_agua

r = ve_refrigerador

sí no r.abierto entonces

r.abre

toma_agua

fin

La ventaja fundamental que ofrece un pseudocódigo sobre un diagrama de
flujo es que el primero puede resultar mucho más fácil de comprender cuando se
trata de un algoritmo con cierto grado de complejidad y también mucho más
cercano a un lenguaje de programación concreto, lo cual hace que la traducción
sea mucho más sencilla,

250

Estructuras de datos y algoritmos

7.2.1 Prueba de prímalídad
Los números primos han sido conocidos de manera implícita o explícita por el
hombre desde la antigüedad En tiempos tan remotos como el año 300 a de C , la
obra Elementos del conocido matemático griego Euclides define lo que se conoce
actualmente como número primo y además, de manera trascendental, propone el
famoso teorema en el que se demuestra que el conjunto de los números primos es
infinito Las investigaciones referentes a los números pnmos han pasado de la
mano de grandes matemáticos como es el caso de Fermat, Euler o Riemann En
el presente los números primos nos acompañan día a día al formar parte
indispensable de los sistemas de cifrado de clave publica y como base en
algoritmos criptográficos clasicos como el RSA que se basan en la imposibilidad
que existe de factorizar números grandes (mayores que lO'^lOO) en factores
primos con los ordenadores actuales Muchas son las conjeturas que rodean a los
números primos y muchas serán las puertas que se abrirán a la ciencia si vanas
de estas lograran resolverse Es por eso que aun hoy en día y después de más de
2000 años de los descubrimientos de Euclides, los números pnmos son un tema
que atrae a una gran cantidad de teóricos de las matemáticas y que suscita dudas,
preguntas e indudablemente incita a la investigación y a intentar resolver los
enigmas que los envuelven

Un número p se dice que es primo si sus únicos divisores son 1 y p En caso
contrario, se dice que es compuesto, el numero 1 no se considera primo Se
considera a q como divisor de un número n si el resto de la división n/q es cero El
número 2 es primo porque los únicos números que lo dividen son el1 y el propio 2
y este es el único número primo par En el intervalo de enteros [2, 100] los
números primos son los siguientes

2, 3, 5, 7. 11, 13, 17. 19, 23, 29, 31, 37, 41,43, 47,
53, 59, 61, 67, 71, 73. 79, 83, 89, 97

Una prueba de primalidad es un método que dado un número entero decide si
es primo Existen muchas pruebas de primalidad que se aplican a subconjuntos
del conjunto de números primos, como es el caso de la prueba de Lucas-Lehmer
que solo se aplica a números de Mersenne Esta sección pretende iniciar al lector
en el tema asi que los algoritmos a analizar representan pruebas de primalidad
simples que requieren un mayor tiempo de cómputo que otros métodos más
sofisticados y actuales

Probablemente el algoritmo más trivial que pueda aparecer en nuestra mente
cuando pensamos en decidir si un número n es primo consista en recorrer todos
los números desde el 2 hasta n - 1 y basarnos en el hecho de haber encontrado
algún divisor en este recorrido para decidir si n es un numero primo La
implementación de este algoritmo se presenta a continuación

251

python fácil

d«f •s_primo(n):
i£ n Is 1:

rstuzn fslsa

for 1 In rsngs(2,n):
If n%l Is 0:

rsturn Tslss
rstum Trus

print (’1 , as_prino(l))
print (' 2 ,astriño (2))
print(3 ,ss_primo(3))
print (-J • ,*s_prlmo (4))
print(S',ss_primo(5))
prlnt(Ü ,ss_primo(6))
print (” ,ss_primo(7))
pLf» 1^ «S

►► +
■ *■
II
a ^

nii>\1 rilM 9 Trw) Ttm
9 fftU*
9 Xrm
i FálM
) Ttb*

El algoritmo anterior puede mejorarse si se tiene en cuenta que el recorrido
pasa por números por los cuales resulta innecesario una pregunta como n%i dado
que con antelación sería posible determinar si n es primo El algoritmo mejorado
sería el siguiente

dsf ssjprlno_í^3or»do(n)-
if n is 1.

