
CAPITULO 16

Modelos de inventario probabilísticos

Aplicación de la vida real. Decisiones de inventario en la cadena de abasto de Dell

Dell, Inc implcmenta un modelo de negocio de ventas directas en el que las computa­
doras personales se venden directamente a los clientes en los Estados Unidos Cuando 
llega un pedido de un cliente, las especificaciones se envían a una planta de manufac­
tura en Austin,Texas, donde la computadora se construye, prueba y empaca en, aproxi­
madamente, 8 horas Dell maneja poco inventario. A sus proveedores, que por lo 
común se ubican en el sureste asiático, se les pide que manejen lo que se conoce como 
inventano “revolvenle" disponible en revolvedores (almacenes) cerca de las plantas de 
manufactura Estos revolvedores son propiedad de Dell y los rentan a los proveedores. 
Dell entonces “saca” las partes que necesita de los revolvedores, y la responsabilidad 
de los proveedores es reponer el inventarío para satisfacer la demanda de Dell 
Aunque Dell no posee el inventario guardado en los revolvedores, su costo se transfiere 
de manera indirecta a los clientes mediante la fijación de precios de los componentes 
Por lo tanto, cualquier reducción del inventario beneficia directamente a tos dientes de 
Dell con la reducción de los precios de los productos La solución propuesta ha dado 
por resultado un estimado de $2 7 millones en ahorros anuales (El caso 13 del capítu­
lo 26, en el sitio web de este libro, detalla este estudio)

16.1 MODELOS DE REVISIÓN CONTINUA

Esta sección presenta dos modelos. (1) una versión “probabilizada” del modelo EOQ 
determinístico (sección 13.3-1) que utiliza existencias de reserva para satisfacer las de 
mandas probabilísticas,y (2) un modelo EOQ probabilíslico más exacto que incluye la 
demanda aleatoria directamente en la formulación.

^6*1.1 Modelo EOQ "probabilizado"

Algunos profesionales han buscado adaptar el modelo EOQ determinístico (sección 
13.3.1) para representar de forma aproximada la naturaleza probabilística de la de­
manda. El periodo crítico durante el ciclo de inventario ocurre entre la colocación y la
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554 Capitulo 16 Modelos de inventario probabiKsticos

Existencias (le reserva D impuestas al modelo EOQ cIJsico

recepción de pedidos. Este es el lapso de tiempo en que se podrían presentar los fal­
lantes (agotamiento de las existencias) La idea entonces es mantener existencias de 
segundad constantes que eviten la probabilidad de fallantes Por intuición, una proba 
bilidad de pocos fallantes implica mayores existencias de reserva, y viceversa

La figura 161 ilustra la relación entre las existencias de reserva, B, y los parame 
tros del modelo EOQ deterministico que incluyen el tiempo de espera, L, la demanda 
promedio durante el tiempo de espera /x¿, y la cantidad económica de pedido (EOQ)t 
y* Observe que L es el tiempo de espera efectivo definido en la sección 13 3 1

La suposición principal del modelo es que la demanda por unidad de tiempo es 
normal con media D y desviación estándar a, es decir, N(D, a) Con arreglo a esta 
suposición, la demanda durante el tiempo de espera L también debe ser normal 
con media = DL y desviación estándar <tl - La fórmula para ai supone
que L es (representado de forma aproximada si es necesario por) un valor entero

El tamaño de las existencias de reserva B se determina de modo que la probabi­
lidad de fallantes durante L sea a lo sumo a Si es la demanda durante el tiempo de 
espera L, entonces

S: fí + < a

Utilizando A/(0,1), z = ‘ (como se define en la sección 14 4 4), obtenemos

Definiendo el parámetro para la distribución normal estándar de modo que P{z ^ 
ka] ^ a (vea la figura 16 2) se desprende que

B ^ o-¡K„

La cantidad aiK^ proporciona el valor mínimo de B (El valor de K„ puede deiermi 
narse desde la tabla normal estándar que aparece en el apéndice A, o utilizando d 
archivo excelStaiTables xls)
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/(c)

A'(0.1)

Arca = a

^ exislcncias P{z s Ka] = a

FIGURA 16 2
Probabilidad de que se agolen las

Ejemplo 16.1-1
En el ejemplo 13 3-1, donde se determina la política de inventario de las luces de neon, la canti­
dad económica de pedido es de 1000 unidades. Suponga que la demanda diana es N(100,10). es 
decir, D ~ 100 unidades y que la desviación estándar es tr = 10 unidades. Determine el tamaño de 
las existencias de reserva, B, utilizando a = 05,

Según el ejemplo 13 3-1, el tiempo de espera efectivo es L = 2 días. Por lo tanto,

Si 05 = 1 645, las existencias de reserva se calculan como
5 s 14 14 X 1 645 == 23 luces de neon

La política de inventario óptimo (de reserva) requiere pedir 1000 unidades siempre que el nivel 
del inventario se reduzca a 223 {= D -i- /i¡ = 23 + 2 x 100) unidades.

CONJUNTO DE PROBLEMAS 16.1A

1. En el ejemplo 16 l-l, determine la política de inventario optima en cada uno de los si 
guicntcs casos

*(a) Tiempo de espera = 15 días.
(b) Tiempo de espera = 23 días.
(c) Tiempo de espera = 8 días.
(d) Tempo de espera = 10 días.

2. La demanda diana de un popular CD en una tienda de música es aproximadamente 
Aí(200,20) El costo de conservar el CD en los anaqueles es de $ 04 por disco por día A 
la tienda le cuesta $100 colocar un nuevo pedido El tiempo de espera para la entrega es 
de 7 días. Determine la política de inventario óptima de la tienda dado que la tienda 
desee limitar la probabilidad de un fallante a cuando mucho 02

3. La demanda diana de rollos de película para enmara en una tienda de regalos es ^(300,5) 
El costo de retener un rollo en la tienda es de $ 02 por día. y el costo fijo de colocar un 
pedido de reposición es de $30 La política de inventario de la tienda es ptdir 150 rollos 
siempre que el nivel del inventario se reduzca a 80 unidades. Al mismo tiempo, mantie 
ne siempre una existencia de reserva de 20 rollos.
(a) Determine la probabilidad de quedarse sm existencias.
(b) Dados los dalos de la situación, recomiende la política de iin entario para la tienda, 

puesto que la probabilidad de que hava fallantes no puede exceder el 10
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16.1.2 Modelo EOQ probabilístico

La base para el desarrollo del modelo EOQ “probabilizado” en la sección 16 11 es 
“plausible”, pero no hay razón alguna para creer que el modelo produce una política 
de inventario optima El hecho de que la información pertinente en relación con la na 
turaleza probabilística de la demanda se ignore en un principio, sólo para ser “reviví 
da” de una manera totalmente independiente en una etapa posterior de los cálculos, 
basta para refutar la optimalidad Para remediar la situación, esta sección presenta un 
modelo más preciso en el cual la naturaleza probabilistica de la demanda se incluye di 
rectamente en la información del modelo Por supuesto, la precisión mas alta se obtie­
ne a expensas de cálculos más complejos

La figura 16 3 ilustra un cambio típico del nivel de inventario con el tiempo 
Pueden o no ocumr faltantes durante los tiempos de espera (posiblemente aleatorios), 
como se ilustra por los ciclos 1 y 2, respectivamente La política exige pedir la cantidad 
y, siempre que la cantidad del inventano disponible se reduzca a un nivel R Como en 
el caso determinístico, el nivel de volver a pedir R es una función del tiempo de espera 
entre la colocación y la recepción de un pedido Los valores óptimos de y y /? se deter­
minan minimizando la suma esperada de los costos de retención y los costos de faltan 
tes por unidad de tiempo

El modelo esta basado en tres suposiciones

1. La demanda no satisfecha durante el tiempo de espera se pone en rezago
2. No se permite más de un pedido pendiente
3. La distribución de la demanda durante el tiempo de espera permanece estacio 

nana con el tiempo

Para desarrollar la función de costo total por unidad de tiempo, sean

f(x) = fdp de la demanda, v, durante el tiempo de espera 
D = Demanda esperada por unidad de tiempo
h = Costo de retención por unidad de inventano por unidad de tiempo 
p = Costo por faltantes por unidad de inventano 
K = Costo de preparación por pedido

FIGURA 16 3
Modelo de mvcntano probabilístico 
con rallantes
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Ahora se determinan los elementos de la función de costos

1. Co5/o (¡e preparación La cantidad aproximada de pedidos por unidad de tiempo 
es j, de modo que el costo de preparación por unidad de tiempo es aproximada 
mente ~

2. Costo de retención esperado Si / es el nivel de inventario promedio el costo de 
retención esperado por unidad de tiempo es lil El nivel de inventano promedio 
se calcula como

I
{y + E{R - v)) + E{R - x) ^+R- CM

La fórmula promedia los inventarios inicial y final esperados en un ciclo, el cual 
es y + £|y?-v) y respectivamente Como una aproximación la expre­
sión Ignora el caso en que R - £{x) pueda ser negativo

3. Costo por fallantes esperado Los fallantes ocurren cuando \ > R Su valor espe 
rodo por ciclo se calcula como

R)f{x)dx

Debido a que se supone que p es proporcional solo a la cantidad fallante, el costo es 
perando por ciclo es pS, y, basándose en y ciclos por unidad de tiempo, el costo por 
fallante por unidad de tiempo es ^ ^

La función de costo total resultante por unidad de tiempo es

TCU(y, fi) = -^ + *(f + ^ “ R)f(')'l'

Los valores óptimo, y* y R*, se determinan a partir de

dTCÜ _ (DK\ h pDS

¿)TCU
dR

\r
(pD

Estas dos ecuaciones dan por resultado

/

\ u
2

f{x)dx=0

¡lí

-I■9 £

1' ■5- 
.'* -

/;

'1D{K + pS)

= ÍL
pD
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(1)

(2)

Los valores óptimos de > * y fi* no pueden determinarse en tomas eerradas Se 
aplica un algoritmo iterativo, desarrollado por Hadley y Wllitin (1963 pags 169 17 ).
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las ecuaciones (1) y (2) para determinar la solución El algoritmo converge en un nu­
mero finito de Iteraciones, siempre que haya una solución factible 

Para ^ = 0, las ecuaciones (1) y (2) producen

Los valores óptimos únicos de yy R existen cuando y a 5' valor mínimo de y* es

continue con el paso i
Paso i. Use y, para determinar R, a partir de la ecuación (2) Si i?,» i?,_i, detengase, 

la solución óptima es y* = y,y R* = R, De lo contrario, use R, en la ecuación 
(1) para calcular y, Establezca / = i + 1, y repita el paso i

Ejemplo 16.1-2

Electro utiliza resma en su proceso de fabricación a razón de 1000 galones por mes. Colocar un 
pedido le cuesta $100 a Electro El costo de retención por galón por mes es de $2, y el costo por 
fallante por galón es de $10 Los dalos históricos muestran que la demanda durante el tiempo de 
espera es uniforme en el rango (0 100) galones. Determine la política de colocación de pedidos 
óptima para Electro

Utilizando los símbolos del modelo, tenemos 

D = 1000 galones por mes 
K = $100 por pedido 
h = $2 por galón por mes

£(r) = 50 galones

^ Primero tenemos que verificar si el problema tiene una solución única Con las ecuaciones 
de y y y oblenemos

PD

12 X 1000(100 + 10 X 50)
= 774 ógaloncs

10 X 1000
------r------ = SOüOgaloncs

Debido a que y s y,existe una solución única para )*y fí* 
La expresión para S se calcula como
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Utilizando S en las ecuaciones (1) y (2) oblei

/2x

Js 100

1000(100 + 105)
■ Viuu.uou + lO.OOOJgaloncs

10 X 1000

La ecuación (4) produce

R, = ¡m- ¿

Ahora utilizamos las ecuaciones (3) y (5) para determinar la solución óptima. 

Iteración 1

'2KD _ 2 X 1000 X 100
= 316 23 galones

Iteración 2

Por consiguiente,

- 100------ = 93 68 galones

ya = VÍOO.OOO + 10,000 X 19971 = 319 37galones

31939
y?2 = 100 - - = 93 612

= VIOO.OOO + 10,000 X .20399 = 319.44galones

Por lo tanto,

(3)

(4)

(5)

y?3 - 100------ = 93 611 galones

Debido a que ya »>’3 y 7?3 « /?a. la solución óptima es /?• « 93 61! galones,y* «319 44 galo­
nes. Se puede utilizar el archivo excelCotuRev xls para determinar l.i solución a cualquier grado 
de precisión especificando la tolerancia /?,j La política de inventario óptima exige pedir 
aproximadamente 320 galones siempre que el nivel del inventario se reduzca a 94 galones.



CONJUNTO DE PROBLEMAS 16.1B

1. Por los datos dados en el ejemplo 16 1-2, determine lo siguiente
(a) El numero aproximado de pedidos por mes.
(b) El costo de preparación mensual esperado
(c) El costo de retención esperado por mes,
(d) El costo por faltantes esperado por mes.
(e) La probabilidad de que las existencias se agoten durante el tiempo de espera

♦2. Resuelva el problema 16 1-2, suponiendo que la demanda durante el tiempo de espera se 
mantiene uniforme entre 0 y 50 galones.

•3. En el ejemplo 16 1-2 suponga que la demanda durante el tiempo de espera se mantiene 
uniforme entre 40 y 60 galones. Compare la solución con la obtenida en el ejemplo 
16 1-2, e interprete los resultados. {Sugerencia En ambos problemas, £{\) es la misma, 
pero la vanama en este problemas es más pequeña )

4. Determine la solución óptima para el ejemplo 16 1-2, suponiendo que la demanda 
durante el tiempo de espera sea N(100,2) Suponga que D = 10,000 galones por mes, 
h = S2 por galón por mes,p = $4 por galón, y K = $20
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16.2 MODELOS DE UN SOLO PERIODO
Esta sección se ocupa de artículos de inventario que están en existencia durante un 
solo penodo de tiempo AI final del periodo se desechan las unidades sobrantes, si las 
hay, como en el cado de artículos de moda Se desarrollarán dos modelos La diferencia 
entre ellos es si se incurre o no en un costo de preparación para colocar un pedido 

Los símbolos utilizados en el desarrollo de los modelos incluyen

K = Costo de preparación por pedido
li = Costo de retención por unidad retenida durante el periodo 
p = Costo de penalizacion por unidad faltante durante el periodo 
f(D) = pdf de la demanda, D, durante el periodo 
y = Cantidad de pedido
X = Inventario disponible antes de que se coloque un pedido

El modelo determina el valor óptimo de y que minimiza la suma de los costos de 
retención y por faltantes Si y(=y“^) es óptima, la política de inventario exige pedir 
y*-xsi ir < y, de lo contrarío, no se coloca pedido alguno

16.2.1 Modelo sin preparación (Modelo Newsvendor)
Este modelo se conoce en la literatura como modelo newsvendor (el nombre originé* 
clásico es modelo delpenodiquero).Tiene que ver con el almacenamiento y venta de 
periódicos

Las suposiciones del modelo son

1. La demanda ocurre al instante en el inicio del penodo inmediatamente después 
de que se recibe el pedido.

2. No se incurre en ningún costo de preparación
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FIGURA 164
Inventano con retención y faltanles en un modelo de un solo penodo

La figura 16 4 muestra la posición del inventano después de que se satisface la 
demanda, D Si D < y, la cantidad y - D se mantiene durante el periodo. Si D > >», 
habrá una cantidad fallante siD - y.

El costo esperado durante el periodo, £'{C(y)j,se expresa como

my)] = fi [\y -
7o

D)f{D)dD + pí {D- y)f{D)dD

Se puede demostrar que la función £|C(>')) es convexa en >*, y por lo tanto tiene un mí­
nimo único Si tomamos la primera derivada £(C{y)) con respecto ay y la igualamos a 
cero, obtenemos

hJ^’f(D)dD-pJ^ f{D)dD = 0

hP\D s y]- p(\ - P[D £ >1) = 0

O

Si la demanda, D, es discreta, entonces la función de costo asociada es

E\C(y)] = ht(y - D)f(D) + p^^JD - y)ñD)

Las condiciones necesarias para optimalidad son

E{C(y - 1)1 2 E{C{y)íyE{C(y + D) ^ E\C(y)\
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Estas condiciones también son suficientes porque £'{C(y)} es una función convexa 
Después de algunas manipulaciones algebraicas, la aplicación de estas condiciones da 
por resultado las siguientes desigualdades para determinar y*

P{D s / - II £ s P[D s /I

Ejemplo 16.2-1

El propietano de un puesto de periódicos desea determinar la cantidad de ejemplares de USA 
Now que debe tener en existencia al inicio de cada día El propietario paga 30 centavos por un 
ejemplar y lo vende a 75 centavos. La venta del periódico suele ocurrir entre 7 00 y 8 00 a M (la 
demanda es prácticamente instantánea) Los periódicos que sobran al final del día se reciclan y 
se obtiene un ingreso de 5 centavos por ejemplar ¿Cuántos ejemplares debe tener en existencia 
cada mañana'^, suponiendo que la demanda del día puede describirse como

(a) Una distnbución normal con media de 300 ejemplares y desviación estándar de 20
(b) Una fdp discreta,/(D), definida como

D 200 220 300 320 340
/(£)) 1 2 4 2 1

Los costos de retención y penalización no se definen de forma directa en esta situación Los 
datos del problema indican que cada ejemplar no vendido le costara al dueño 30 — 5 = 25 cen 
tavos, y que el costo de penalizacion por agotamiento de las existencias es de 75 — 30 = 45 cenia 
vos por ejemplar Por lo tanto en función de los parametros del problema de inventario, teñe 
mos h = 25 centavos por ejemplar por díay p = 45 centavos por ejemplar por día 

Pnmero determinamos la relación crítica como

= 643
p + h 45 + 25

Caso (a). La demanda D es A/(300.20) Podemos utilizar la plantilla excelStaiT(ihlcs.\ls para 
determinar la cantidad de pedido óptima ingresando 300 en F15,20 en G15, y 643 en L15, y así 
se obtiene la respuesta deseada de 307 33 periódicos en R15 Ademas, podemos utilizar las labhs 
normales estándar del apéndice A Defina

D - 300 
^ 20

Entonces a partir de las tablas normales

P{z á 366) a 643

o

- 300 
20 366

Por lo tanto,y* = 307 3 El pedido óptimo es aproximadamente de 308 ejemplares
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Cuso (b). La demanda D sigue una fdp discrela./(D) Pero ames determinamos la FDA P{D s y\ como

y 200 220 300 320 340
s y) 1 j 7 9 10

Para la relación crítica calculada de 643, tenemos

P{D s 220) s 643 s P{D 300)

Por lo tanto,y* = 300 ejemplares

CONJUNTO DE PROBLEMAS 16.2A

1. Para el modelo de un solo periodo, demuestre que para la demanda discreta la cantidad 
de pedido óptima se determina a partir de

P[D s / - 1| s E P{D s /I

2. La demanda de un artículo durante un solo periodo ocurre de manera instantánea al ini* 
cío del periodo La fdp asociada se mantiene uniforme entre 10 y 15 unidades Debido a 
la dificultad de estimar los parámetros de costo, la cantidad de pedido se determina de 
modo que la probabilidad de un excedente o de un faltanie no exceda de 1 ¿Es posible 
satisfacer ambas condiciones al mismo tiempo?