rsturn Fslss
f s-iv.-' ^nZ. r<.cjrnJc

i m int(n**0.5) * 1
for 1 in ranga(2,3).

if n«i is 0:
raturn ralas

raturn Ttua

printCl , a8_jriro_na3orado(l) I
print! 2'.as^sino_majorado<2))
print!'3 .as_prino_na3orado!3))
print!'i ,as_prino_Rajetado(4)}
print! S ,as^rino_najorado (S)}
print! 6 ' ,as_priEvo_majoradoi6)}
print! 7',as_prUno_ma3orado(7)>
Ri/' t
»» ♦
■ *
II 3
S3

I *Ci\Fnsraa
'1 ruM
' 3 Tra»
i Tra

, « rut*
c S Tna
(rtiM

I 7 Ttua

252

Estructuras de datos y algoritmos

Para comprender por qué sería suficiente finalizar e! recorrido hasta
raíz_cuadrada(n) + 1 supongamos que decidimos realizar el recorrido completo y
que llegado el número raíz_cuadrada(n) no se ha encontrado un número i que
divide a n. Si n no es primo entonces debe tener al menos dos divisores en el
intervalo [ralz_cuadrada(n)+1, n-1] porque un número compuesto siempre puede
escribirse como n = ab donde a y b son mayores que 1, así que deben existir a, b
en dicho intervalo tal que se cumpla la última igualdad. Pero el menor valor que
puede asociarse a los números a y b en este intervalo es raíz_cuadrada(n)+1 y
resulta entonces que:

(raíz_cuadrada(n)+1)*(raíz_cuadrada(n)+1) = n + 2*raíz_cuadrada(n) + 1 * m

Lo cual supone una contradicción pues m siempre es mayor que n. De esta
forma se demuestra que para decidir si un número es primo basta con analizar los
números hasta la raíz cuadrada de n.

7.2.2 Ordenamiento
El ordenamiento es una de las primeras tareas que realizara una computadora.
El término ordenador deriva de esta idea que vincula a esta máquina que todos
conocemos con la función básica de ordenar. El problema ha llevado a la
creación de una gran cantidad de algoritmos que intentan realizar la tarea de
ordenamiento cada vez en un tiempo computacional menor. En definitiva, un
algoritmo de ordenación es un método que recibe una lista de elementos y los
reordena de manera tal que al final queden organizados en la lista de menor a
mayor según una determinada función de comparación, que recibe dos
elementos y devuelve 0 si son iguales, 1 si el primero es mayor que el segundo o
-1 si el segundo es mayor que el primero. Se dice que un algoritmo de
ordenación es estable cuando al contener la lista los elementos A y B en las
posiciones respectivas i, j, se cumple que luego del ordenamiento A y B
permanecen en las mismas posiciones. Cuando esta condición no se cumple se
dice que el algoritmo es inestable.

Algunos de los más populares algoritmos de ordenación serán descritos en
subsecciones venideras.

UNIVERSIOAO TECNÍCi OEL NOME
BIBLIOTECA
Ibarra • Ecuador 253

7.2.2.1 Mínimos sucesivos
El algoritmo de mínimos sucesivos probablemente sea uno de los algoritmos de
ordenación más fáciles de implementar y comprender Realiza un primer recorrido
desde el primer elemento de la lista, comparándolo con todos los que le siguen e
intercambiándolos cada vez que encuentra uno menor de forma tal que al finalizar
este recorrido se garantiza que el menor de los elementos quedará en la primera
posición, luego realiza un segundo recorrido comenzando desde la segunda
posición de la lista y siguiendo la misma operatoria, continúa de esta forma hasta
que se hayan completado n-1 recorridos (n es la longitud de la lista) A
continuación se muestra el proceder del algoritmo al recibir como entrada la lista
[3, 2, 1, 5,4] y durante la primera iteración

Pnmera iteración

python fácil

n>
í 3 I 2 |~1 I 5 I 4

I 2 I 3 I 1 I 5 I ~4

r~2 I 3 I 1 I 5 I ~4~

L 1 I 3 I 2 I 5 I 4~1

254

Estructuras de datos y algoritmos

I 1 1 3 11 2 11 5 11 4 1

1 1 1 3 11 2 11 3 11 4 1

El código en Python sería el siguiente;

def minimos_sucesivo5(lista):
for i in range(len(lista) - 1):

for j in range (i-fl, Ion (lista)}:
if lista[i] > lista[j]:

intercambia(i, j, lista)

1 « [1,2,5,4,3]
minimo5_sucesivos (1)

print(1)

Run ^ test

^ I C:\Python31\p7thon.eze
i [1, 2, 3, 4, 31

■ ♦ :
El método es estable, note que si el elemento A aparece primero que el

elemento S en la lista original entonces no se realiza intercambio alguno, el signo
que se utiliza para las comparaciones es menor estricto (<} y en caso de
cambiarse a menor o igual el algoritmo perdería esta propiedad.

J.2.2.2 InsertionSort
El ordenamiento por inserción (del inglés Insertion Sort) representa una manera
bastante intuitiva y humana de realizar el ordenamiento de un conjunto de
elementos. En una lista de n elementos el procedimiento supone que siempre los
primeros k elementos (k<n) se encuentran ordenados, luego inserta el elemento
k+1 en la posición que le corresponde entre estos primeros k elementos. Este
proceder se repite para cada elemento de la lista recorriéndola de izquierda a
derecha El siguiente ejemplo detalla cómo ordenaría este algoritmo la lista [3, 2,
1.5, 4],

255

python fácil

I

I 3 i ¿ I 1 I 5 I '4~~1
\

r 2 1 3 I 1 I 5 I 4 ~]

K = 2 I

Í 2 I 3 1' 1 I 5 I ~T~l

r 1 I 2 I 3 I 5 I 4~|

K = 3 >

I 1 I 2 I 3 i ^ I ~A~]

1 I 2 I 3 [5 I 4

________________ 1

I 1 I 2 I 3 I 5 I^T~|

I 1 I 2 l~3 i 4 I ^

Para Insertar el elemento k+1 simplemente se recorre la lista de los k primeros
y se inserta justo antes del primer elemento mayor que el k+1 Al igual que sucede
con el ordenamiento burbuja este algoritmo tiene un tiempo computacional
cuadrático La implementación del algoritmo en Python podría ser la siguiente

daf ordanualanto_lnB«ceion(lista].
for i in zango(l, len(lista)-1)

infarta(lista,i*l,lista[1+1])

def insaeta(lista, k, v)i
for i in zanga(k):

i£ lasta[l] > VI
lista.pop(k)
lista.insartd, v)
eatum

256

1 B (3,4,1,2,5]
ozdanamianto_lnsaeclon(1)
print(l)

Estructuras de datos y algoritmos

Bifi I* K«fce

I ^ I *C:\Pro9taa FUea\Pytban
|1, 2. a, 4, 91

En las próximas secciones se analizarán dos algoritmos que se apoyan en la
técnica de divide y vencerás como estrategia para conseguir favorables tiempos
computacionales en los procedimientos de ordenación que representan Estos son
Quicksort (Ordenamiento rápido) y MergeSort (Ordenamiento por mezcla)

7.2.2.3 Quicksort
Divide y vencerás es una técnica de programación que se basa en la filosofía del
famoso refrán, o sea, dividir un problema grande en subproblemas de menor
tamaño y resolverlos para dar solución al problema mayor En el caso
computacional la división se realiza recursivamente y hasta tener subproblemas
cuya solución es inmediata y a los cuales se les conoce como casos bases

Previamente se mencionó que el algoritmo de ordenación Quicksort se basa en
esta técnica de programación La estrategia en general es la siguiente

•Divide Particfonar la lista A[i j] en dos sublistas A[i k-1]yA[k+1 j] de
modo que todo elemento en la primera sea menor o igual que A[k] y todo
elemento en la segunda sea mayor que este valor A[k] es nombrado
elemento pivote y rige el orden de la lista en un nivel de la recursividad
Existen diferentes técnicas para escoger al elemento pivote En este caso
escogeremos siempre el último elemento de la lista como pivote

• Conquista Ordenar las sublistas A(l k-1] y A[k+1 j] realizando
llamados recursivos al algoritmo Quicksort

■ Combina Dado que las sublistas están ordenadas y todo elemento de la
primera es menor que todo elemento de la segunda, entonces la lista
completa se encuentra ordenada y el procedimiento ha concluido

Las operaciones del procedimiento se realizan en el siguiente orden

■ Escoger un elemento pivote A(kl (en nuestro caso siempre el último).