*3. El costo de retención unitario en una situación de inventario de un solo periodo es de SI 
Si la cantidad de pedido es de 4 unidades, encuentre el intervalo permisible del costo de 
penalización unitario implicado por las condiciones óptimas Suponga que la demanda 
ocurre instantáneamente ni inicio del periodo y la función de densidad de probabilidad 
de la demanda es como sigue

D 012345 6 78
/(/)) 05 1 1 2 25 15 05 05 05

4. La librería de la U de A ofrece un programa de reproducción de apuntes de clase para 
profesores participantes El profesor Yataha le da clases a un grupo de primer uño de 
entre 200 y 250 estudiantes distribuidos de manera uniforme La reproducción de una 
copia cuesta $10 y se vende a $25 Los estudiantes compran sus libros a! inicio del semes 
tre Las copias de los apuntes del profesor Yataha que no se venden se tnturan para re­
ciclarlas Mientras tanto, una vez que la librería se queda sin copias no se imprimen mas. 
Si la librería desea maximizar sus ingresos ¿cuantas copias debe imprimirl

5. QuickStop vende todos los días cafó y donas a sus clientes a las 6 00 a m La tienda com­
pra las donas a 7 centavos cada una y las vende a 25 centavos hasta las 8 00 a M Dtspucs 
de esa hora las donas se venden a 5 centavos cada una La cantidad de clientes que com­
pran donas entre las 6 00 y las 8 00 esta uniformemente distribuida entre 30 y 50 Cada 
cliente suele pedir 3 donas con cafe í,Cuantas donas debe tener aproximadamente en 
existencia QuickStop cada mañam para maximizar los ingresos >
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*6. Colony Shop se eslá surtiendo de abngos para el siguiente invierno Colony paga $50 por 
un abrigo y lo vende a $110 Al final de la temporada invernal, Colony ofrece los abrigos a 
$55 cada uno La demanda de abngo durante la temporada invernal es de m.ls de 20 pero 
menor que o igual a 30, todos con iguales probabilidades. Debido a que la temporada inver 
nal es corta, el costo de retención es insignificante Asimismo el gerente de Colony no cree 
que la escasez de sacos provoque penalizaciones. Determine la cantidad de pedido optima 
que maximizara el ingreso para Colony Shop Puede utilizar una aproximación continua

7. Para el modelo de un solo periodo, suponga que el articulo se consume de modo unifor 
me durante el periodo (y no de forma instantánea al inicio del periodo) Desarrolle el 
modelo de costo asociado, y determine la cantidad de pedido óptima

8, Resuelva el ejemplo 16 2 -1 suponiendo que la demanda es continua y uniforme durante 
el periodo, y que la fdp de la demanda es uniforme entre 0 y 100 {Sugerencia Aproveche 
los resultados del problema 7 )

16.2.2 Modelo con preparación (Política s-5)

El presente modelo difiere del de la sección 16 2 1 en que se incurre en un costo de 
preparación K Utilizando la misma notación, el costo esperado total por periodo es

£1C(jOI = £ + E[C(y)]

= K + hj^ (y - D)f{D)dD + p(D - y)f(D)dD

Como se muestra en la sección 16 2 1, el valor óptimo y* debe satisfacer

P{y < /} P
p -i- h

Ya que K es constante, el valor mínimo de £{C(y)) también debe ocurrir en y*
En la figura 16 5,5 = y*, y el valor de j(< 5) se determina a partir de la ecuación

E{C{s)\ = E{C{S)} ==K + £{C{5)),5 < 5

La ecuación resulta en otro valor íi(>5), el cual se descarta

FIGURA 16 5
Política de pedir optima (5 S) en 
un modelo de un solo periodo con 
COSIO de, preparación
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un pedido

1. X < s.
2. í < r S S.
3. X > S

Caso 1 (jr > í). Debido a que v ya está disponible.su costo equivalente es £(C(v)} Si se 
pi^ cualquier cantidad adicional y — .x (y > .t), e! costo correspondiente dada y es 
£(C(3-)l,el cual incluye el costo de preparación K De acuerdo con la figura 16 5, tenemos

mm£|CWI = £(C(5)) < £|C(x)|

Por lo tanto, la política de inventano óptima en este caso es pedir S - \ unidades 

Caso 2 (í ^ A* :£ 5). De acuerdo con la figura 16 5, tenemos 

£(C(x)| < mm£(C(y)l = £(C(5))

Por lo tanto, no es ventajoso pedir en este caso, y y* = \

Caso 3 (x > S). De acuerdo con la figura 16 5, tenemos y>x,

£|C(r)| < £|C(>’)|

Esta condición indica que, como en el caso (2), no es ventajoso colocar un pedido; es 
decir, y* = x.

La política de inventario optima, más conocida como política s-S, se resume como 
Si X < í, pedir S - x

Si V sj.no pedir

La optimalidad de la política s-S está garantizada porque la función de costo asociada 
es convexa

Suponga qu^e x es la cantidad disponible antes de que se coloque 
¿Cuanto debe pedirse? Esta pregunta se responde con tres condiciones

Ej'emplo 16.2-2
La demanda diana de un artículo durante un solo periodo ocurre de forma instantánea al inicio 
del periodo La fdp de la demanda es uniforme entre O y 10 unidades. El costo de rctenciun uni­
tario del artículo durante el periodo es de $ 50. y el costo de pcnalización unitario por agola- 
miento de las existencias es de $4 50 Se incurre en un costo fijo de $25 cada ve/ que se coloca un 
pedido Determine la polílica de inventario óptima para el artículo 

Para determinar y*, considere

P_ ^ = y
p + h 4 5+5

f' I y'
Inclusive,
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FIGURA 16 6
Política 5 S aplicada al ejemplo 162*2

Por lo tanto, 5 - y* -9
La función de costo esperada es

r> 1 rio j
£|C(>-)| = + **5 jí -iD~ y)dD

= 25)2 _ 4 5y + 22 5 

El valor de s se determina resolviendo

£{C(í)l = K + E{C{S)\

O bien

25^2 - 4 55 + 22 5 = 25 + 255^ - 4 55 + 22 5 

Si 5 = 9,1a ecuación antenor se reduce a

52 - 185 - 19 = 0

La solución de esta ecuación es 5 =—1,05 = 19 Se descarta el valor de 5 > S Debido a que 
el valor restante es negativo (=-l),5 no tiene un valor factible Como se muestra en la figura 
16 6, la política de inventano óptima en este caso exige que no se pida el articulo Este resultado 
se suele presentar cuando la función de costp es “plana” o cuando el costo de preparación es alto 
con respecto a los demás costos del modelo

CONJUNTO DE PROBLEMAS 16.2B

•1. Determine la política de inventario óptima para la situación en el ejemplo 16 2-2, supo­
niendo que el costo de preparación es de $5

2. En el modelo de un solo penodo de la sección 16 2 1, suponga que el modelo maximiza la 
utilidad y que se incurre en un costo de preparación K Si r es el precio de venta umtano y 
utilizando la información de la sección 16 2-1, desarrolle una expresión para la utilidad espe­
rada, y determine la cantidad de pedido optima Resuelva el problema numcncamente pai^ 
r = S3,c = $2,p = $4,/i = $1 y /f = $10 La fdpde la demanda es uniforme entre 0 y 10

3. Resuelva el problema 5, conjunto 16 2a, suponiendo que hay un costo fijo de $10 asocia 
do con la entrega de las donas
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16 3 MODELO DE VARIOS PERIODOS

Esta sección presenta un modelo de vanos periodos en el supuesto de que no haya 
costo de preparación Adicionalmente.el modelo permite un retraso en el cumplimien­
to de la demanda y supone un retraso cero en la entrega Ademas asume que una fdp 
estacionana,y{D), describe la demanda en cualquier periodo

El modelo de vanos penodos considera el valor descontado del dinero Si a (< 1) 
es el factor de descuento por penodo, entonces una cantidad $A disponible durante n 
penodos a partir de ahora tiene un valor actual de

Suponga que la situación del inventano comprende n penodos y que la demanda

F,(r,) = Utilidad maxima esperada durante los penodos i,í + 1, , y/i, dado que v, 
es la cantidad disponible antes de que se coloque un pedido en el penodo i

Aplicando la notación utilizada en la sección 16 2 y suponiendo que c y r son el costo y 
el ingreso por unidad, respectivamente, la situación del inventario puede formularse 
utilizando el siguiente modelo de programación dinámica probabilística (el capitulo 
24, en el sitio web. detalla este punto)

El valor de i, puede ser negativo porque la demanda no satisfecha se quedo pendiente 
Se incluye la cantidad ar{D - y,) en la segunda integral porque (D - y,) es la demanda 
no satisfecha en el penodo / que se debe satisfacer en el periodo i + I

El problema puede resolverse de manera recursive En el caso en que la cantidad 
de penodos es infinita, la ecuación rccursiva se reduce a

no satisfecha se deja pendiente exactamente un penodo Defina

^H+i(>/i D) — 0

F,{t,) = max|-cO’, - '^i)+ ['■í’ - l'iy, - D)]fiD)íID

’>1

donde x y > son los niveles del inventario durante cada periodo antes y después de re­
cibir un pedido, respectivamente
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El valor óptimo de y se determina a partir de la siguiente condición necesaria, la cual 
también resulta ser suficiente porque la función del mgreso esperado f(.x) es cóncava

aO
hy

- h£f(D)dD + 1(1 - a)r + p\f[D)dD

“BF[y - D)•“/ -f{D)dD = 0

E! valor de se determina como sigue St hay más unidades f3 (> 0) disponibles
al inicio del siguiente penodo, la utilidad durante el siguiente periodo se incrementará 
en c/3, porque se tiene que pedir esta cantidad mucho menor. Esto significa que

dF{y ~ D) 
d^'

La condiaón necesaria es por lo tanto

-c - hJJf(D)dD + [^(1 - a)r + - j'f[D)dDj + oc f(D)dD = 0

Por tanto, el nivel óptimo del inventario y* se determina a partir de

í'ff{D)dD
p + (1 - a)(r - c) 

p + h + {1 ~ a)r

La política de mventario óptima durante cada penodo, si el nivel del inventario 
de entrada es r,se da por tanto como

Si r <_>-*, pedir y*-a; 

Si a: S: y*, no pedir

CONJUNTO DE PROBLEMAS 16.3A

1. Considere un modelo de inventario probabilfstico do dos periodos en el cual el cumplí* 
míenlo de la demanda se queda pendiente, y los pedidos se reciben con retraso cero en 
entrega La fdp de la demanda por periodo es uniforme entre 0 y 10, y los parámetros de 
costos se dan como

Precio de venta unitario = $2
Precio de compra unitano = $1
Costo de retención unitario por mes = $.10
Costo de penalización por mes = $3
Factor de descuento = 8

Encuentre la política de inventario óptima para los dos periodos, suponiendo que el in* 
ventano inicial en el penodo 1 es cero
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*2, La fdp de la demanda por penodo en un modelo de mventano de honzonle infinito se da 
como

f(D) = OSD.O £ D < 5 

Los paranietros de costos unitarios son 

Precio de venta unitario = $10 
Precio de compra unitano = $8 
Costo de retención unitario = $1 
Costo de pcnalización unitario por mes = $10 
Factor de descuento = 9

Determine la política de inventario óptima suponiendo un retraso en la entrega cero y 
que el no cumplimiento de la demanda se queda pendiente

3. Considere la situación de inventario de horizonte infinito con retraso cero en la entrega y 
cumplimiento de la demanda pendiente Desarrolle la política de inventano óptima basa­
do en la minimizacion del costo dado que

Costo de retención por z unidades = liz~

Costo de penalizacion por z unidades = prr

Demuestre que para el caso especial en que li = p, la solución óptima es independiente 
de la fdp de la demanda
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CAPITULO 17 

Cadenas de Markov
4

17.1 DEFINICIÓN DE UNA CADENA DE MARKOV

Sea X, una vanable aleatoria que caracteriza el estado del sistema en puntos discretos 
en el tiempo / = 1,2 . La familia de variables aleatorias [.VJ forma un proceso cs- 
tocástico con una cantidad finita o infinita de estados

Ejemplo 17.1-1 (Mantenimiento de una máquina)

La condición de una maquina en el momento del mantenimiento preventivo mensual es mala, 
regular o buena Para el mes r, el proceso estoc<1stico en esta situación se representa como sigue

I 0, SI la condición es mala |
AT, = \ 1, SI la condición es regular /, r = 1,2,

[ 2, SI la condición es buena J

La vanable alealona X, es finita porque representa tres estados malo (0). regular (1) y bueno (2)

Ejemplo 17.1-2 (Taller)

Los trabajos llegan al azar a un taller a razón de 5 trabajos por hora El proceso de llegada sigue 
una distribución de Poisson, la cual, en teoría, permite que llegue cualquier cantidad de trabajos 
durante el intervalo de tiempo (0, /) El proceso de estado infinito que descnbe la cantidad de 
trabajos que llegan es X, = 0,1,2, , / > 0

Proceso de Markov. Un proceso estocástieo es un proceso de Markov si un estado 
futuro depende sólo del estado inmediatamente antenor Esto significa que dados los

571
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tiempos cronológicos Í0.Í1. ,í„,lafamiliade\anabIesaleatonas {-V,j - (ti, t;. . r„)
es un proceso de Mark.o\ si

P{X,, = x„\X,, , = x„-i, , X,^ = r„) = P{X,^ = x„\X,_ , = v„_.)

En un proceso Markoviano con n estados exhaustivos v mutuamente excluyen- 
tes, las probabilidades en un punto específico del tiempo / = 01,2, se definen como

A, = PÍA', = = i|.í = 1,2, ,/!.;= 12, h.í = 0,1,2 ,7
Esto se conoce como probabUidad de transición en un poso al ir del estado i en el ins­
tante / — 1 al estado j en el instante / Por definición, tenemos

= 1,1 = 1, 2, .11
1

p.j ^ o.(n;) = 12, , /I

La notación uiihzada en la matriz es una forma conveniente de resumir las probabili­
dades de transiaón en un paso

P

/Pll Pl2 Pl3

Pl\ Pl2 PU
P\n

P2n

\Pnl Pn2 PrC

La matnz P define una cadena de Markov Tiene la propiedad de que todas sus 
probabilidades de iransinón p,j son estaaonanas e independientes a lo largo del tiem­
po Aunque una cadena de Markov puede incluir un numero infinito de estados, la pre­
sentación en este capítulo se limita a solo cadenas finitas, ya que es el único que se 
necesita en el texto

Ejemplo 17 1-3 (Problema del jardinero)

Cada ano durante la temporada de siembra de marzo a septiembre, un jardinero realiza una pruc 
ba química para \enficar la condinón de la tierra Según el resultado de la prueba la productividad 
en U nueva temporada puede ser uno de tres estados (1) buena (2) regular > (3) mala A lo largo 
de los años, el jardmero ha observado que la condición de la tierra del ano anterior afecta la pro- 
ducuvidad del ano actual j que la siiuaaon se describe mediante la siguiente cadena de Markov*

Estado del 
sistenta 
este año

1 2 3
Estado del í\ { 2 J 3\ 

p = sistema el ( 2 0 5 ,5
o 1/

en

Las probabilidades de transición muestran que la condición de la tierra puede o deteriorar 
o permanecer como está pero nunca mejorar Por ejemplo si la condición de la tierra es buena 
este año (estado 1) hay 20“i de que no cambie el ano siguienle 50% de prob jbilldad de que



17 1 Definición de una cadena de Markov 573

sea regular (oslado 2), y 30% de probabilidad de que se deicnorara a una condición mala (esta­
do 3) El jardinero modifica las probabilidades de transición P utilizando un fertilizante orgáni­
co En este caso, la matriz de transición se vuelve

I 2 3
1/30 60 10\

P, = 2 10 60 30
3 \ 05 40 Ss)

El uso de fertilizante puede conducir a mejorar las condiciones del suelo

CONJUNTO DE PROBLEMAS 17.1A

1. Un profesor de ingeniería adquiere una computadora nueva cada dos años. El profesor 
puede elegir de entre tres modelos A/l, M2 y M3 Si el modelo actual es M\, la siguiente 
computadora puede ser A/2 con probabilidad 2, o A/3 con probabilidad .15 Si el modelo 
actual es A/2, las probabilidades de cambiar a A/l y A/3 son 6 y 25. respectivamente Pero 
SI el modelo actual es A/3, entonces las probabilidades de comprar los modelos A/l y A/2 
son S y .1, respectivamente Represente la situación como una cadena de Markov 

*2. Una patrulla policiaca vigila un vecindano conocido por sus actividades pandillcnles 
Durante un patrullajc hay 60% de probabilidades de llegar a tiempo al lugar donde se re­
quiere la ayuda, si no sucede algo, continuará el patrullajc regular Después de recibir una 
llamada, hay 10% de probabilidades de cancelación (en cuyo caso el patrullajc normal se 
reanuda), y 30% de probabilidad de que la unidad ya esté respondiendo a la llamada anlc- 
nor Cuando la patrulla llega a la escena del suceso, hay 10% de probabilidades de que los 
instigadores hayan desaparecido (en cuyo caso reanuda su patrullajc), y 40% de probabili­
dades de que se haga una aprehensión de inmediato De otro modo, los oficiales rastrearan 
el área Si ocurre una aprehensión, hay 60% de probabilidades de trasladar a los sospecho­
sos a la estación de policía, de lo contrano son liberados y la unidad regresa a patrullar 
Exprese las actividades probabilísticas de la patrulla en la forma de una matriz de transición 

3. Cycri and Associates (1963) Banco 1 ofrece préstamos los que o se liquidan cuando se 
vencen o se retrasan Sí el pago sobre un préstamo se retrasa más de cuatro trimestres 
(I año). Banco 1 considera el préstamo como una deuda incobrable y la cancela L<i siguien­
te tabla proporciona una muestra de la cxpcnencia anterior de Banco 1 con préstamos

Crintidad
prestada

Trimestres 
de retraso Historia de pjgos

sioooo 0 $2000 pagados.$3000 rtlrnsados un lrimesirc,S30ü0 retrasados 2 
lrimesires,ycl resto retrasados 3 trimestres.