■ Reubicar los elementos de manera que los menores o Iguales a A[k] se
encuentren a su izquierda en la lista y los mayores a su derecha

■ Continuar recursivamente el procedimiento en cada una de las sublistas
anteriores, la primera conformada por los valores menores o iguales a
A(k) y la segunda conformada por los valores mayores La recursividad se
detiene cuando la longitud de una sublista sea menor que 2

Una pieza clave en el algoritmo es el método particiona que reorganiza la lista
en dos partes la de elementos menores o iguales que x (a su izquierda) y la de
elementos mayores (a su derecha) Este método mantiene siempre un índice k
que va incrementando y que marca la división antes descrita El siguiente
ejemplo demuestra cómo operarla para una lista I = [3, 2, 1, 5, 4] y considerando
i = 0,i = len(l)-1

257

Python fácil

k I h

1 3 1 2 11 1 I 5 I 4 I

k i h]
1 3 1 2 1 1 II 5 II 4 I

k 1 h)
1 3 11 2 1 1 II 5 II 4 I

k I h)

I 3 I 2 I
I 1 I 5 I 4 I

k i h 1
I 3 II 2 I

I 1 1 4 1

k i h i
I 3 I 2 I 1 I 4 te*

Finalmente se presenta el algoritmo en Python,
á»t quicksort (1):

dsf quiek8ert_,ssc(l, i, j):
lí i < j:

k > psrtieiond.i,j)
quiekiort_xie(l,l|k~k)
quick8est_x«e(l,k4’l,

quicksort_rse (1,0. l*n (1) -1)

d*£ psrtleiond.i, j):
* ■ Itj]
k - i - 1
for h In rang«(l,j);

1£ i{hl O x;
k 1
lnt«re«.‘3bl»d,h,k)

lnt«xearvblsd,k*k,
Estum k-fl

1 - (3,4,1.2.5)
quicksort d)
printd)
gtfi ^ test_______

kk ^ i C:\Pychos31\pyUian.eze
_ Id. 2. 3. *. SJ

258

Estructuras de datos y algoritmos

Durante la próxima sección se estará analizando otro algontmo de ordenación
basado en la técnica divide y vencerás, que ademas obtiene el mejor de los
tiempos computacionales de todos los procedimientos de ordenación estudiados
hasta el momento Se trata del método de Ordenación por Mezcla

7.2.2.4 MergeSort
El algoritmo de Ordenación por Mezcla (del inglés MergeSort) fue desarrollado por el
conocido matemático húngaro John Von Neumann en el año 1945 El procedimiento
representa un ejemplo clásico de los beneficios en organización, clandad, legibilidad y
eficiencia que puede traer la técnica de divide y vencerás El procedimiento se ejecuta
recursivamente en cada mitad de la lista luego, teniendo las dos mitades ordenadas,
se mezclan para tener la lista completa ordenada La recursividad se detiene cuando
la lista tiene tamaño 1 Un ejemplo de su ejecución se presenta a continuación

o
1312 ri 5 I4n

o 2
13 12 T

/ \
0 1 2
3 2 J 1 1

/ rr
0 1_

rrn rr

3 4
rr~i

Cuando se sube por el árbol de recursión se aplica el método merge para
mezclar los elementos de las dos sublistas ordenándolas en una sola

FT1 ¡~2~]

I 1 I 2 I ri I 4 I 5 I

r~i I 2 r 3 r~4 I 5 I

259

python fácil

El algoritmo que mezcla dos sablistas es bastante simple porque funciona con
el supuesto de que las dos listas se encuentran ordenadas Simplemente realiza
un recorrido por la sublista de menor longitud agregando elementos a una nueva
lista que tiene por longitud la suma de las anteriores Para añadir un elemento a la
lista resultante siempre se selecciona el menor elemento al comparar los actuales
de cada sablista, el elemento actual está marcado por un Indice que tiene cada
sublista, al encontrarlo se incrementa el índice asociado El siguiente ejemplo
ilustra el funcionamiento del algoritmo para mezclar las listas [1, 2, 4) y [3, 5]

i=o l=o
n I 2 I 4 I I 3 I 5 I

[

1<3?

i=1 1=0
I 1 i 2 I ~T~] r~3 I 5

fii

2<3?

1=2 i=0

I 1 I 2 I 4 I 13 15 1

I 1 I 2 I I I I

4<37

i=Z ,=i

I 1 1 2 I 4 I I 3 I 5 1

I 1 I 2 I 3 I I I

4<57

i=3 p1

ri I 2 I 4 I |~3 I 5

r~1 I 2 I 3 I 4 |~5

260

Estructuras de datos y algoritmos

El código de este método de ordenación se propone a continuación;
def mergeaort(l):

de£ m«rg«sort_rac(l,l,j}:
if i < j:

k - intUi+j)/2)
margasort_z«c(1,i,k)
mergesort_r«c (1 ,k-f-l, j)
mezcla(l,l,k,j)

m*rg*Bort_rde (1,0, len (1) **1}
def 7nezcla(l,l,k,j) :

len^subllsta_lzq ■ k - i + 1
len^aublista_der ■ j - k
izq = []
der ■ (]

Llenando eublictaa a partir de I
for h In ranga {lan_s\ibllsta_izq):

Izq. append (1[1 + h])
for h In range (lan_sublista_^der) :

der.append(l(k 4- 1 h])
11 « 0
12 B> 0
for h In ranged,j-fl):

s' La lista isa lia teminado
if il < 0:

llh] » der(i21
i2 +» 1

íf La lista der lia cerrrrnado
ellf 12 < 0:

l(h] = iiq[il]
il += 1

ellf izqtil] <- der[12]:
l[h] - Ixqtil]
11 +• 1
i£ il >• len(izq):

11 - -l
else:

l[hl - der[i2]
12 += 1
if i2 >• len(der):

12 - -1

1 - [3,4,1.5,01
merge9ort(l)
print(1)

261

Python fácil

Rui r* test

^ C:\Pychoa91\pytbon.exe ^ ^ t 10. 1, 3, 4, 31

Fíjese en que el código del método mezcla puede factorizarse mucho más. Se
ha presentado de esta forma para que resulte comprensible al lector y se propone
factorizar el último conjunto de claúsulas if...elif...else.

7.2.3 Potenciación binaria
La potenciación es una función que recibe dos argumentos; la base a y la potencia
b, se denota por a^b y es equivalente a la operación de multiplicación realizada
con el número a como segundo operando 6-1 veces (a‘a)*a*a...*a. Probablemente
el algoritmo más simple que aparece en la mente de todos para resolver este
problema es tan trivial como multiplicar el número a por sí mismo una cantidad de
veces especificada por 6, este algoritmo es conocido como algoritmo ingenuo de la
potenciación.

daf pot_inganua(n,n):
rasult - 1

for i in ranga(n):
rasult *■ n

ratum rasult

print(pot_inganua(2,3})
Run í* test

C:\Python31\python.exe

El problema con la versión ingenua es que resulta extremadamente ineficiente
cuando a o 6 son números grandes. Una estrategia mucho más efectiva puede
lograrse cuando se considera 6 en su forma binaria dando lugar al algoritmo de
potenciación binaria.

def pot_«xp (n, m):
binary ■ bin(m)[2:]
rasult ■ 1

for digit in binary;
rasult *■ rasult
if digit — :

rasult *■ n

raturn rasult

print(pot^axp(2,3))