S25.000 1 $4000 pagados.$12.000 retrasados un lnmcslre.$6000 retrasadas dos 
trimestres, y el resto retrasado 3 Inmestres.

S5Ü,0Ü0 2 $7500 pagados, $15,000 retrasados un tnmestre y el resto relrnsado
2 trimestres.

$50000 3 $42,000 pagados, y el resto retrasado un trimestre
sionooo 4 $50,000 pagados.

Exprese la situación del próslamo de Banco 1 como una cadena de Markov 
4 Phskm and Tell (I9SI) Los pacientes que sutren de falla de riñón pueden conseguir un 

trasplante o someterse a diñlisis periódicas. Durante un año cualquiera, 30% se somete 
a trasplantes cadavéricos y 10% recibe riñones de donadores vivos. En el año después de 
un trasplante 30% de los trasplantes cadavéricos y 15% de los recipiendarios de donado
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res VIVOS regresan a la diálisis. Los porcentajes de muertes entre los dos grupos son 20% 
y 10%. respectivamente. De aquellos que están en el grupo de diálisis, 10% mueren, y de 
los que sobreviven más de un año después de un trasplante, 5% mueren y 5% regresan a 
la diálisis. Represente la situación como una cadena de Markov.

17.2 PROBABILIDADES DE TRANSICIÓN ABSOLUTAS Y DE n PASOS

Dada la matnz de transición P de una cadena de Markov y el vector de probabilidades 

iniciales = y = 1,2,..., n),Ias probabilidades absolutas = 7 = 1,2,.. , h|

después de /i(> 0) transiciones se calculan como sigue:

aCl = a«"P

„|2) ^ „(l)p ^ „(0)pp ^ ^(0)pl

„13) = a«)p = ol">p2p = a<“>p5

„ln) _ „(0)p.

La matriz P" se conoce como la matriz de transición de n pasos A partir de estos 
cálculos, podemos ver que

pn _ pn-lp

y
P" = P"-'"P"',0 < < „

Éstas se conocen como ecuaciones de Chapman-Koiomogorov.

Ejemplo 17.2-1

La siguiente matriz de Iransición es aplicable al problema del jardinero con fertilizanle (ejemplo 
17.1-3):

1 2 3
' /.30 60 .10\

“ 2 JO 60 30
3 \05 .40 55/

La condición micial de la tierra es buena, es decir a™ = (1,0,0). Delermine las probabilidades 
absolutos de los Ires oslados del sistema después de 1,8 y 16 temporadas de siembra

/30 .60 .loV /MnS3 525514 372733\
P“ = .10 60 .30 = 101702 525435 372863

\.05 40 55/ \ 101669 525384 .372863/

/ 30 60 10V‘ / 101659 52454 372881 \
P"’ = I .10 60 JO = 101659 52454 372881

\ 05 .40 55/ \.101659 52454 372881/
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Por lo tanto, las probabilidades absolutas requeridas se calculan como

/30 60 10\
= 0 0) 10 60 30 =(30 60 1)

\05 40 55/

/ 101753 325514 372733\
a"'* = (1 0 0) .101702 525435 372863 = ( 101753 525514 372733)

\ 101669 525384 372863/

/ 101659 52454 3728Sl\
= (1 0 0) 101659 52454 372881 = ( 101659 52454 372881)

\ 101659 52454 372881/

Las filas de P® y el vector de probabilidades absolutas son casi idénticos. El resultado es 
mas evidente para P*^ Ello demuestra que, a medida que la cantidad de transiciones aumenta, 
las probabilidades absolutas se vuelven independientes del a^“^ inicial Las probabilidades resul­
tantes se conocen como probabibdades de estado estable

Comentarios. Los cálculos asociados con las cadenas de Markov son tediosos. La plantilla ex 
celMarkovChatns xls proporciona una hoja de cálculo general fácil de usar para realizar estos 
cálculos (vea el Momento de Excel después del ejemplo 17 4-1)

CONJUNTO DE PROBLEMAS 17.2A

1. Considere el problema 1, conjunto 17 la Determine la probabilidad de que el profesor 
compre el modelo actual en 4 años.

*2. Considere el problema 2. conjunto 17 la Si la patrulla se encuentra en este momento en 
la escena de una llamada, determine la probabilidad de que haga una aprehensión en dos 
patruliajcs.

3. Considere el problema 3. conjunto 17 la Suponga que actualmente Banco 1 tiene présta 
mos pendientes que ascienden a $500,000 De éstos, $100,000 son nuevos $50,000 están 
retrasados un trimestre, $150,000 están retrasados dos trimestres, $100,000 están retrasa­
dos tres inmestres, y el resto están retrasados más de tres trimestres. ¿Cuál sería la situa­
ción de estos préstamos después de dos ciclos de préstamos?

4. Considere el problema 4, conjunto 17 la
(a) Para un paciente al que se está tratando con diálisis, ¿cuál es la probabilidad de reci­

bir un trasplante en dos años?
(b) Para un paciente que ha sobrevivido más de un año, ¿cuál es la probabilidad de que 

sobreviva cuatro años más?
5. Un juego de lanzamiento de dados utiliza una cuadrícula de cuatro casillas. Las casillas 

están designadas en sentido horario como A, B,C y D con retribuciones monetarias de 
$4. - $2, - $6 y $9, rcspcclivamente Comenzando en la casilla A. lanzamos el dado para 
determinar la siguiente casilla a la que nos moveremos en el sentido de las manecillas del 
reloj. Por ejemplo, si el dado muestra 2. nos movemos a la casilla C El juego se repite uti­
lizando la ultima casilla como punto inicial
(a) Exprese el problema como una cadena de Markov
(b) Determine !n ganancia o perdida esperadas después de lanzar el dado 5 veces.
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17.3 CLASIFICACIÓN DE LOS ESTADOS EN UNA CADENA DE MARKOV
Los estados de una cadena de Markov se clasifican con base en la probabilidad de tran­
sición p,j de P.

1. Un estado; es absorbente si está seguro de regresar a si mismo en una transición, 
es decir, p,y = 1

2. Un estado j es transitorio si puede llegar a otro estado pero no puede regresar desde
otro estado Matemáticamente, esto sucederá si 1^ = 0, para todas las i

3. Un estado j es recurrente si la probabilidad de ser revisitado desde otros estados 
es 1 Esto puede suceder si, y sólo si, el estado no es transitorio

4. Un estado j es periódico con periodo de /> 1 si es posible un retorno sólo en i, 2i, 
3/, pasos. Esto significa que = 0 cuando n no es divisible entre t

Con base en las definiciones dadas, una cadena de Markov finita no puede cons­
tar de lodos los estados transitorios porque, por definición, la propiedad transitoria re­
quiere entrar a otro estado de “atrapamiento” y nunca volver a visitar el estado transi- 

ci jjq ncccsita Ser un solo estado absorbente Portono El estado de “atrapamiento' 
ejemplo, considere la cadena

/o 1 0 o\ 
[0010 
lo 0 3 7
\0 0 4 6/

Los estados 1 y 2 son transitorios porque no se puede volver a entrar a ellos una vez que 
el sistema se queda “atrapado” en los estados 3 y 4 Un conjunto cerrado lo constituyen 
los estados 3 y 4, que en cierta forma desempeñan el papel de un estado absorbente Por 
defimcion, todos los estados de un conjunto cerrado deben comunicarse, lo cual significa 
que es posible ir de cualquier estado a cualquier otro estado del conjunto en una o mas 
transiaones, es decir, p," > 0 para todas lasí 5* ;y « > 1 Observe que cada uno de los
estados 3 y 4 puede ser absorbente si P33 = P44

Se dice que una cadena de Markov es crgódica si todos los estados son recurren­
tes y aperiódica (no periódica) En este caso las probabilidades absolutas después de n 
transiciones, = a^^^P", siempre convergen de forma única a una distribución limi­
tante (estado estable) que es independiente de las probabilidades iniciales a^®\ como
se demostrara en la sección 17 4

Ejemplo 17.3-1 (Estados absorbentes y transitorios)
Considere la cadena de Markov del jardinero sin fertilízame 

(2 5 3
P = 0 5 5

\0 0 0
Los estados 1 y 2 son transitorios porque llegan al estado 3 pero nunca se puede regresar a ellos- 
El estado 3 es absorbente porque P33 = 1 Estas clasificaciones también pueden verse cuando 
l^p|"^ = Oes calculada Por ejemplo, considere

pioo _
0 0 r
o o 1

.0 o 1
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El resultado muestra que, a la larga, la probabilidad de volver a entrar al estado 1 o 2 es cero, y 
que la probabilidad de quedarse “atrapado” en el estado absorbente 3 es segura

Ejemplo 17.3-2 (Estados periódicos)

Podemos probar la periodicidad de un estado calculando P" y observando los valores de pj,"’ 
para n = 23.4,. Estos valores serJn positivos solo en el periodo correspondiente del estado 
Por ejemplo, consideremos

P

P^

\ ;(2A 76 0\ 1< 0 904 0960\
0 1 0 , = 0 1

1 ''vO 76 24/ '^ 144 856 0 /

9424 0 \ /o 97696 02304\
1 0 , p5 = 0 1 0

9424 0576/ \ 03456 96544 0 /

y cero en otro res-Los resultados muestran quepn y son positivos para valores impares de « y c 
pecto (puede confirmar esta observación calculando P" con n > 5) Esto significa que el periodo 
de cada uno de los estados 1 y 3 es í = 2

CONJUNTO DE PROBLEMAS 17.3A

1. Clasifique los estados de las siguientes cadenas de Markov Si un estado es periódico de­
termine su periodo

/O 1 0
•(a) 0 0 1

Vi 0 0
0\ 

1 o
i ^
o 1/

1 o 9
7 3 0
2 .7 1
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2. Un juego implica cuatro bolas y dos urnas. Una bola en cualquier urna tiene una proba­
bilidad de 50-50 de ser transferida a la otra urna Represente el juego como una cadena 
de Markov, y demuestre que sus estados son penodicos con penodo t ~ 2

3. Un museo consta de seis salas de tamaños iguales dispuestas en forma de una cuadrícula 
con tres filas y dos columnas. Cada muro interior tiene una puerta que conecta con las 
salas adyacentes. Los guardias se desplazan por las salas a través de las puertas interiores. 
Represente los movimientos de cada guardia en el musco como una cadena de Markov, y 
demuestre que sus estados son periódicos con penodo r = 2

17.4 PROBABILIDADES DE ESTADO ESTABLE Y TIEMPOS DE RETORNO MEDIOS 
DE CADENAS ERGÓDICAS

En una cadena ergódica, las probabilidades de estado estable se definen como

Estas probabilidades, las cuales son independientes de se pueden determinar de 
las ecuaciones

(Una de las ecuaciones en -tt = ttP es redundante). Lo que tt = ttP dice es que las pro­
babilidades 7T permanecen sin cambiar después de una transición adicional, y por esta 
razón representan la distribución de estado estable

Un subproducto directo de las probabilidades de estado estable es la determina­
ción del número esperado de transiciones antes de que el sistema regrese a un estado/ 
por primera vez. Esto se conoce como tiempo medio del primer retorno o tiempo 
medio de recurrencia, y se calcula en una cadena de Markov de n estados como

Ejemplo 17.4-1

Para detemiinar la distribución de probabilidad de estado estable del problema del jardinero 
con fertilizante (ejemplo 17 1-3), tenemos

TTj = lím a”\ j = 0,1,2, .

TT ~ ttP

= 1
J

Myy = ~,J = 1,2, n

(tTi TTi TTs) = (tT] 172 7T3)

TT\ — BtTj + .1772 .05773

772 “ 677] -|- 6t72 + .4773

773 - \tT\ + .3t72 + .55773 

771 + 772 -I- 773 = 1

O bien.

.r
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(Cualquiera de las primeras tres ecuaciones es rcdundame) U solución es tt, = 0 Í017, w, = 
0 5254 y 7T3 = 0 3729, es decir que a la larga la condición de la tierra sera buena 10% del tiempo 
regular 52% del tiempo, y mala 37% del tiempo

Los tiempos medios del primer retomo se calculan como

15Í7 “1¿4 ° ^

Esto quiere decir que, en promedio, se requerirán aproximadamente 10 temporadas de siembra 
para que la tierra regrese a un buen estado, 2 temporadas para que regrese al estado regular, y 3 
temporadas para que regrese a un estado malo Estos resultados apuntan hacia un panorama 
menos promisono para la condición de la tierra con el uso propuesto de fertilizantes. Un pro­
grama mas agresivo debe mejorar el panorama Por ejemplo considere la siguiente matnz de 
transición en la que las probabilidades de trasladarse a un buen estado son más altas que en la 
matnz previa

P
/ 35 6

3 6
\25 4

En este caso, 7Ti = 031,7T2 = 0 58,y 7T3 = 0 ll,locualda^n = 3 2. ji22 = 1 = 8 9, un cam­
bio reversible del sombrío panorama dado antenormente

Momento de Excel

La figura 17 1 aplica la plantilla general cxcelMarkoi Chams.xls al ejemplo del jardinero La 
plantilla calcula las probabilidades absolutas y de estado constante de n pasos de cualquier ca­
dena de Markov Los pasos son autoexplicativos. En el paso 2a, puede invalidar los códigos de 
estado preestablecidos (1.23, ) por un código de su elección, y luego hacer clic en el boton ubi 
cado en la celda L2 Los nuevos códigos se transferirán automáticamente a través de la hoja de 
calculo cuando ejecute el paso 4 ___________________________

FIGURA 17 1
Hojt de cálculo Excel pnra realizar los cálculos de cadena de Markov (archivo excilMarkox Cliamiis.xh)

1 0 10175' 0 101695 9 8333254
2 0 52551 0 525424 1 9032248 
3l 0 37273 0 372802 2 6818168

Output (8-stcp) traruiiJon matrix 
‘ II 2 3

l| 0 101751 0 525514 0 3727331 
2| 01017 0 525435 0 372B64|

0 10167 QSM384 0 372947|
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Ejemplo 17.4-2 (Modelo de costos)

Considere el problema del jardinero con fertilizante (ejemplo 17 1-3). El jardín necesita dos 
sacos de fertilizante si la tierra es buena La cantidad se incrementa en 25% si la tierra es regu­
lar. y 60% si la tierra es mala El costo del fertilizante es de $50 por saco El jardinero estima un 
rendimiento anual de $250 si no se utiliza fertilizante, y de $420 si se aplica el fertilizante (,Es re 
dituable utilizar fertilizante?

Aplicando las probabilidades de estado constante del ejemplo 17 4-1, obtenemos 

Costo del fertilizante anual esperado = 2 X $50 X ttj + (1 25 X 2) X $50 x ttj 

+ (1 60 X 2) X $50 X iTj 

= 100 X 1017 -f 125 X 5254 + 160 X .3729 

= $135 51

Incremento diferencial del valor anual del rendimiento = $420 — $250 = $170 Se recomienda el 
uso del fertilizante

CONJUNTO DE PROBLEMAS 17.4A
*1. En un día soleado. MimGolf puede tener ingresos de $2000 Si el día está nublado, los in­

gresos se reducen 20% Un día lluvioso reducirá los ingresos en 80% Si hoy está soleado 
hay 80% de probabilidades de que mañana este soleado sin amenaza de lluvia Si está 
nublado, hay 20% de probabilidades de que mañana llueva, y 30% de probabilidades de 
que este soleado Seguirá lloviendo hasta el día siguiente con una probabilidad de 8, pero 
con 10% de probabilidades de que esté soleado
(a) Determine los ingresos díanos esperados para MiniGolf
(b) Determine el promedio de días que no estarán soleados.

2. A Joe le encanta salir a comer a los restaurantes del área Sus comidas favoritas son la 
mexicana, la italiana, la china y la tailandesa En promedio, Joe paga $10,00 por una co­
mida mexicana, $15 00 por una comida italiana, $9 00 por una comida china, y $11 00 por 
una comida tailandesa Los hábitos alimenticios de Joe son predecibles Hay 70% de pro­
babilidad de que la comida de hoy sea una repetición de la de ayer y probabilidades igua­
les de que cambie a una de las tres restantes
(a) ¿Cuánto paga Joe en promedio por su comida diana*^
(b) ¿Con que frecuencia consume Joe comida mexicana?