262

Estructuras de datos y algoritmos

Run P tMt__________
» ^ {C:\PytliOD31\pycbon.ue

La idea con este algoritmo es utilizar la representación binaria de la potencia
para reducir en iog2 el número de iteraciones requeridas para producir un
resultado. Para comprender por qué esto funciona considera la forma binaria de b.

b = bo + 2'-b, + :.+2"-L
La cadena binaria que identifica a este número, tomada de derecha a izquierda

es SI se quisiera añadir un dígito en el extremo izquierdo de la
representación anterior entonces el número quedarla de la siguiente manera:

ba- + 2-b — ¿q.+2*(ZJo + 2' • ¿i + — + 2" ’

Sería necesario multiplicar cada dígito en la antigua forma binaria de b por 2
dado que estamos desplazando cada uno hacia la derecha. Si el dígito añadido
tiene valor 1 entonces también sería necesario añadirlo para obtener el decimal
que corresponde a su nueva forma binaría.

Suponiendo que b es la potencia, el resultado de la operación anterior causará
que la base sea multiplicada por si mismo y luego multiplicada una segunda vez si
el dígito añadido es 1.

Esta operación puede ser repetida para cada dígito de la representación
binaria de b obteniendo el resultado final a'^b y demostrando la correctítud del
algoritmo.

7.2.4 Grafos
Durante esta sección se analizarán varios de los algoritmos de grafos más
elementales, algunos de los cuales representan generalizaciones de algoritmos
aplicados en árboles.

7.2.4.1 DFS

El recorrido primero en profundidad (del inglés Depth First Search) fue analizado
previamente para el caso árboreo Recordemos que la filosofía del método es
visitar el nodo actual y luego recursivamente cada subárbol que corresponda a sus
hijos en el orden en que estos aparezcan. El recorrido adaptado a grafos no es
muy diferente de la versión árborea, la única modificación significativa está dada
por el hecho de la existencia de ciclos en grafos Fíjese en que para el siguiente
ejemplo llevar a cabo un DFS como se llevaría a cabo en un árbol implicarla la
entrada en un ciclo infinito

263

python fácil

Si se comienza el recorrido por el nodo 1, entonces se toma el primer hijo que
puede ser 2, seguidamente el primer hijo del nodo 2 que resulta ser 3, el recorrido
sigue en 1 y se vuelven a repetir estas operaciones indefinidamente quedando
estancados en un bucle infinito Para solucionar este problema se agrega a cada
nodo un campo booleano llamado visitado Ahora es posible conocer cuándo un
nodo ha sido visitado y se evitan visitas multiples

La implementación del algoritmo utilizando grafos basados en matriz de
adyacencia se presenta a continuación

class nodo:

_valor = None
_visitado = False

def __init__(self, v) :
SQlf._valor = V
self, visitado = -1

visit

visitado

264

class grafo:

_matriz = []
_n = 0

dof __init__(self, n) :
for i xn range(n):

self.^n = n
self.joatris.append{[])
for 3 in range(n):

self._matriz[i}.append(nodo(-1))

def insertar(self, i, j):
if self._n < i < 0 or self.^n < j < 0;

raise Exception('Hodos incorrectos')
self._matriz[i][j] = nodo(l)

def dfs(self, n):
print('Recorrido nodo ',n)
self ._inatri2[n] (n] ._visitado = 1
for j in self.adyacentes(n):

if self._matriz[j][j]._vi8itado is -1:
self.dfs(j)

def adyacentes(self, i):
result = n
for j in rango(self ,_n):

if self._matriz[i]tj]._valor > 0 and il=j:
result.append(j)

return result

g = grafo(3)
g.insertar(0,l)
g.insertar(1,2)
g.insertar(0,2)

Estructuras de datos y algoritmos

g.dfs(O)

ftií» r* tot

^ C:\PythoD31\pvUioo.exe
1 Ilecarrldo itoda 0

■ ^ Recorrido nodo 1
II Recorrido nodo 3

265

Python fácil

T.2.4.2 BPS
Al igual que sucede con el recorrido analizado en la sección anterior, el BFS
puede fácilmente aplicarse a gratos reutilizando la idea de tener un campo visitado
que indique cuándo un nodo ha sido recorrido, El código, que pertenece como
método a la clase grafo de la sección anterior, es el siguiente

def b£s(sclf, n):
c - cola ()
c.encola(n)
WnrCcix- cDriri •.’iíi tndi::

self ,_matrir[n]tn]._visitado = 1

while c.cantidad > 0:
actual = c.primero
print(■Recorrido nodo actual)

for j in self.adyacentes(actual):
No van t.ido

if self._matri2tjj[j].^visitado is -1:
c.encola(j)
self ._jnatriz [j] [j] ._^visitado = 1

c.desencola()
g = grafo(4)
g.insertar(0,1)
g.inssrtar(l,2)
g.insertar(0,3)
g.insertar(l,3)
g.bfs (0)

~C:\itz3Zts FllesNEv'íhin
Recorrida nodo 0

^ Recorrida nado X

8j Recorrida nodo 3
I , Recorrido noda 3

En la próxima sección se describirá un algoritmo aplicado al caso particular de
uno de los problemas clásicos de la teoría de gratos, problema que se encuentra
además, relacionado con diferentes ramas de la ciencia y que se conoce como la
coloración de un grato.

7.2.4.3 K-coloraclón

Una coloración de vértices en un grafo es una asignación de colores a los nodos
de manera tal que siempre se cumpla que dos nodos adyacentes no comparten
color. Es un tema bastante popular en el área de las matemáticas y encuentra
sus orígenes en la problemática de colorear los países en un mapa geográfico.

266

Estructuras de datos y algoritmos

Una k-coloracíón en un grato es una coloración de! mismo donde se emplean a
lo sumo k colores. Por otra parte, el menor número de colores que resulta
indispensable utilizar para colorear un grato se conoce como número cromático.
El siguiente ejemplo muestra un grato que es posible colorear utilizando solo dos
colores.

Conocer si un grato permite una 2-coloración siempre resulta interesante
porque esto garantiza que el conjunto de vértices se puede particionar en 2
conjuntos A y 6 cumpliéndose que todas las aristas tengan un extremo en un nodo
de A y ei otro en un nodo de B. Los gratos que posibilitan una 2-coloración son
conocidos como bipartitos. Ei siguiente código ilustra un algoritmo para determinar
si un grato es 2-coloreable. En caso afirmativo el método devolverá dos listas
representando los conjuntos A y B; en caso negativo, retornará None.

def dos_coloracion(nel£):
blancos = {0]
negros = []
c = cola O
c.encola(O)

while c.cantidad > 0:
actual - c.primero
color = blancos
i£ actual in blancos:

color = negros

for j in self.adyacentes(actual):
i£ j in blancos and color is negros:

return None
if j in negros and color is blancos:

return None
if j not in negros and j not in blancos:

c.encola{j)
color.append(j)

c.desencolaO
return (blancos, negros]

267

Python fácil

g = grafo{4)
g.3.nsertar(0,l)
g. insertar(1,2)
g.insertar(0,3)

print(g.dos_coloracion())
g.insertar(l,3)
print(g.dos_coloracion())
Hu P wutt______________

^ I *C.\Pro7Taa FlleaVPyUlon
j 1(0. SJ, (1. 3J1 ■ + Bona

Ei grafo del ejemplo anterior antes de insertar la arista (1,3) resulta ser

Cuando se inserta la úllima arista (1,3) el grafo deja de ser bipartito pues el
nodo 1 se conecta ahora con los restantes nodos forzándolos a tener el mismo
color Considerando que 0 y 3 están conectados lo anterior es imposible y el grafo
ha perdido la propiedad de ser 2-coloreable o bipartito

El tema de la coloración de grafos es extremadamente abundante en
investigaciones, teoremas y resultados y se recomienda al lector que profundice
en la temática por sus propios medios ya que escapa al propósito de este libro
brindar un análisis mayor del que se ha brindado en esta sección

268

Estructuras de datos y algoritmos

Ejercicios dei capítuio

1. Investigue y programe el algoritmo de ordenación BubbleSort
(ordenamiento burbuja).

2. Programe el método factorial(n) que calcula el valor que corresponde a
factorial de n haciendo uso de una pila que simule la recursividad.
Nota: no puede existir ningún llamado recursivo en el método.