3. Algunos exconvictos pasan el resto de su vida libre en juicio, en la cárcel, o en libertad 
condicional Al inicio de cada ano. las estadísticas muestran que hay 50% de probabilida- 
des de que un exconvicto libre cometa un nuevo delito y de que sea procesado El juez 
puede enviar al exconvicto a la cárcel con una probabilidad de 6, u otorgarle la libertad 
condicional con probabilidad de 4 Un vez que están en la cárcel, 10% de los exconvictos 
serán puestos en libertad por buena conducta De los que están en libertad condicional. 
10% cometen nuevos delitos y son arraigados para ser procesados, 50% regresarán para 
cumplir su sentencia por violar las ordenes de libertad condicional, y 10% serán puestos 
en libertad por falla de pruebas. Los contribuyentes solventan el costo asociado con el 
castigo de los exconviclos. Se estima que un juicio costará aproximadamente $5000, una 
sentencia de cárcel promedio costara $20,000, y un periodo de libertad condicional pro­
medio costará $2000
(a) Determine el costo esperado por exconvicto
(b) (.Con qué frecuencia regresa un exconvicto a la cárceP
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Demanda diam D 
P{D)

La ticndj es»la comparando dos políticas de colocar pedidos (1) Pedir hasta 3 unidades 
cada 3 días si el nivel de las existencias es menor que 2. de lo contrano. no pedir (2) Pedir 
3 unidades cada 3 días si el nivel del inventano es cero, de lo conlrano, no pedir El costo 
fijo por ordenar por envío es de $300, y el costo de retener las unidades excedentes por 
unidad por día es de $3 Se espera una entrega inmediata
(a) ¿Cual política debe adoptar la tienda para minimizar el costo diano esperado total 

de pedir y retener?
(b) Para las dos políticas, compare el promedio de días entre agotamientos sucesivos del 

inventano
!. Hay tres categorías de filtro del impuesto sobre la renta en los Estados Unidos los que 

nunca evaden impuestos, lo que en ocasiones lo hacen, y los que siempre lo hacen Un 
examen de las declaraciones de impuestos auditadas de un año al siguiente muestra que 
de los que no evadieron impuestos el año pasado. 95% continuará en la misma categoría 
este año. 4% se moverá a la categoría “a veces” y el resto se moverá a la categoría ‘siem­
pre” Para los que a veces evaden impuestos, 6% se moverá a ‘‘nunca’’, 90% permanecerá 
Igual, y 4% se moverá a “siempre” Por lo que se refiere a los evasores de “siempre”, los 
porcentajes respectivos son 0,10 y 90%
(a) Exprese el problema como una cadena de Markov
(b) A la larga, ¿cuáles serían los porcentajes de las categorías de evasión de impuestos 

de “nunca”, “a veces” y “siempre”?
(c) Las estadísticas muestran que un contribuyente en la categoría "a veces ’ evade im 

puestos que suman aproximadamente $5000 por declaración y en la categoría “siem­
pre” suman aproximadamente $12,000 Suponiendo que la población de conlnbu 
yentes es de 70 millones y la tasa del impuesto sobre la renta promedio es 12%, 
determine la reducción anual de los impuestos recolectados debido a la evasión

. Warchouzer posee un bosque renovable para plantar pinos. Los árboles caen dentro de 
una de cuatro categorías según su edad bebás (0 5 años),jóvenes (5-10 años), maduros 
(11-15 años), y viejos (más de 15 años) Diez por ciento de los arboles bebes y jóvenes se 
muere antes de llegar al siguiente grupo de edad Por lo que se refiere a los arboles ma­
duros y viejos, 50% se talan y sólo 5% se mueren Debido a la naturaleza de renovación 
de la operación, lodos los árboles talados y muertos son reemplazados con arboles nuc 
vos (bebés) al final del siguiente ciclo de cinco años.
(a) Exprese la dinámica del bosque como una cadena de Markov
(b) Si el bosque puede contener un total de 500,000 árboles, determine la composición a 

largo plazo del bosque
(c) Si un árbol nuevo se planta a un costo de $ I por árbol y uno talado tiene un valor de $20 

en el mercado, determine el ingreso anual promedio derivado de la operaaon del bosque
La dinámica de la población se ve afectada por el continuo movimiento de personas que 
busca una mejor calidad de vida o un mejor empleo La ciudad de Mobile tiene una pobla­
ción citadina interna, una población suburbana y una población rural circundante El
censo levantado a intervalos de 10 años muestra que 10% de la población rural se traslada 
a los suburbios y 5% al intenor de la ciudad En cuanto a la población suburbana. 30 se 
traslada a las areas rurales y 15% al interior de la ciudad La población del interior de la 
ciudad no se cambiaría a los suburbios, pero 20% sí se cambiaría a la quieta vida rural
(a) Exprese la dinámica de la población como una cadena de Markov
(b) Si d área motropclllana de Mobile en la actualidad indu)e 20,000 residenlcs rurales, 

100,000 suburbanos, y 30,000 liabilanlcs ciladinos, tcuál scr,i la dislribucion de la po­
blación en 10 años? ¿En 20 años?

(c) Delermine el panorama de la población de Mobile a largo plazo
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8. Una agencia de renta de automóviles tiene oficinas en Phoenix, Denver, Chicago y 
Atlanta La agencia permite rentas en una y en dos direcciones de modo que los automó 
viles rentados en un lugar pueden tenninar en otro Las estadísticas muestran que al final 
de cada semana 70% de todas las rentas son en dos direcciones. En cuanto a las rentas en 
una dirección Desde Phoenix, 20% van a Denver, 60% a Chicago, y el resto va a 
Atlanta, desde Denver, 40% va a Atlanta y 60% a Chicago, de Chicago, 50% va a Allanta 
y el resto a Denver, y desde Atlanta, 80% va a Chicago. 10% a Denver, y 10% a Phoenix
(a) Exprese la situación como una cadena de Markov
(b) Si la agencia inicia la semana con 100 autos en cada lugar, ¿cómo sera la distribución 

en dos semanas*’
(c) Si cada lugar está diseñado para manejar un máximo de 110 autos, ^.habría a la larga 

un problema de disponibilidad de espacio en cualquiera de los lugares?
(d) Determine el promedio de semanas que transcurren antes de que un auto regrese a 

su lugar de ongen
9. Una librería repone las existencias de un libro popular a nivel de 100 ejemplares al inicio 

de cada día Los datos de los últimos 30 días proporciona las siguientes posiciones de in­
ventano al final del día 1,2,03,1.0.03.0.1,13,233.2.1.0,2.0.1.3.0.03.2.1,2.2
(a) Represente el inventario diano como una cadena de Markov
(b) Determine la probabilidad de estado estable de que la librería se quede sm libros en 

cualquier día
(c) Determine el inventano diano esperado
(d) Determine el promedio de días entre inveníanos cero sucesivos.

10. En el problema 9, suponga que la demanda diana puede exceder la oferta, lo cual da 
lugar a fallantes (inventano negativo) El nivel del inventano al final del día durante 
los 30 días pasados se da como 1,2,0, —2,2,2, —1. —13,0,0,1, -1, —2.33. —2, —1,0,2.0, 
-13.0,0,3.-1,1,2,-2
(a) Exprese la situación como una cadena de Markov
(b) Determine la probabilidad a largo plazo de un excedente de inventario en un día
(c) Determine la probabilidad a largo plazo de una escasez de inventario en un día
(d) Determine la probabilidad a largo plazo de que la oferta diana satisfaga la demanda 

diana con exactitud
(e) Si el costo de retención por libro excedente (al final del día) es de $15 por día y el 

costo de penalización por libro fallante es de $4 00 por día, determine el costo del in- 
ventano esperado por día

IL Una tienda micia una semana con al menos 3 PC La demanda por semana se estima en 0 
con probabilidad de 15,1 con probabilidad de 2,2 con probabilidad de 35,3 con proba­
bilidad de 35, y 4 con probabilidad de 05 La demanda insatisfecha se deja pendiente La 
política de la tienda es colocar un pedido para entregarse al inicio de la siguiente semana 
siempre que el nivel del inventario se reduzca por debajo de 3 PC El nuevo pedido siem 
pre regresa las existencias a 5 PC
(a) Exprese la situación como una cadena de Markov
(b) Suponga que la semana se inicia con 4 PC Determine la probabilidad de que un pe* 

dido se coloque al final de dos semanas.
(c) Determine la probabilidad a largo plazo de que no se coloque ningún pedido en 

cualquier semana
(d) Si el costo fijo de colocar un pedido es de $200, el costo de retención por PC por se 

mana es de $5, y el costo de penalización por computadora fallante es de $20. deter­
mine el costo de inventario esperado por semana

12. Resuelva el problema 11, suponiendo que el tamaño del pedido, cuando se coloca, sea 
exactamente de 5 piezas.
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h '•“ponea que la demanda de las PC es de 0.1,2 J,4 o 5 con iguales pro-
babilidades. Suponga ademJs que la demanda no salisfecha no se ha dejado pendicnle 
pero que aun se incurre en un costo de penalizacidn por fállame
(a) Exprese la situación como una cadena de Markov
(b) Determine la probabilidad a largo plazo de que ocurra un fallante.
(c) Si el costo fijo de colocación de un pedido es de $200, el costo de retención por 

computadora por semana es de $5, y el costo de pcnalización por fallante de PC 
por semana es de $20, determine los costos de colocación de pedido c inventario e 
sperados por semana

14. El gobierno federal trata de promover las actividades de las pequeñas empresas otorgan­
do concesiones anuales para proyectos.Todas las licitaciones son competitivas, pero la 
probabilidad de recibir una concesión es máxima si el propietario no ha recibido alguna 
durante los últimos tres años, y mínima si se dieron otorgamientos en cada uno de los úl­
timos tres años. De manera espccífíca, la probabilidad de obtener una concesión si no se 
ha recibido ninguna en los últimos tres años es de .9 Se reduce a 8 si se recibió una. a 7 
SI se recibieron dos, y de sólo .5 si se recibieron tres.
(a) Exprese la situación como una cadena de Markov
(b) Determine la cantidad esperada de otorgamientos por propietario por año

15. Jim Bob ha recibido muchas multas por violaciones al reglamento de tránsito 
Desafortunadamente para Jim Bob, la tecnología moderna puede seguir el rastro de sus 
multas antenores. En cuanto acumula 4 infracciones, su licencia de manejo es revocada 
hasta que completa una nueva clase de educación vial en cuyo caso comienza con un his­
torial limpio Jim Bob es más imprudente inmediatamente dcspuás de completar la clase 
de educación vial, c invanablemente la policía lo detiene con 50% de probabilidades de 
ser multado Después de cada nueva multa, trata de ser más cuidadoso, lo cual reduce la 
probabilidad de una multa en 1.
(a) Exprese el problema de Jim Bob como una cadena de Markov
(b) ¿Cuál es el promedio de veces que Jim Bob es detenido por la policía antes de que 

su licencia sea revocada de nuevo?
(c) ¿Cuál es la probabilidad de que Jim Bob pierda su licencia''
(d) Si cada multa es de $100, ¿cuánto, en promedio, paga Jim Bob entre suspensiones su­

cesivas de su licencia?
16. El clima diario en Fayettville. Arkansas, puede ser nublado (C). soleado (S), lluvioso (R), 

o ventoso (W) Los registros a lo largo de los últimos 90 días son 
CCSWRRWSSCCCRCSSWRCRRRRR CWSSWRWWRCRRRROVSSWRWCCS 
WRRWSSCCCRCSSWSSWRWWRCRRRRCWSSWRWCCSWRRWSSS Basado en 
estos registros, use una cadena de Markov para determinar la probabilidad de que un día 
típico en Fayetteville pueda estar nublado, soleado, lluvioso o ventoso

TIEMPO DEL PRIMER PASO
En la sección 17.4 utilizamos las probabilidades de estado estable para calcularel 
nempo medio del primer relomo para el estado j. En esta sección nos interesa el licmpo 
medio del primer poso jx,, definido como ei número esperado de transiciones para legar 
por primera vez ai estadí. / desde ei estadoLos cálcuios tienen su origen en la deter­
minación de la probabilidad de al menos un paso del estado, a estado j.defin.do como 

donde fi¡‘^ es la probabilidad del primer paso del estado i al estado y en
«'transiciones. Se puede determinar una expresión para recursivamente a partir de

^ 1,2,



584 Capítulo 17 Cadenas de Markov

Se supone que la matriz de transiciones P = tiene m estados.

1. Si f,j < l,no es seguro que el sistema pase alguna vez del estado / al estado; y /Xy = co
2. Si f,j = 1, la cadena de Markov es ergódica.y el tiempo medio del primer paso del 

estado i al estado; se calcula como

= h-C
n=\

Una forma más simple de determinar el tiempo medio del primer paso de lodos 
los estados en una matriz de n transiciones, P, es utilizar la siguiente fórmula ba­
sada en una matriz:

11^,11 = (í - i

donde
I = matriz de identidad {m - 1)

Ny = Matriz de transiciones P sin su fila /-¿sima y columna ;-ésima del estado destino; 
1 = vector columna (m - 1) con lodos los elementos iguales a 1

La operación matncial (I — Ny)“^l suma en esencia las columnas de (I — N^)" *

Ejemplo 17.5-1

Considere una vez más la cadena de Markov del jardinero con fertilizantes.

/30 60 10\
P = 10 60 30

\05 40 55/

Para demostrar el cálculo del tiempo del pnmer paso a un estado especifico desde lodos los 
demas, considere el paso de los estados 2 y 3. (regular y malo) al estado 1 (bueno). Por lo tanto,; = 1 V

N, = ^60
,40

), (I-N,)-' = (_ -.3y'^/7 50 SOON 
45/ “V6 67 6 67/

De modo que,

/AziN /750 500NAN /1250N 
V/xjJ V6 67 6 67^1/ V1334/

Por lo tanto, se requerirán 12 5 temporadas en promedio, para pasar la tierra regular a tierra 
buena,y 13.34 temporadas para ir de la tierra mala a la tierra buena

Pueden realizarse cálculos similares para obtener /Ui2 y /132 desde (I - N2) y /Í13 y p.23 desde 
(I - N3), como se muestra a continuación

Momento de Excel

Se puede usar la plantilla excelFirsiPassTimc xls para realizar los cálculos de los tiempos medios 
del primer paso. La figura 17 2 muestra los cálculos asociados con el ejemplo 17 5-1 El paso 2 de 
la hoja pone automáticamenle la matriz de transiciones V en cero según el tamaño dado en el
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FIGURA 17.2
Cálculos del tiempo del primer paso del ejemplo 17.5-1 utilizando la hoja de cálculo de Excel 
(archivo exccIFirslPassTiincjcb)

paso 1. En el paso 2a, puede anular los códigos de estado preestablecidos en la fila 6 con un có­
digo de su elección. El código se transfiere entonces automáticamente por toda la hoja de cálcu­
lo. Después de que ingrese las probabilidades de transición, el paso 3 crea la matriz I - P. El 
paso 4 se realiza por completo utilizando I - P como el origen para crear I - N^O = 1-2 y 3). 
Puede hacerlo copiando toda la I - P y sus códigos de estado y pegándola en la ubicación desti­
no y luego utilizando las operaciones apropiadas de Excel Cut and Paste para liberar I - P de la 
fila j y la columna j. Por ejemplo, para crear I - N2, primero copie I - P y sus códigos de estado 
en la ubicación destino seleccionada. A continuación, resalte la columna 3 de la matriz copiada, 
córtela, y péguela en la columna 2, y así se elimina la columna 2. Asimismo, resalle ahora la fila 3 
de la matriz resultante, córtela, y luego péguela en la fila 2, y así se elimina la fila 2. La 1 - N2 
creada automáticamente realiza su código de estado correcto.