3. Cree una clase Tri*Arbol que representa un árbol S-ario (a lo sumo 3
hijos) donde los nodos tengan valores enteros e implemente las
siguientes operaciones:

■ lnsertar_min(x): inserta x como nodo hijo de la hoja con menor
valor en el árbol.

■ lnsertar_max(x); inserta x como nodo hijo de la hoja con mayor
valor en el árbol.

■ insertar(x): Inserta x como hijo del primer nodo con una
cantidad de hijos menor que 3.

" lmprimir(): imprime el valor de los nodos del árbol siguiendo un
recorrido a lo ancho.

• Buscar(x): devuelve True si x se encuentra en el árbol, en caso
contrario devuelve False.

4. Implemente el conocido algoritmo de Euclides para calcular el máximo
común divisor de dos números enteros.

5. Implemente la forma extendida del algoritmo de Euclides que permite
obtener los coeficientes x, y tales que ax + by = d donde a, b son los
números de ios que se quiere conocer d, el máximo común divisor.

6. Cree una clase Cola-Relacion que se apoya en una tabla de
relaciones para establecer el orden en la cola. Las operaciones a
desarrollar son las siguientes:

■ Encolar(x) si no existe relación que vincula a x con alguno de
los elementos en la cola entonces x se encola al final. En caso
contrario se encola detrás del primer elemento en la cola con el
que se vincule.

> Desencolar (): elimina al primer elemento de la cola.

" Primero; propiedad que devuelve el primero de la cola.

• Relación(x, y): retorna True si los elementos de la cola x e y se
encuentran relacionados: False, en caso contrario.

269

BIBLIOGRAFIA
ASCHER, D YLutzM (2003) Learning Python O’Reilly (ISBN 0596002815)

Ascher, D Y Martelli a Y Ravenscroft a (2003) Python Cookbook O'Reilly
(ISBN 0596007973)

Martelli, a (2006) Python in a Nutshell O'Reilly (ISBN 0596100469)

Mertz, D (2003) Text Processing in Python Addison Wesley
(ISBN 0321112547)

Norton, p Samuel, a Aitel, D Foster-Johnson, e Richardson, L Diamond, J
Parker, A Y Roberts, M (2005) Beginning Python Wiley Publishing
(ISBN 9780764596544)

Hetland, L M (2007) Beginning Python from Novice to Professional APress

Gormen, H T Leiserson, E C Rivest, L R Stein, C (2002) Introduction to
Algonthms Tercera edición McGraw-Hill (ISBN 0262032937)

Castaño PÉREZ, A (2014) HTML y CSS Fácil Marcombo

271

Python fácil
Python es uno de los lenguajes más populares de la actualidad. Su sintaxis limpia
y sus códigos compactos atraen a estudiantes, profesores y programadores que lo
toman como herramienta para la enseñanza y para el desarrollo de proyectos de en­
vergadura. Este libro incluye capítulos sumamente interesantes que abordan temas
como los paradigmas de programación en Python, los iteradores y generadores,
los decoradores y las metaclases, el procesamiento de ficheros (XML, HTML, CSV,
ficheros comprimidos) y al final un capítulo dedicado al desarrollo de estructuras
de datos (pilas, colas, listas enlazadas, árboles, árboles binarios, AVL, Rojo Negro,
Trie, QuadTree, grafos, digrafos) y algoritmos (ordenamiento, grafos, matemáticas)
en Python.

Arnaldo Pérez Castaño es científico de la computación, graduado de la Uni­
versidad de la Habana y Técnico Medio en Contabilidad. Es autor de los libros
JavaScript Fácil, HTML y CSS Fácil. Sirve como reviewer para Journal of Mathe­
matical Modelling and Algorithms in Operations Research de Springer. Es amante
del Jazz y del cine.

BIBI_fO*rECA UT*N

nm iiu I I