Una vez que se crea I - N^.se calcula la inversa (I - Ny)"' en la ubicación destino. Las ope­
raciones asociadas se demuestran invirtiendo (I - Ni) en la figura 17.2;

1. Ingrese la fórmula = M1NVERSE(B18;C19) en E18.
2. Resalte E18:F19, el área donde residirá la inversa.
3. Pulse F2.
4. Pulse CTRL + SHIFT + ENTER.
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Los \ alores del pnmcr paso de los estados 2 y 3 al estado 1 se calculan entonces sumando las 
filas de la inversa, es decir, ingresando = SUM(E18 F18) en H18 y luego copiando H!8 en Hl9 
Después de crear I - N para i = 2. e / = 3. los cálculos restantes se realizan de forma aulomali 
ca copiando E18 F19 en E22 F23 y E26 F27, y copiando H18 H19 en H22 H23 y H26 H27

CONJUNTO DE PROBLEMAS 17.5A
•1. Un laberinto se compone de las rutas mostradas en la figura 17 3 La intersección l ts la 

entrada al labennto, y la intersección 5 es la salida En cualquier intersección, el ratón 
tiene probabilidades iguales de seleccionar cualquiera de las rutas disponibles. Cuando el 
ratón llega a la intersección 5. el experimento se repite voKiendo a entrar al laberinto 
por la intersección 1
(a) Exprese el laberinto como una cadena de Markov
(b) Determine la probabilidad de que. comenzando en la intersección 1, el ratón llegue a 

la salida después de tres intentos.
(c) Determine la probabilidad a largo plazo de que el ratón localice la mterscccion de salida
(d) Determine el promedio de intentos necesario para llegar al punto de salida desde la 

intersección 1
En el problema 1, por intuición, si se agregan mas opciones (rutas) al labennto, ¿se mere 
mentara o reducirá el promedio de intentos necesarios para llegar al punto de salida’’ 
Demuestre la respuesta agregando una ruta entre las intersecciones 3 y 4 
Jim y Joe comienzan un juego con cinco fichas, tres para Jim y dos para Joe Se lanza una 
moneda, y SI el resultado es cara, Jim le da a Joe una ficha de lo contrano Jim obtiene 
una ficha de Joe El juego termina cuando Jim o Joe tiene todas las fichas. En este punto 
hay 30% de probabilidades de que Jim y Joe continúen con el juego, comenzando de 
nuevo con tres fichas para Jim y dos para Joe
(a) Represente el juego como una cadena de Markov
(b) Determine la probabilidad de que Joe gane con tres lanzamientos de la moneda De 

que Jim gane haciendo lo mismo
(c) Determine la probabilidad de que un juego termine a favor de Jim A favor de Joe
(d) Determine el promedio de lanzamientos de moneda necesano antes de que Jim 

gane Joe gana
Un jardinero aficionado con capacitación en botánica está buscando la forma de fecun­
dar por polinización cruzada flores de lis rosas con flores de lis rojas, naranjas y blancas. 
Expenmentos anuales muestran que las rosas pueden producir 60% rosas y 40% blancas, 
las rojas pueden producir 40% rojas,50% rosas y 10% naranjas, las naranjas pueden pro 
ducir 25% naranjas, 50% rosas y 25% blancas, y las blancas pueden producir 50% rosas y 
50% blancas.
(a) Exprese la situación del jardinero como una cadena de Markov
(b) Si eljardinero miao la fecundación por polinización cruzada con números iguales de 

cada tipo de flores de lis, ¿cómo sena la distnbuaon después de 5 años? ¿A largo plazo’’
(c) ¿Cuantos años en promedio les llevaría a las flores de lis rojas producir flores de lis 

blancas’’

FIGURA 17 3
Labennto del ratón del problema 1, 
conjunto 17 5a
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*5. Los clicmcs pueden ser leales a marcas de productos pero pueden ser persuadidos me 
diante publicidad y mercadotecnia mteligenics para que cambien de marcas. Considere el 
caso de tres marcas Á.ByC Los clientes que se "mantienen” leales a una marca dada se 
estiman en 75%, con un margen de sólo 25% para que sus competidores hagan un cam 
bio Los competidores lanzan sus campañas publicitanas una vez al año Para los clientes 
de la marca A, las probabilidades de que cambien a las marcas S y C son de l y 15, res­
pectivamente Los clientes de la marca B son propensos a cambiar a las marcas /t y C. 
con las siguientes probabilidades 2 y 05 respectivamente Los clientes de la marca C 
pueden cambiar a la marcas Ay B con probabilidades iguales.
(a) Exprese la situación como una cadena de Markov
(b) A largo plazo, ¿qué tanto segmento del mercado dominara cada marca?
(c) ¿Cuanto tiempo en promedio le llevara a un cliente de la marca A cambiar a la 

marca

17.6 ANÁLISIS DE LOS ESTADOS ABSORBENTES

En el problema del jardinero, stn fertilizante la matnz de transición se da como

\0 0 1/
Los estados 1 y 2 (condiciones de tierra buena y regular) son transitorios, y el estado 3 
(condición de tierra mala) es absorbente, porque una vez que llega a ese estado el siste­
ma permanecerá allí por tiempo indefinido Una cadena de Markov puede tener más de un 
estado absorbente Por ejemplo, un empleado puede permanecer con la misma compañía 
hasta su retiro o renunciar antes (dos estados absorbentes) En estos tipos de cadenas, nos 
interesa determinar la probabilidad de llegar a la absorción y el número esperado de 
transiciones para llegar a ella, dado que el sistema se inicia en un estado transitono es­
pecífico Por ejemplo, en la cadena de Markov antes dada, si actualmente la tierra es 
buena, nos interesará determinar el promedio de temporadas de siembra hasta que la 
tierra se vuelva mala, e igualmente la probabilidad asociada con esta transición.

El análisis de las cadenas de Markov con estados absorbentes puede realizarse de 
forma conveniente con matrices En primer lugar, la cadena de Markov se particiona 
como sigue'

La disposición requiere que lodos los estados absorbentes ocupen la esquina sureste 
de la nueva matriz Por ejemplo, considere la siguiente matriz de transición

12 3 4
1 /2 .3 4 l\

_ 2 I 0 1 0 ü
" 3 5 .3 0 2 j

4 \0 0 I) 1/

P
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La malnz P puede reacomodarse y particionarsc como 
13 2 4

1 Ll .4 .3 .l\

3 .5 0 .3 .2

2 0 0 1 0

4

oo 0 1/

En este caso, tenemos

-ee 3-(;:)
Dada la definición de A y N y el vector columna unitario 1 (de lodos los elemen­

tos 1), se puede demostrar que:

Tiempo esperado en el estado; iniciado en el estado» = elemento (/j)de (I - N)"' 
Tiempo esperado para la absorción = (I - N)~* 1 
Probabilidad de la absorción = (I — N)“*A

Ejemplo 17.6-1’

Se procesa un producto en secuencia en dos máquinas, I y II La inspección se realiza después de 
que una unidad del producto se completa en cualquiera de las maquinas. Hay 5% de probabili­
dades de que una unidad sea desechada antes de inspeccionarla. Después de la inspección, hay 
3% de probabilidades de que la unidad sea desechada, y 7% de probabilidades de ser devuelta a 
la misma máquina para trabajarla de nuevo De lo contrario, una unidad que pasa la inspección 
en ambas máquinas es buena.

(a) Para una pieza que se inicia en la maquina 1, determine el promedio de visitas a cada 
estado

(b) Si un lote de 1000 unidades se inicia en la máquina I, determine el promedio de uni­
dades buenas completadas.

Para la cadena de Markov, el proceso tiene 6 estados' iniciar en inspeccionar después 
de I (il), iniciar en II (52), inspección después de II (»2), desechar después de la inspección 1 o II 
(/), y buena después de II (G). Los estados J y G son estados absorbentes. La matriz de transi­
ciones se da como

5l ll 52
si /O -95 0
n 07 o .9

_s2 o 0 0
** " i2 0 0 07

y I 0 0 0
c \o 0 0

i2 J C 
0 05 0\
0 .03 0

.95 .05 0
0 .03 9
0 1 0
0 0 1/

‘ Adaplado de J Shamblin y G Stevens, Operations fíescarc/i. A Fundamental Approach. McGraw-Hiü. 
Nueva York, capítulo 4,1974



Por lo lamo.

17 6 Análisis de los estados absorbentes 589

N

•si <1 si ti j G
11/o 95 0 0 \ /05 0\
111 07 0 9 H I. A = I IB 0
í2 0 0 0 95 I 05 0
i2\0 0 07 0/ \03 9/

Ulilizando los cálculos realizados con la plumilla eKcelEvl76-l xls (vea Momeiila ,1c Cud des- 
pues del ejemplo 17 5 1). obtenemos

/ 1 - 95 0 0 \ /107 102 98 0 93\
N)-' = -07 1 -9 0 1 007 107 103 0 98

0 0 0 -95 0 107 102
0 0 -07 / \ 0 0 0 07 107/

(I - N)-‘A =

/l 07 
I 007

102 98 0 93\ / 05 o\ /I6 84\
107 1 03 0 98 03 0 88

0 107 102 05 0
-

OS 92
0 0 07 1 07/ \03 9^ \04 96/

La fila superior de (I - N)“* muestra que.cn promedio, la maquina I es visitada 1 07 veces 
la inspección I es visitada 1 02 veces, la maquina 11 es visitada 98 veces,) la inspección II es visi­
tada 93 veces. La razón por la que el numero de visitas en la maquina I y la inspección 1 sea 
mayor que 1 son el rctrabajo y la rcmspeccion Por otra parte los valores correspondientes para 
la maquina 11 son menores que I porque algunas piezas se desechan antes de que lleguen a la 
maquina II En realidad, en condiciones perfectas (ningunas piezas se desechan o reirabajan), 
la matriz (I - N)"* demostrara que cada estación es visitada exactamente una vez (compruébelo 
asignando una probabilidad de transición de 1 a todos los estados) Por supuesto, la permanencia 
en cada estado podría difenr Por ejemplo, si los tiempos de procesamiento en las maquinas I y II 
son de 20 y 30 minutos y si los tiempos de inspección en I y II son de 5 y 7 minutos, entonces una 
pieza que inicia en la maquina I sera procesada (es decir, desechada o terminada) en (1 07 x 20) 
+ (1 02 X 5) + (98 X 30) + ( 93 X 7) = 62 41 minutos.

Para determinar la cantidad de piezas terminadas en un lote inicial de 1000 piezas, podemos 
ver en la fila superior de (I - N)“'A que

Probabilidad de que una pieza sea desechada = 16 
Probabilidad de que una pieza sea terminada = 84

Esto significa que 1000 X 84 = 840 pie/as serán terminadas en cada lote inicial de 1000

CONJUNTO DE PROBLEMAS 17.6A

1. En el ejemplo 17 6 1. suponga que el costo de la mano de obra para las maquinas I y II es 
de $20 por hora y que para la inspección es de sólo $18 por hora Suponga ademas que se 
requieren 30 minutos y 20 minutos para procesar una pieza en las maquinas I y II. respec­
tivamente El tiempo de inspección en cada una de las dos estaciones es de 10 minutos. 
Determine el costo de la mano de obra asociado con una pieza terminada (buena)
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•2. Cuando pido prestado un libro de la biblioteca de la ciudad, trato de de\olverlos después 
de una semana Dependiendo del tamaño del libro y de mi tiempo libre, hay 30% de pro­
babilidades de que lo conserve otra semana Si me lo quedara dos semanas, hay 10% de 
probabilidades que me lo quede una semana mas. En ninguna condición me lo quedo 
mas de tres semanas.
(a) Exprese la situación como una cadena de Markov
(b) Determine el promedio de semanas antes de devolver el libro a la biblioteca

3. En el Casino del Río. un aposlador puede apostar en dólares enteros. Cada apuesta gana 
$1 con probabilidad de 4 o pierde $1 con probabilidad de 6 Comenzando con tres dóla­
res, el apostador se retirará si pierde todo el dinero o bien lo duplica
(a) Exprese el problema como una cadena de Markov
(b) Determine el promedio de apuestas hasta que el juego termina
(c) Determine la probabilidad de terminar el juego con $6 De perder los $3

4. Jim debe avanzar cinco años para completar su doctorado en la Universidad ABC Sin 
embargo le agrada la vida de estudiante y no tiene pnsa para obtener su grado En cual­
quier año académico, hay 50% de probabilidades de que pueda tomarse un año sabático 
y 50% de probabilidad de dedicarle tiempo completo a su doctorado Después de com­
pletar tres años académicos, hay 30% de probabilidades de que Jim pueda dar “marcha 
atrás" y simplemente obtenga una maestría. 20% de probabilidades de que se tome libre 
el siguiente año pero continuando con el programa de doctorado, y 50% de probabilida­
des de que asista a la escuela a tiempo completo en busca de su doctorado
(a) Exprese la situación de Jim como una cadena de Markov
(b) Determine el numero esperado de años académicos antes de que la vida de estu­

diante de Jim termine
(c) Determine la probabilidad de que Jim termine su ciclo académico con sólo una 

maestría
(d) Si la beca de Jim desembolsa $15,000 anuales (pero sólo cuando asiste a la escuela), 

¿cuánto deberá pagar antes de que obtenga un grado?
5. Un empleado que ahora tiene 55 años de edad planea retirarse a la edad de 62 pero no 

ha descartado la posibilidad de hacerlo antes. Al final de cada año pondera sus opciones 
(y actitud con respecto al trabajo) La probabilidad de renunciar después de un año es de 
sólo .1, pero parece incrementarse en aproximadamente 01 con cada año más que pasa
(a) Exprese el problema como una cadena de Markov
(b) ¿Cuál es la probabilidad de que el empleado permanezca con la compañía hasta que 

planee su retiro a los 62 años?
(c) A los 57 años, ¿cuál es la probabilidad de que el empleado renuncie?
(d) A los 58 años, ¿cual es el numero esperado de años antes de que el empleado quede 

fuera de la nomina'^
6. En el problema 3, conjunto 17 la.

(a) Determine el numero esperado de trimestres hasta que una deuda se liquide o se 
pierda como una deuda incobrable

(b) Determine la probabilidad de que un nuevo préstamo se cancele como deuda inco­
brable De que se liquide en su totalidad

(c) Si un préstamo tiene seis meses de antigüedad, determine el numero de trimestres 
hasta que su estado se resuelva

7. En un torneo de tenis de individuales. Andró y John están jugando un partido por el cam* 
peonato El partido se gana cuando uno de los jugadores gana tres de cinco “sets” Las 
estadísticas muestran que hay 60% de probabilidades de que Andre gane cualquier set
(a) Exprese el partido como una cadena de Markov
(b) En promedio, ¿cuánto durará el partido, y cual el la probabilidad de que Andre gane 

el campeonato*’
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(c) Si el marcador es 1 sel a 2 a favor de John ^cuál es la probabilidad de que Andrc gane’ 
(il) En el inciso (c), determine el numero promedio de sets hasta que el partido termine 

e interprete el resultado
*8. Los estudiantes en U de A han expresado su disgusto por el rápido paso al cual el depar­

tamento de matemáticas está impartiendo el Cal I de un semestre Para afrontar este pro 
blema, el departamento de matemáticas ahora está ofreciendo Cal 1 en 4 módulos. Los 
estudiantes establecerán su paso individual para cada módulo y. cuando estén listos, 
harán un examen que los llevará al siguiente módulo Los exámenes se aplican una vez 
cada 4 semanas, de modo que un estudiante diligente puede completar los 4 módulos en 
un semestre Después de un par de años con este programa, 20% de los estudiantes com 
pleta el primer módulo a tiempo Los porcentajes para los módulos de! 2 al 4 fueron de 
22,25 y 30%, respectivamente
(a) Exprese el problema como una cadena de Markov
(b) En promedio, un estudiante que inicio el modulo I al principio del semestre actual 

¿será capaz de llevar el módulo II el siguiente semestre? (El Cal I es un prerrequisi 
to para el Cal II)

(c) Un estudiante que haya completado sólo un módulo el semestre anienor ¿será 
capaz de terminar el Cal I al final del semestre actual?

(d) ¿Recomienda aplicar la idea del módulo a otras matenas basteas? Explique
9. En la U de A, la promoción de profesor asistente a profesor asociado requiere el equiva­

lente de cinco puntos (años) de desempeño aceptable Se realizan revisiones de desem­
peño una vez al año, y el candidato recibe una calificación promedio, una buena califica­
ción o una calificación excelente Una caliíicaaon promedio equivale a estar a prueba, el 
candidato no gana puntos hacia la promoción Una buena calificación equivale a ganar

en

buena calificación, el resto obtiene una calificación excelente

un punto, y una calificación excelente suma dos puntos. Las estadísticas muestran que 
cualquier año 10% de los candidatos obtienen una calificación promedio y 70% una

(a) Exprese el problema como una cadena de Markov
(b) Determine el promedio de años hasta que un nuevo profesor asistente sea promovido 

10. Pftfer and Carraway (2000) Una compañía busca sus clientes por medio de publicidad
enviada por correo Durante el primer año, la probabilidad de que un cliente realice una 
compra es de la cual se reduce a 4 en el año 2,de 3 en el año 3, y de 2 en el año 4 Si 
no realiza ninguna compra en cuatro años consecutivos, el cliente es borrado de la lista 
de correo Si hace una compra la cuenta regresa a cero
(a) Exprese la situación como una cadena de Markov
(b) Determine el numero esperado de años que un cliente nuevo permanecerá en la 

lista de correo
(c) Si un cliente no ha realizado una compra en dos años determine el numero esperado 

de años que estará en la lista de correo
Una máquina NC está diseñada para que funcione adecuadamente con voltajes de 108 a 
112 volts. Si el voltaje se sale de este intervalo, la maquina se detiene El regulador de vol- 
taje de la míquma puede detectar variaciones en incrementos de un volt La expcnencin 
muestra que el voltaje cambia cada 15 minutos. Dentro del intervalo permisible (118 a 
112 volts) el voltaje puede subir 1 volt, permanecer igual, o bajar un volt, lodos con igua- 
les probabilidades.
(a) Exprese la situación como una cadena de Markov
(b) Determine la probabilidad de que la máquina se detenga a causa de un voltaje bajo

(e) °Cuál s™'(a d voUaje ideal que haría que la máquina trabaje durante más tiempo?
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12. Considere el problema 4, conjunto 17 la, que tiene que ver con los pacientes que sufren
de falla de nnon Determine las siguientes medidas
(a) Cuantos años puede un paciente permanecer sometido a diálisis.
(b) La longevidad de un paciente que inicia un tratamiento de difilisis.
(c) La esperanza de vida de un paciente que sobrevive al menos un ano o mas después 

de un trasplante
(d) El numero esperado de anos antes de que un trasplantado que sobrevivió al menos 1 

año regrese a la diálisis o muera
(e) La calidad de vida para los que sobreviven un ano o mas después de un trasplante 

(presumiblemente, pasar pocos años con diálisis significa una mejor calidad de \ida)
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CAPITULO 18 

Sistemas de colas

Aplicación de la vida real Estudio de un sistema de transporte
interno en una planta de manufactura

En una planta de manufactura se utilizan tres camiones para transportar materiales. 
Los camiones esperan en un lote central de estacionamiento hasta que se les solicita Un 
camión que responde a una solicitud viajará a las instalaciones del cliente transportara 
una carga a su destino, y luego regresara al lote central Los departamentos principales 
que utilizan el servicio son el de producción taller de reparaciones, y el departamento 
de mantenimiento Los usuarios se han quejado por el largo tiempo que esperan a que 
se desocupe un camión, en especial e! departamento de producción para solicitar que se 
agregue un cuarto camión a la flotilla Esta es una aplicación inusual, porque la teoría 
de colas se utiliza para demostrar que la causa de los largos retrasos es principalmente 
logística, y que con un simple cambio del procedimiento de operación de la Dotilla de 
camiones no se requiere un cuarto camión El caso 14 del capitulo 26, en el sitio web, 
detalla el estudio

18 1 ¿POR QUÉ ESTUDIAR LAS COLAS?

Esperar que nos atiendan es parte de la vida diana Esperamos en los restaurantes, ha 
cemos fila para abordar un avión, y nos formamos en la cola para que nos atiendan en 
dependencias oficiales El fenómeno de esperar no se limita a los seres humanos los 
trabajos esperan para ser procesados, los aviones vuelan en circuios a diferentes alturas 
hasta que se les permite aterrizar, y los autos se detienen en los semáforos. Eliminar la 
espera por completo no es una opción factible debido a que el costo de instalación y 
operación del centro de operación puede ser prohibitivo Nuestro único recurso es bus 
car el equilibrio entre el costo de ofrecer un servicio y el de esperar a que lo atiendan 
El análisis de las colas es el vehículo para alcanzar esta meta

El estudio de las colas tiene que ver con la cuanüficacion del fenómeno de esperar por 
medio de medidas de desempeño representativas, tales como longitud promedio de la cola 
tiempo de espera promedio en la cola, y el uso promedio de la instalación El siguiente cjem 
pío demuestra cómo pueden usarse estas medidas para diseñar una instalación de servicio

593
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Ejemplo 18.1-1

McBurger es un restaurante de comida rapida con tros mostradores de servicio El gerente desea 
agilizar el servicio Un estudio revela la siguiente relación entre la cantidad de mostradores y cí 
tiempo de espera para el servicio

Cantidad de cajeros 1 2 3 4 5 6 7

Tiempo de espera promedio (mm) 16 2 103 69 48 29 1 9 U

Un examen de estos datos revela un tiempo de espera promedio de 7 minutos en la situación 
actual de tres mostradores. Cinco mostradores reducirían la espera a 3 minutos aproximadamente

Modelo basado en costos. Los resultados del análisis de colas puede incorporarse a un 
modelo de optimización de costos que busca minimizar la suma de! costo de ofrecer el 
servicio y la espera por parte de los dientes. La figura 18.1 ilustra un modelo de costos 
típico (en dólares por unidad de tiempo) donde el costo del servicio se incrementa con 
el aumento de! nivel de servicio (por ejemplo la cantidad de mostradores de servicio). 
Al mismo tiempo, el costo de esperar se reduce con el incremento del nivel de servicio 

El obstáculo principal al implementar modelos de costos es la dificultad de de­
terminar el costo de la espera, sobre todo la que experimentan las personas. Este punto 
se analiza en la sección 18.9

CONJUNTO DE PROBLEMAS 18.1A

*1. Suponga que un análisis más a fondo del restaurante McBurger revela los siguientes re­
sultados'

Cantidad de cajeros I 2 3 4 5 6 7

Inactividad (%) 0 8 12 18 29 36 42

FIGURA 18 1
Modelo de decisión de colas basado 
en costos
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18.2

(o) ¿.Cuál es la produchvidad de la operación (expresada como el porcentaje del tiempo 
que los empleados están ocupados) cuando el numero de cajeros es cinco?

(b) El gerente desea mantener el tiempo de espera promedio en alrededor de 3 minutos 
y. al mismo tiempo mantener la encicncia de la instalación aproximadamente a 
90% ¿Pueden alcanzarse las dos metas ^ Explique

2. Acme Metal Jobshop se encuentra en el proceso de comprar un taladro vertical dt usos 
multiples. Dos modelos,/! y 5, están disponibles con costo de operación por hora de $18 
y $25, respectivamente El modelo A ts más lento que el modelo B El análisis de colas de 
máquinas similares muestra que cuando se utiliza/I. el numero promedio de trabajos en 
la cola es 4, el cual es 30% mayor que el tamaño de la cola en B Un trabajo retrasado re 
presenta un ingreso perdido el que Acmé estima en $10 por trabajo en espera por hora 
¿Cuál modelo debe comprar Acmé?

ELEMENTOS DE UN MODELO DE COLAS
Los actores pnncipaies en una situación de colas son el cliente y el servidor Los clien­
tes llegan a una instalaaón (servicio) desde de una fuente AI llegar, un cliente puede 
ser atendido de inmediato o esperar en una cola si la instalación está ocupada Cuando 
una instalación completa un servicio, “jala" de forma automática a un cliente que esta 
esperando en la cola, si lo hay Si la cola está vacía, la instalación se vuelve ociosa hasta 
que llega un nuevo cliente

Desde el punto de vista del análisis de colas, la llegada de los clientes está repre 
sentada por el tiempo entre llegadas (tiempo entre llegadas sucesivas), y el servicio se 
mide por el tiempo de servicio por cliente Por lo general, los tiempos entre llegadas y 
de serviao son probabilísticos (por ejemplo, la operación de una dependencia ofícial) 
o detcrminísticos (digamos la llegada de solicitantes para una entrevista de trabajo o 
para una cita con un médico)

El tamaño de la cola desempeña un papel en el análisis de colas. Puede ser finito 
(como en el área intermedia entre dos máquinas sucesivas), o, para todos los propósi­
tos prácticos, infinita (como en las instalaciones de pedidos por correo)

La disciplina en colas, la cual representa el orden en que se seleccionan los clien­
tes en una cola, es un factor importante en el análisis de modelos de colas. La disciph- 

i^na más común es la de primero en llegar, primero en ser atendido (FCFS, por sus siglas 
'^n inglés) Entre otras disciplinas esta ultimo en llegar primero en ser atendido (LCFS, 
por sus siglas en inglés) y la de servicio en orden aleatorio (SIRO, por sus siglas en 
inglés) Los clientes también pueden ser seleccionados de entre la cola, con base en algún 
orden de prioridad Por ejemplo, los trabajos urgentes en un taller se procesan antes 
que los trabajos regulares

El comportamiento en colas desempeña un papel en el análisis de líneas de espe­
ra Los clientes pueden cambiarse de una cola mas larga a una más corta para reducir 
el tiempo de espera, pueden desistir del todo de hacer cola debido a la larga tardanza 
anticipada, o salirse de una cola porque han estado esperando demasiado

El diseño de la instalación de servicio puede incluir servidores paralelos (por 
ejemplo la operación de una dependencia oFicial o un banco) Los servidores también 
pueden estar dispuestos en sene (a saber, los trabajos procesados en máquinas sucesi­
vas) o estar dispuestos en red (como los ruteadores en una red de computadoras)

La fuente de la cual se generan los clientes puede ser finita o infinita Una fuente fi­
nita limita la cantidad de clientes que llegan (por ejemplo las máquinas que solicitan el 
servicio de un técnico en mantenimiento) Una fuente infinita es,para todo propósito prác 
tico, por siempre abundante (como las llamadas que entran a un conmutador telefónico)
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Las variaciones en los elementos de una situación de colas originan vanos mode­
los de colas matemáticos. Este capítulo proporciona ejemplos de dichos modelos. Las 
situaciones de colas complejas que no pueden representarse matemáticamente se sue­
len analizar por medio de simulación (vea el capítulo 19)

CONJUNTO DE PROBLEMAS 18.2A

1. En cada una de las siguientes situaciones, identifique al cliente y al servidor 
*(a) Aviones que llegan a un aeropuerto
*(b) SiUo de laxis que atiende a pasajeros que esperan.
(c) Herramientas venficadas en un taller de maquinado
(d) Cartas procesadas en una oficina postal
(c) Inscnpción para clases en una universidad
(f) Casos en cortes legales.
(g) Operación de pagar en un supermercado 

*(h) Operación de un estacionamiento
2. Para cada una de las situaciones en el problema 1. identifique lo siguiente (a) la natura­

leza de la fuente solicitante (finita o infinita); (b) la naturaleza de los clientes que llegan 
(individualmente o en masa); (c) el tipo del tiempo entre llegadas (probabilistico o deter- 
mmíslico); (d) la definición y el tipo del tiempo de servicio; (0 la capacidad de la cola (fi­
nita o infinita), y (g) disciplina en las colas.

3. Estudie el siguiente sistema c identifique las situaciones de colas asociadas. En cada si­
tuación. defina los clientes, el(los) servidor(es), la disciplina en colas, el tiempo de servi­
cio, la longitud máxima de la cola y la fuente solicitante

En un taller se reciben órdenes de trabajo para ser procesadas. Cuando las recibe,c! 
supervisor decide si es un trabajo urgente o regular Algunas órdenes requieren el uso de 
una o de vanas máquinas idénticas Las órdenes restantes se procesan en una línea de 
producción de dos etapas, de la cual dos están disponibles. En cada grupo, se asigna una 
instalación para manejar los trabajos urgentes.

Los trabajos que llegan a cualquier instalación se procesan en el orden en que lle­
gan Las órdenes terminadas se envían en cuanto llegan de una zona de envío de capaci­
dad limitada

Las herramientas afiladas para las diferentes máquinas se abastecen desde un depó­
sito central de herramientas. Cuando una máquina se avería, se solicita una técnico en 
mantenimiento del centro de servicio para que la repare Las máquinas que procesan ór­
denes urgentes reciben prioridades tanto en la adquisición de herramientas nuevas del 
depósito como en el servicio de reparación

4. ¿Cierto o falso?
(a) Un cliente impaciente que espera puede salirse de la cola
(b) Si se anüapa un largo tiempo de espera, un cliente que llega puede desistir de hacer cola
(c) Cambiarse de una cola a otra tiene por objeto reducir el tiempo de espera.

5. En cada una de las situaciones descritas en el problema 1, analice la posibilidad de que 
los clientes se cambien de cola, desistan de hacer cola o se salgan de una.

18.3 PAPEL DE LA DISTRIBUCIÓN EXPONENCIAL

En la mayoría de las situaciones de colas, las llegadas ocurren al azar. Alealoriedad sig* 
nlfica que la ocurrencia de un evento (por ejemplo la llegada de un cliente o la termi­
nación de un servicio) es independiente del tiempo transcurrido desde la ocurrencia 
del último evento
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Los tiempos aleatorios entre llegadas y de seiA'icio se describen cuantitativamen 
te por medio de una distribución exponencial, la cual se define como

/(O = Áe~\ t > 0

La sección 12 4 3 demuestra que para la distribución exponencial

íi'i = i
P{l ^T\ = jÁe-"dl =

0

La deñnición de E{i) muestra que A es la tasa por unidad de tiempo a la cual se gene­
ran los eventos (llegadas o salidas)

La distribución exponencial describe un fenómeno ¡oialmcnie aleatorio Por 
ejemplo, si en este momento la hora es 8 20 a.m y la ultima llegada fue a las 8 02 a m , 
la probabilidad de que la siguiente llegada ocurra a las 8 29 es una función solo del in­
tervalo de las 8 20 a las 8 29, y es totalmente independiente del tiempo que ha transcu 
rrido desde la ocurrencia del ultimo evento (8 02 a 8 20)

La propiedad totalmente aleatoria de la exponencial se conoce como olvido o 
falla de memoria Dado que/(/) es la distribución exponencial del tiempo /, entre even 
tos sucesivos (llegadas), si S es el intervalo desde la ocurrencia del último evento, en­
tonces la propiedad de olvido implica que

P{í>7' + 5|/>5} = /^lí>r)

Para comprobar este resultado, observamos que para la exponencial con media \,

P|/ > y) = 1 - P[l < y) =

Por lo tanto.

P{f>T + 5|r > 5}
> y + 5, f > 5) 

P{í > 51
g-A(r+5)

= P{t > T]

p(/ > r + 5} 
P\t > 5)

Ejemplo 18.3-1
Una máquina de servicio cuenta con una unidad dt respaldo para su reemplazo inmediato si 
ocurre una falla El tiempo para que falle la máquina (o su unidad de respaldo) es exponencial 
y ocurre cada S horas en promedio El operador de máquina afirma que ésta “tiene el hábito” de 
fallar cada noche alrededor de las 8 30 pm Analice la afirmación del operador

La tasa de fallas promedio de la máquina es A = ] = 2 fallas por hora Por lo tanto, la dis 
tribución exponencial del tiempo para una falla es

/(O = 2i--^ < > 0
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Con respecto a la anrmación dtl operador sabemos sm pensarlo que no puede ser cierta 
porque entra en conflicto con el hecho de que el tiempo entre aserias es exponencial y por con 
siguiente, totalmente aleatono La probabilidad de que ocurra una falla a las 8 30 l’M no puede 
usarse para sustentar o refutar la aFirmacion del operador, porque el valor de tal probabilidad 
depende de la hora (con respecto a las 8 30 PM ) a la cual se calcule Por ejemplo, si en este mo 
mentó son las 8 30 pm , entonces hay una baja probabilidad de que la afirmación del operador 
sea correcta, es decir,

p(< <m} = I - = 03278

Si la hora en este momento es la 1 00 pm .entonces la probabilidad de que ocurra una falla a las 
8 30 PM se incrementa a aproximadamente 777 ([Compruébelo') Estos dos valores extremos 
muestran que la afirmación del operador no es cierta

CONJUNTO DE PROBLEMAS 18 3A

1. (a) Explique su conocimiento de la relación entre la tasa de llegadas A y el tiempo entre
llegadas promedio ¿Cuáles son las unidades que desenben cada vanable'^

(b) En cada uno de los siguientes casos, determine la tasa de llegadas promedio por 
hora. A. y el tiempo entre llegadas promedio en horas.

*(i) Cada 10 minutos ocurre una llegada 
(ii) Cada 6 minutos ocurren dos llegadas.
(ui) La cantidad de llegadas en un periodo de 30 minutos es de 10 
(iv) El intervalo promedio entre llegadas sucesivas es de 5 horas.

(c) En cada uno de los siguientes casos, determine la tasa de servicio promedio por 
hora, fi, y el tiempo de servicio promedio en horas.

•(i) Se completa un servicio cada 12 minutos.
(ü) Cada 15 minutos ocurren dos salidas.
(ni) La cantidad de clientes atendidos en un periodo de 30 minutos es de 5 
(iv) El tiempo promedio de servicio es de 3 horas.

2. En el ejemplo 183 1, determine lo siguiente
(a) El promedio de fallas en una semana, suponiendo que el servicio se ofrece las 24 

horas del día, 7 días a la semana
(b) La probabilidad de al menos una falla en un periodo de 24 horas.
(c) La probabilidad de que la siguiente falla no ocurra dentro de 3 horas.
(d) Si no ha ocurrido ninguna falla 3 horas después de la ultima falla, ¿cuál es la proba­

bilidad de que el tiempo entre fallas sea al menos de 4 horas*’
3. El tiempo entre llegadas a la Oficina Estatal de Hacienda es exponencial, con valor 

medio de ÜS horas La oficina abre a las 8 00 a M
•(a) Escriba la distribución exponencial que describe el tiempo entre llegadas.
*(b) Encuentre la probabilidad de que no lleguen clientes a la oficina alrededor de las 

8 15 AM
(c) En este momento son las 8 35 a M El ultimo cliente llegó a la oficina a la 8 26 ¿Cual 

es la probabilidad de que el siguiente cliente llegue antes de las 8 38 a m ?, ¿de que 
no llegue alrededor de las 8 40 A m ?

(d) ¿Cuál es e! promedio de clientes que llegan entre las 8 10 y las 8 45 A M ?
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4. Suponga que el tiempo promedio entre fallas de una maquina es exponencial con una 
media de 6 horas. Si la mJquina ha funcionado sin fallar durante las ultimas 3 horas, ¿cual 
es la probabilidad de que siga funcionando sm fallar durante la siguiente hora*’, ¿de que 
se averíe durante la siguiente 5 hora?

5. El tiempo entre llegadas al salón de juegos en la unión estudiantil es exponencial con una 
media de 10 minutos
(a) ¿Cual es la tasa de llegadas por hora'’
(b) ¿Cual es la probabilidad de no que lleguen estudiantes al salon de juegos durante los 

siguientes 15 minutos'’
(c) ¿Cual es la probabilidad de que al menos un estudiante visite el salón de juegos du­

rante los siguientes 20 minutos?
6. El gerente de un nuevo restaurante de comida rápida desea cuantificar el proceso de lie 

gadas de clientes estimando la fracción de los intervalos de tiempo entre llegadas que 
scran (a) de menos de 2 minutos, (b) entre 2 y 3 minutos, y (c) de mas de tres minutos.
Las llegadas en restaurantes similares ocurren a razón de 35 clientes por hora El tiempo 
entre llegadas esta distribuido cxponencialmente

*7. Ann y Jim, dos empleados en un restaurante de comida rápida, efectúan el siguiente 
juego mientras esperan que lleguen clientes Jim le paga a Ann 2 centavos si el siguiente 
cliente no llega dentro de 1 minuto, de lo contrario, Ann le paga a Jim 2 centavos. 
Determine la ganancia promedio de Jim en un periodo de 8 horas. El tiempo entre llega­
das es exponencial con media de 1 5 minutos.

8. Suponga que en el problema 7 las reglas del juego son tales que Jim le paga a Ann 2 cen­
tavos SI el siguiente cliente llega después de 1 5 minutos, y Ann le paga a Jim una canti 
dad Igual si la siguiente llegada ocurre dentro de 1 minuto Para llegadas dentro del inter­
valo de 1 a 1 5 minutos, el juego es un empate Determine la ganancia esperada de Jim en 
un periodo de 8 horas.

9. En el problema 7. suponga que Ann le paga a Jim 2 centavos si la siguiente llegada ocurre 
dentro de 1 minuto, y 3 centavos si el tiempo entre llegadas es entre 1 y 1 5 minutos. Ann 
recibe de Jim 5 centavos si e! tiempo entre llegadas es entre 1 5 y 2 minutos, y 6 centavos si 
es de mas de 2 minutos. Determine la ganancia esperada de Ann en un periodo de 8 horas.

*10. Un cliente que llega a un restaurante de comida rápida McBurger dentro de 4 minutos 
del cliente inmediatamente antenor recibirá 10% de descuento Si el tiempo entre llega­
das es de entre 4 y 5 minutos, el descuento es de 6% Si el tiempo entre llegadas es de 
más de 5 minutos, el cliente obtiene 2% de descuento El tiempo entre llegadas es expo­
nencial con una media de 6 minutos
(a) Determine la probabilidad de que un cliente que llega reciba 10% de descuento
(b) Determine el descuento promedio por cliente que llega

11. Se sabe que el tiempo entre fallas de un refrigerador Kencore es exponencial con valor 
medio de 9000 horas (aproximadamente 1 año de operación), y la compañía emite una 
garantía de 1 año sobre el refrigerador ¿Cuales son las probabilidades de que la repara­
ción de una falla sea cubierta por la garantía*’

12. La U de A opera dos lineas de autobuses en el campus roja y verde La línea roja presta 
servicio al norte del campus, y la verde al sur del campus, con una estación de transferen­
cia que une las dos rutas. Los autobuses verdes llegan al azar (tiempo entre llegadas ex 
ponencial) a la estación de transferencia cada U) minutos. Los autobuses rojos también lo 
hacen al azar cada 7 minutos.
(a) ¿Cuál es la distribución de probabilidad del tiempo de espera de un estudiante que 

llega en la línea roja para abordar la línea verde?
(b) ¿Cuál es la distnbucion de probabilidades del tiempo de espera de un estudiante 

que llega en la línea verde para abordar la línea roja’’
13. Demuestre que la media y la desviación estándar de la distribución exponencial son iguales.
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18.4 MODELOS DE NACIMIENTO Y MUERTE PUROS (RELACIÓN ENTRE LAS 
DISTRIBUCIONES EXPONENCIAL Y DE POISSON)

Esta sección presenta dos situaciones de colas, el modelo de nacimiento puro en el cual 
sólo ocurren llegadas, y el modelo de muerte pura en el cual sólo ocurren salidas. Un 
ejemplo del modelo de nacimiento puro es la creación de actas de nacimiento de bebes 
recién nacidos. El modelo de muerte pura puede demostrarse por medio del retiro 
aleatorio de un artículo en existencia en una tienda.

La distribución exponencial se utiliza para describir el tiempo entre llegadas en 
el modelo de nacimiento puro y el tiempo entre salidas en el modelo de muerte pura 
Un subproducto del desarrollo de los dos modelos es demostrar la estrecha relación 
entre las distnbuciones exponencial y la de Poisson, en el sentido de que una distnbu- 
aón define automáticamente a la otra

18.4.1 Modelo de nacimiento puro 

Defina

Pa{i) = Probabilidad de que no ocurran llegadas durante un penodo de tiempo i

Dado que el tiempo entre llegadas es exponencial y que la lasa de llegadas es de A 
clientes por unidad de tiempo, entonces

PoiO = P{tiempo entre llegadas ^ r)

- 1 — Fjtiempo entre llegadas ^ /}

= l-Cl-e“^)

= c~^’

Para un interx'alo de tiempo suficientemente pequeño h > 0, tenemos

p„{/¡) = = 1 - A/i + = 1 - A/, + 0(/r)

La distribución exponencial se basa en la suposición de que durante h > 0, cuando 
mucho puede ocurrir un evento (llegada) Por lo tanto, a medida que h -* 0,

P|(/l) = 1 - /7o(/í) = A/i

Este resultado muestra que la probabilidad de una llegada durante h es directamente 
proporcional a /;, con la tasa de llegadas. A, como constante de proporcionalidad

Para derivar la distribución de la cantidad de llegadas durante un penodo l cuan­
do el üempo entre llegadas es exponencial con media {, defina

P/iU) ~ Probabilidad de n llegadas durante /

Para un /i > 0 suficienlenicnle pequeño,

PnU + fi) = P„(r){I-A/i) + /! > 0

Piiír + f>) ^ p„(/)(l - A/j), n = o
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En Id primera ecuación habrá n llegadas durante / + /j si hay ii llegadas durante t y 
ninguna llegada durante h, o n - l llegadas durante i y una llegada durante h No se 
permiten todas las demás combinaciones porque, de acuerdo con la distribución expo­
nencial. a lo sumo puede haber una llegada durante un periodo li muy pequeño La ley 
del producto de las probabilidades es aplicable al lado derecho de la ecuación porque 
las llegadas son independientes En cuando a la segunda ecuación, durante t + h puede 
haber cero llegadas sólo si no hay llegadas durante r y h.

Reacomodando los términos y tomando los límites a medida que /i —* 0 para ob­
tener la primera denvada de p„(i) con respecto a r, tenemos

P'ÁO = Ito ^ = -Ap„(I) + Ap„_i((). n > 0

pIM lím
/i—i)

Pü(( - h) - /7q(0
h

= -A/?o(r). /I = 0

La solución de las ecuaciones diferenciales anteriores da

Pn(l) =
(A/)''c>-"

n!
n 0,1,2,...

Ésta es una distribución de Poisson con media £{/i|t) = Áí de llegadas durante i
El resultado anterior muestra que si el tiempo entre llegadas es exponencial con 

media entonces la cantidad de llegadas durante un periodo específico t es Poisson 
con media \t. Lo contrario también funciona.

La siguiente tabla resume las relaciones entre las distribuciones exponencial y de 
Poisson, dada la tasa de llegadas A'

Exponencial Poisson

Variable alcalona Tiempo entre llegadas Caiitulail de llegadas n. durante
sucesivas,! un penodo de tiempo específico T

Intervalo 1 s 0 tt = 0.1,2,

Función de densidad /(O = Af-", I E 0 PÁT)- .«-11,1.2.

Valor medio ^ unidades de tiempo Abnegadas durante T

Probabilidad .icumulada P{t £ /i| = 1-e'*'' P,-MT) = P«I.T) + P,(T) + +p,(n
P|No llegadas durante el periodo /t) P\t > A\ = f"*'' pM) -

Ejemplo 18.4*1

En una ciudad grande nacen bebes a razón de uno cada 12 minutos. El tiempo entre nacimientos 
sigue una distribución exponencial Determine lo siguiente

(a) La cantidad promedio de nacimientos por año
(b) La probabilidad de que no ocurran nacimientos durante 1 día
(c) La probabilidad de emitir .50 actas de nacimiento en 3 horas dado que se emitieron 

40 actas durante las primeras 2 horas del periodo de 3 horas.
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La tasa de natalidad por día se calcula como 
24 X 60A - —— = 120 nacimientos/ano 

Por lo tanto, la cantidad de nacimientos por año en el estado es

Ai = 120 X 365 = 43 800 nacinuentos/año

La probabilidad de que no ha>a nacimientos durante 1 día es

MD
(120 X ^ ^ ^

0*
Otra forma de calcular la misma probabilidad es observar que si no ha> ningún nacimiento en 
cualquier día equivale a decir que el itcnipo cnirc mciniiuitos v«cfsn os es de mas de un día Por 
lo tanto podemos utilizar la distribución exponencial para calcular la probabilidad deseada como 

P|í>Il = e“'-" = 0

Debido a que la distnbucion de la cantidad de nacimientos es Poisson, la probabilidad de emitir 
50 actas de nacimiento en 3 horas, dado que se emitieron 40 actas durante las primeras 2 horas, 
equivale a tener 10(= 50 - 40) nacimientos en una hora { = 3 - 2),es decir.

Piü(l) = íoi 01813

Momento de Excel

Los cálculos asociados con la distribución de Poisson y, de hecho, todas las fórmulas de colas son 
tediosas y requieren habilidades de programación para asegurar una precisión razonable 
Podemos utilizar las funciones POISSON POISSONDIST y EXPONDIST de Excel para calcu­
lar las probabilidades individuales y acumuladas de Poisson y exponencial Estas funciones tam­
bién se automatizan en excelTables xls Por ejemplo, para un nacimiento de 5 bebés por hora, la 
probabilidad de exactamente 10 nacimientos en 5 horas se calcula ingresando 2 5 en F16 y 10 en 
J16 para obtener la respuesta 000216 en M16 La probabilidad acumulada de cuando nuicho 10 
nacimientos se da en 016 (= 999938) Para determinar la probabilidad de que el tiempo entre 
nacimientos sea menor que o igual a 18 minutos, use la distribución exponencial ingresando 2 5 
cnF9y 3enJ9 La respuesta 527633 aparece en 09

Momento de TORA/Excel

También podemos utilizar TORA (archivo loraExIS 41 ixi) o la plantilla cxcelPoissonQ xls para 
determinar de forma automática todas las probabilidades de Poisson significativas (> 10"^ 
TORA y > 10 ^ en Excel) En ambos casos, los datos de entrada son los mismos Para el mode­
lo de nacimiento puro del ejemplo 18 4-1, los datos son los siguientes

Lambda Mu c Límite del sistema Límite de la fuente

5 0 0 iníínito infínilo

Observe la entrada bajo Lambda A/ — 5 X 1 = 5 nacimientos por día Observe también que Mu -* 
identifica el modelo como nacimiento puro
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CONJUNTO DE PROBLEMAS 18.4A

*1. En el ejemplo 18 4-1, suponga que el oficmisla que captura la información de las ¿.las de 
nacimicnlo en la computadora normalmente espera hasta que se juntan al menos uctas. 
Determine la probabilidad de que el oncimsla capture un nuevo lote cada hora

2. Un coleccionista de arte viaja a subastas de arte una \ez al mes en promedio Cada viaje 
es seguro que produzca una compra El tiempo entre viajes esta exponcncialmente distn- 
buido Determine lo siguiente
(a) La probabilidad de que se realice una compra en un periodo de 3 meses.
(b) La probabilidad de que se realicen no mas de 8 compras por año
(c) La probabilidad de que el tiempo entre viajes sucesivos exceda de 1 mes.

3. En un banco. la tasa de llegadas es de 2 clientes por minuto Determine lo siguiente
(a) El promedio de llegadas durante 5 minutos.
(b) La probabilidad de que no ha>a llegadas durante los siguientes 5 minutos.
(c) La probabilidad de que haya al menos una llegada durante los siguientes 5 minutos.
(d) La probabilidad de que el tiempo entre dos llegadas sucesivas sea al menos de 3 minutos. 

4 El tiempo entre llegadas en el restaurante L«LJ es exponencial con media de 5 minutos.
El restaurante abre a las 11 00 a m Determine lo siguiente 

*(u) La probabilidad de tener 10 llegadas en el restaurante alrededor de las 11 12 a M , 
dado que 8 clientes llegaron a las 11 05 a m

(b) Las probabilidad de que un nuevo cliente llegue entre las 11 28 y las 11 33 a m . si el 
ultimo cliente llego a las II 25 a m

5. La biblioteca publica de Springdale recibe nuevos libros de acuerdo con una distribución 
de Poisson con media de 25 libros por día Cada anaquel en l>i estantería contiene 100 li­
bros. Determine lo siguiente
(u) El promedio de anaqueles que se llenaran de nuevos libros cada mes (30 días)
(b) La probabilidad de que se requieran mas de 10 libreros cada mes, st un librero se 

compone de 5 anaqueles.
6. La U de A opera dos líneas de autobuses en el campus roja y verde La línea roja presta 

servicio al norte del campus y la línea verde presta servicio al sur del campus con una es 
tacion de transferencia que conecta las dos líneas. Los autobuses verdes llegan al azar (de 
acuerdo con una distribución de Poisson) a la estación de transferencia cada 10 minutos 
Los autobuses rojos también llegan al azar cada 7 minutos.

*(a) ¿Cual es la probabilidad de que los dos autobuses (rojo y verde) se detengan en la 
estación durante un intervalo de 5 minutos/

(b) Un estudiante cuyo dormitorio esta cerca de la estación tiene clase en 10 minutos. 
Cualquiera de los autobuses lo lleva al edificio del salon de clases. El viaje requiere 5 
minutos, despuós de lo cual el estudiante camina durante aproxiniadamentc 3 minu 
tos para llcgar al salon de clase ¿Cual es la probabilidad de que el estudiante llegue 
a tiempo a clase/

7. Pruebe que la media y la varianza de la distribución de Poisson durante un intervalo t es 
Igual a A/, donde A es la tasa de llegadas.

8. Denve la distribución de Poisson a partir de las ecuaciones diferenciales del modelo de 
nacimiento puro Sugereitua La solución de la ecuación diferencial general

>' -f- <!(/)> = h{t)

es
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18.4.2 Modelo de muerte pura

En el modelo de muerte pura, el sistema se inicia con N clientes en el instante 0, sin lle­
gadas nuevas permitidas. Las salidas ocurren a razón de m clientes por unidad de tiem­
po Para desarrollar las ecuaciones diferenciales de la probabilidad p„{t) de que n clien­
tes permanezcan después de t unidades de tiempo, seguimos los argumentos utilizados 
con el modelo de nacimiento puro (sección 18 4-1) Por lo tanto.

PAl + h) = P;v{0(l -

p„(í + h) = /?„(í){l - WO + </i <

Pa(t + It) = Ai(0(l) + PiiOpfi 

A medida que h —* 0, obtenemos

Px(0 = -P-Ps{i)

p«(0 = “MPn(0 + MP«+i(0.0 < /!< yv 

Pü(0 =

La solución de estas ecuaciones da la siguiente distribución de Poisson Iruncuda:

pM

PaO)

{W - «)! ’ "

1 - i A,(0

1,2,. ,,N

Ejemplo 18.4-2

Una florería inicia cada semana con 18 docenas de rosas. En promedio, la florería vende 3 doce­
nas al día (una docena a la vez), pero la demanda real sigue una distribución de Poisson Siempre 
que el nivel de las existencias se reduce a 5 docenas.se coloca un nuevo pedido de 18 nuevas do­
cenas para entrega al principio de la siguiente semana Debido a la naturaleza de la mercancía, 
las rosas sobrantes al final de la semana se desechan Determine lo siguiente

(a) La probabilidad de colocar un pedido cualquier día de la semana
(b) El promedio de rosas desechadas al Hnat de la semana.

Debido a que las compras ocurren a razón de /x = 3 docenas por día, la probabilidad de co­
locar un pedido al final del día i es

Po(0 + Pi(r) + • + ps(t)
5

Po(0 + S
¡ft'i (18-/I)' 7

Los cálculos de p„^s(í) se realizan mejor si se uiili/a excclPoissoiiQ xls o TORA Los múltiples 
escenarios de TORA pueden ser mas convenientes en este caso Los dalos de entrada asociados 
en el caso del modelo de muerte pura correspondientes a t = 1.2,. ..y 7 son Lambda = 0, Mu * 
3r, c = 1, Límite del sistema = 18, y Límite de la fuente = 18. Observe que i debe ser sustituido 
numéricamente como se muestra en el archivo loraExlS 4-2 ixl.
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Los resultados se resumen como sigue

r(días) 1 2 3 4 5 6 7
3 6 9 12 15 18 21

Pn^sU) 0000 0088 1242 4240 7324 9083 9755

El promedio de rosas desechadas al final de la semana (t = 7) es E\n\t = 7) Para calcular 
este valor necesitamos p„(7). n = 0,1.2, , 18, el cual puede determinarse con el software pro 
porcionado El resultado es

IH
E(/i[f = 7) = — 664 « una docena

n-O

CONJUNTO DE PROBLEMAS 18.4B

1. En el ejemplo 18 4-2, use la plantilla excelPotssotxQ xls o TORA para calcular p„(7), n = 
1,2, , 18,y luego venfique manualmente que estas probabilidades den ZT{»i|f = 7) = 664 
docenas.

2. Considere el ejemplo 18 4-2 En cada uno de los siguientes casos, primero esenba la res­
puesta algebraicamente, y luego utilice excelPoissonQ xls o TORA para dar las respues­
tas numéricas.

*(q) La probabilidad de que las existencias se agoten después de 3 días.
(b) El promedio de docenas de rosas sobrantes al final del segundo día

*(c) La probabilidad de que se compre al menos una docena al final del cuarto día, si la 
ultima docena se compró al final del tercer día

(d) La probabilidad de que el tiempo que falta para la siguiente compra es cuando 
mucho de un medio día, dado que la ultima compra se realizó el día anlenor

(c) La probabilidad de que no se realicen compras durante el primer día
(0 La probabilidad de que no se coloque ningún pedido al final de la semana

3. La banda de la preparatoria de Springdale va a ofrecer un concierto de beneficio en su 
nuevo auditorio de 400 asientos. Las empresas locales compran ios boletos en bloques de 
10 y los donan a organizaciones juveniles. Los boletos se ponen a la venia para empresas 
durante 4 horas sólo un día antes del concierto El proceso de colocar pedidos de boletos 
es Poisson con una media de 10 llamadas por hora Los (bloques de) boletos que sobran 
despuís de que se cierra la oficina se venden con descuento como ‘boletos baratos de ul­
tima hora”, una hora antes de que se inicie el concierto Determine lo siguiente
(a) La probabilidad de que sera posible comprar boletos baratos de ultima hora
(b) El promedio de boletos baratos de última hora disponibles.

4. Cada mañana, el refrigerador en un pequeño taller se encuentra abastecido con dos cajas 
(24 latas por caja) de refrescos para los 10 empleados del taller Los empleados pueden 
apagar su sed a cualquier hora durante el día de trabajo de 8 horas (8 00 a m a 4 (X) l'M ) 
y se sabe que cada empleado consume aproximadamente 4 latas al día, pero el proceso es 
totalmente aleatorio (distribución de Poisson) ¿Cuúl es la probabilidad de que un em­
pleado no encuentre un refresco al mediodía (el inicio del periodo del almuerzo)?, justo 
antes de que cierre el taller'

*5. Un estudiante recibe un deposito baiicano de $100 al mes desde su casa para que cubra 
gastos imprevistos. Los retiros de $20 cada uno ocurren al azar durante el mes y están es­
paciados de acuerdo con una distribución exponencial con un valor medio de una sema­
na Determine la probabilidad de que el estudiante se quede sin dinero para gastos im­
previstos antes del final de la cuarta semana
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18.5

6. Se sacan 80 arliculos del inventario de acuerdo con la distribución de Poisson a razón de 
5 artículos por día Determine lo siguiente
(a) La probabilidad de que se saquen 10 artículos durante los 2 primeros días.
(b) La probabilidad de que ya no haya artículos al final de los 4 días.
(c) El promedio de artículos sacados a lo largo de un periodo de 4 días.

7. Un taller mecánico se acaba de surtir de 10 parles de repuesto para la reparación de una 
máquina. La reposición de la existencia que regresa el nivel a 10 piezas ocurre cada 7 
días. El tiempo entre fallas es exponencial con media de 1 día. Determine la probabilidad 
de que la máquina permanezca descompuesta durante 2 días porque no hay parles de re­
puesto disponibles.

8. La demanda de un artículo ocurre de acuerdo con una distribución de Poissson con 
media de 3 por día El nivel de existencia máximo es de 25 artículos, lo cual ocurre cada 
lunes inmediatamente después de que se recibe un pedido El tamaño del pedido depen­
de de la cantidad de unidades sobrantes al final de la semana, el sábado (el negoao está 
cerrado los domingos) Determine lo siguiente.
(a) *EI tamaño semanal promedio del pedido
(b) *La probabilidad de escasez al inicio del negocio el viernes.
(c) La probabilidad de que el tamaño del pedido semanal exceda de 10 unidades.

9. Demuestre que la distribución del tiempo entre salidas correspondiente a la Poisson 
truncada en el modelo de muerte pura es una distribución exponencial con media de ¿ 
unidades de tiempo

10. Derive la distnbución de Poisson truncada a partir de las ecuaciones diferenciales del 
modelo de muerte pura mediante inducción. [Nota. Vea la sugerencia en el problema 8, 
conjunto 18.4a ]

MODELO DE COLAS GENERAL DE POISSON
Esta sección desarrolla un modelo de colas general que combina tanto llegadas como 
salidas con base en la suposición de Poisson, es decir, los tiempos entre llegadas y los 
tiempos de servicio siguen la distnbución exponencial. El modelo es la base para la de­
rivación de los modelos de Poisson especializados en la sección 18.6.

El desarrollo del modelo generalizado se basa en el comportamiento a largo plazo 
o de estado estable de la situación de colas, alcanzado después de que el sistema ha es­
tado en operación durante un tiempo suficientemente largo. Este tipo de análisis con­
trasta con el comportamiento transitorio (o de calentamiento) que prevalece durante el 
inicio de la operación del sistema. (Una razón de por qué no se analiza el comporta­
miento transitorio en este capítulo es su complejidad analítica. Otra es que el estudio de 
la mayoría de las situaciones de colas ocurre en condiciones de estado estable.)

El modelo general asume que tanto las lasas de entrada como de salida depen­
den del estado; lo que significa que dependen de la cantidad de clientes en la instala­
ción de servicio Por ejemplo, en una caseta de cobro en una carretera, los encargados 
tienden a acelerar el cobro de las cuotas durante las horas pico. Otro ejemplo ocurre en 
un taller donde la tasa de descomposturas de las máquinas disminuye a medida que au­
menta el número de máquinas descompuestas (porque sólo las máquinas que están 
funcionando son capaces de generar nuevas descomposturas).

Defina
n = Cantidad de clientes en el sistema (haciendo cola, además de los que están 

siendo atendidos)
A„ = Tasa de llegadas, sí n clientes están en el sistema
fjL„ = Tasa de salidas, si n clientes están en el sistema
Pn ~ Probabilidad de estado estable de que n clientes estén en el sistema
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FIGURA 18 2
Diagrama du transición en colas de Poisson

El modelo general deriva a p„ como una fundón de A„ y Estas probabilidades se utilizan 
entonces para determinar las medidas de desempeño del sistema, como la longitud prome­
dio de las colas, el tiempo de espera promedio, y la utilización promedio de la instaladón.

Las probabilidadesp„ se determinan por medio del diagrama de tusa de transidón 
en la figura 18.2. El sistema de colas está en el estado n cuando el número de clientes en 
el sistema es n. Como se explica en la sección 18.3, la probabilidad de que ocurra más de 
un evento durante un pequeño intervalo ¡i tiende a cero a medida que li —* 0. Esto sig­
nifica que para n > 0, el estado n puede cambiar sólo a dos estados posibles;« - l cuan­
do ocurre una salida a razón de p.„, y « + 1 cuando ocurre una llegada a razón de A„. El 
estado 0 sólo puede cambiar al estado 1 cuando una llegada ocurre a razón de A(j. 
Observe que pq es indefinida porque no pueden ocurrir salidas si el sistema está vacío.

En condiciones de estado estable, para n > 0, las tasas de flujo esperadas de en­
trada y salida del estado n deben ser iguales. Con base en el hecho de que el estado n 
puede cambiar sólo a los estados« - 1 y /i +1, tenemos

/Tasa de flujo de entrada\ 
V esperada al estado n J ^ii-lPn-l "I" M/i+lPn+1

Asimismo,

/Tasa de flujo de sahdaN _ +/x )/?
\ esperada del estado n J “ “ “

Igualando las dos tasas, obtenemos la siguiente ecuación de balanceo 

A„-lP,i-l + P-,i+\Pn+l - P'i¡)Pn^ ” 1,2,... 

Según la figura 18.2, la ecuación de balanceo asociada con n = 0 es

AüPo = PiP\

Las ecuaciones de balanceo se resnelven recursivamente en función de p„ Para 
n = 0, tenemos

Luego, para n = 1, tenemos
AoPo + = (A| + f'l)/’!
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Sustituyendo = (^)po y simplificando, obtenemos (¡compruébelo!)

Podemos demostrar por medio de inducción que

Pu ~ 1 jPO’ 1.2, .
V P-ntJ-n-l Mi /

El valor de po se determina con la ecuación ~ ^

Ejemplo 18.5-1

B&K Grocenes opera con tres cajas. El gerente uiili2a el siguiente programa para determinar la 
cantidad de cajas en operación, según la cantidad de clientes que haya en la línea

Cantidad de dientes en la tienda Cantidad de cajas en operación

1 a3 1
4 a 6 2

MJs de 6 3

Los clientes llegan al area de cajas de acuerdo con una distribución de Poisson con tasa 
media de 10 clientes por hora El tiempo promedio en la caja es exponencial con media de 12 mi 
ñutos. Determine la probabilidad de estado estable p„ de que haya n clientes en el area de cajas. 

Con la información del problema, tenemos

A„ = A = 10 clientes por hora, n = 0,1,.
í fs = 5 clientes por hora. II = 0.1,2,3

/!„ = s 2 X 5 = 10 clientes por hora. n = 4,5,6
(3X5= 15 clientes por hora, /I = 7.8,

Por lo tanto,

P¡ - (t)po = 2p„

Pl = (t Yp« = ‘<P¡i

P> ” (f )Vii = ipii
P* = (f)^({i])í'ii = iPii

ps=imm«=Bp»

p,.=msYp«-sp„

El valor de po se determina a partir de la ecuación

Po + Ai{2 + 4 + 8 + 8 + 8 + 8 + 8(;) + 8(2)^ + 8(§)J + j = 1
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o, de forma equivalente

/7„{31 +8(1 + (^) + ( = )2+ )} = i

Utilizando la sene de suma geométrica

obtenemos

:.W< 1

Por lo tanto, y?o = ¿ •
Dado/?o. ahora podemos determinar/?„ con;i > 0 Por ejemplo, la probabilidad deque sólo una 

caja abra se calcula como la probabilidad de que haya cuando mucho tres clientes en el sistema

p, + í>2 + p, = (2 + 4 + 8){¿) = 255

Podemos utilizar p„ para determinar medidas de desempeño para la situación de B¿¿K Por 
ejemplo.

/Cantidad esperada\ 
\ de cajas ociosas / = 3po + 2(pi + P2 + pO + l(p4 + ps + Pf,)

+ 0{p^ + pn+ )

= 1 caja

CONJUNTO DE PROBLEMAS 18.5A

T. En el ejemplo 18.5-l,determine lo siguiente
(a) La distribución de probabilidades de la cantidad de cajas abiertas.
(b) El promedio de cajas ocupadas.

2. En el modelo de B&K del ejemplo 18 5-1, suponga que el tiempo entre llegadas en el 
área de cajas es exponencial con media de 5 minutos y que el tiempo en la caja por clien­
te también es exponencial con media de 10 minutos. Suponga además que B&K agrega 
una cuarta caja y que las cajas abren con base en incrementos de dos clientes. Determine 
lo siguiente:
(a) Las probabilidades de estado estable,p„ para todas las n
(b) La probabilidad de que se requiera una cuarta caja
(c) El promedio de cajas ociosas.

*3. En el modelo de B&K del ejemplo 18 5-1, suponga que las tres cajas están siempre abier­
tas y que la operación está configurada de tal manera que el cliente vaya primero a la 
caja vacía Determinar lo siguiente-
(a) La probabilidad de que tres cajas estén en uso
(b) La probabilidad de que cliente que llega no tenga que esperar

4. Rrst Bank de Springdale opera cajeros automáticos de un solo carril Los autos llegan de 
acuerdo con una distribución de Poissson a razón de 12 autos por hora El tiempo por
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caja neccsano para completar la transacción en el cajero es exponencial con media de 6 
minutos. El carril tiene espacio para un total de 10 autos. Una \ez que el carril esta lleno 
los demas autos que llegan buscan el ser\ icio en otra sucursal Determine lo siguiente.
(a) La probabilidad de que un auto que llegue no pueda utili/ar el cajero porque el ca­

rril esta lleno
(b) La probabilidad de que un auto no pueda utili/ar el cajero en cuanto llegue
(c) El promedio de autos en el carril

5. ¿Alguna vez ha escuchado a alguien repetir el contradictorio comentario “El lugar esta 
tan abarrotado que ya nadie va allf? Este comentario equivale a decir que la oportuni­
dad de desistir se incrementa con el aumento en la cantidad de clientes que buscan un 
servicio. Una posible plataforma para modelar esta situación es decir que la tasa de llega­
das al sistema se reduce a medida que la cantidad de clientes se incrementa De manera 
mas específica, consideramos el caso simplificado del Club de Pool M&M, donde los 
clientes suelen llegar en parejas para “jugar pool" La tasa de llegadas normal es de 6 pa­
rejas (de personas) por hora. Sin embargo, una vez que la cantidad de parejas en el salon 
de pool excede de 8. la tasa de llegadas se reduce a 5 parejas por hora Se supone que el 
proceso de llegadas sigue la distribución de Poisson Cada pareja juega pool durante un 
tiempo exponencial con media de 30 minutos. El salon de pool cuenta con un total de ^ 
mesas y puede acomodar a más de 12 parejas a la vez. Determine lo siguiente
(a) La probabilidad de que los clientes comiencen a desistir.
(b) La probabilidad de que todas las mesas estén ocupadas.
(c) El número promedio de tablas en uso
(d) El promedio de parejas que esperan a que se desocupe un mesa de pool

*6. Una peluquería atiende a un cliente a la vez y cuenta con tres sillas para los clientes que 
esperan. Si el lugar está lleno, los clientes se van a otra parte Las llegadas ocurren de 
acuerdo a una distribución de Poisson con media de 4 por hora El tiempo para recibir un 
corte de pelo es exponencial con media de 15 minutos Determine lo siguiente.
(u) Las probabilidades de estado estable
(b) La cantidad esperada de clientes en la peluquería
(c) La probabilidad de que los clientes se vayan a otra parte porque la peluquería está llena

7. Considere una situación de colas en un servidor donde las lasas de llegadas y servicio son

A„ = 10-/1.» = 0,1,2,3 

fi„ = ~ + 5./1 = 1,2.3,4

Esta situación equivale a reducir la lasa de llegadas e incrementar la tasa de servicio a 
medida que se incrementa el numero n en el sistema
(a) Prepare el diagrama de transición, y determine la ecuación de balanceo del sistema
(b) Determine las probabilidades de estado estable

8. Considere el modelo de una sola cola, donde se permite solo un cliente en el sistema Los 
clientes que llegan y encuentran la instalación ocupada nunca regresan Suponga que la 
distribución de las llegadas es Poisson con media A por unidad de tiempo, y que el tiempo 
de servicio es exponencial con media de ^ unidades de tiempo
(a) Prepare el diagrama de transición, y determine las ecuaciones de balanceo
(b) Determine las probabilidades de estado estable
(c) Determine el promedio en el sistema
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9. La comprobación por medio de. inducción para derivar la solución general del modelo 
generalizado se aplica como sigue Considere

Susliluimosp„_i Vp„-2 un la ecuación diferencial general que implica p„ y p„ 2 
para derivar h expresión deseada p ira p„ Verifique este procedimiento

18 6 COLAS DE POISSON ESPECIALIZADAS

La figura 18 3 ilustra la situación de colas de Poisson especializadas con c servidores 
paralelos. Se selecciona un cliente de la cola para iniciar el servicio con el pnmer servidor 
disponible La tasa de llegadas al sistema es de A clientes por unidad de tiempo Todos 
los servidores paralelos son idénticos es decir que la lasa de servicio de cualquier ser 
vidor es de ¡i clientes por unidad de tiempo La cantidad de clientes en el sistema se de 
fine para incluir los que están en el servicio y los que están en la cola

Una notación conveniente para resumir las características de la situación de colas 
de la figura 18 3 se da mediante el siguiente formato

(a/hfc) (d/elf)

donde
a = Distribución de las llegadas 
b = Distribución de las salidas (tiempo de servicio) 
c = Cantidad de servidores paralelos (= 1 2, ,00) 
d — Disciplina en las colas
e = Numero máximo (finito o infinito) permitido en el sistema (haciendo cola o 

en servicio)
/ = Tamaño de la fuente solicitante (finita o infinita)

FIGURA 18 3
Rcpri-scnlicion (.squcmiilicii de un sislem i de colas con c servidores par líelos

Tasa de 
llegadai) A

Tas i de salidas n

Ibsa de s ilid is/i

Tjsa de salid is p



La notación estándar para representar las distribuciones de las llegadas y salidas 
(símbolos ay b)es

M = Distnbucion markoviana (o de Poisson) de llegadas y salidas (o de forma 
equivalente distribución exponencial del tiempo entre llegadas y de servicio) 

D = Tiempo constante (detcrminístico)
= Distnbución Erlang o gama del tiempo (o de forma equivalente, la suma 

de distribuciones exponenciales independientes)
G1 = Distribución general (genérica) del tiempo entre llegadas 
G = Distribución general (genérica) del tiempo de servicio
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La notación para la disciplina en colas (símbolo d) incluye

FCFS = Primero en llegar, primero en ser servido 
LCFS = Último en llegar, primero en ser servido 
SIRO = Servicio en orden aleatorio 

GD = Disciplina general (es decir, cualquier tipo de disciplina)

Para ilustrar el uso de la notación, el modelo (AÍ/D/10): (GD/20/oo) utiliza llega­
das Poisson (o tiempo entre llegadas exponencial), tiempo de servicio constante, y 10 
servidores paralelos. La disciplina en colas es GD, y hay un límite de 20 clientes en 
todo el sistema El tamaño de la fuente de donde llegan los clientes es infinito.

Como nota histórica, los primeros tres elementos de la notación (a/blc) los ideó 
D.G. Kendall en 1953, y se conocen en la literatura como la notación de Kendall. En 
1966, A.M. Lee agregó los símbolos í/ y c a la notación. Este autor agregó el último ele­
mento, el símbolo/, en 1968.

Antes de presentar los detalles de las colas de Poisson especializadas, demostra­
mos cómo se pueden derivar las medidas de desempeño de estado estable de la situa­
ción de colas generalizada a partir de las probabilidades de estado estable p„ dadas en 
la sección 18.5.

18.6.1 Medidas de desempeño de estado estable

Las medidas de desempeño más comúnmente utilizadas en una situación de colas son

Lj = Cantidad esperada de clientes en un shtenia 
Lg ~ Cantidad esperada de clientes en una cola 
Wj = Tempo de espera en el sistema 
Wg = Tempo de espera anticipado en la cola 

c ~ Cantidad esperada de servidores ocupados

Recuerde que el sistema incluye tanto la cola como las instalaciones de servicio
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Demostramos ahora cómo se derivan estas medidas (directa o indirectamente) a 
partir de la probabilidad de estado estable de n en el sistema, como

í-í =
H=l

L,= ~^U¡-c)p„
n=e+\

La relación entre L, y Wj (también entre Lq y Wq) se conoce como fórmula de 
Little y se da como

^efee^ s

Estas relaciones son válidas en condiciones más bien generales El parámetro Acfcc es 
la tasa de llegadas efectiva al sistema Es igual a la tasa de llegadas A (nominal) cuando 
todos los clientes que llegan pueden unirse al sistema. De lo contrario, si algunos clien­
tes no pueden unirse porque el sistema está lleno (por ejemplo un estacionamiento), 
entonces Ag^c < A. Mas adelante demostraremos cómo se determina Ag^c 

También existe una relación directa entre y Wq Por definición

Tiempo de espera ^ Tiempo de espera \ ^/Tiempo de servicio
anticipado en el sistema/ \anticipado en la cola/ \ esperado

Esto se traduce como

IV. = VK, + i

Luego podemos relacionar L¡ con Lq multiplicando ambos lados de la última 
fórmula por A^fec, la que junto con la fórmula de Little da

Lj diferencia entre la cantidad promedio en el sistema, L,. y la cantidad prome­
dio en la cola, L,, debe ser igual al promedio de servidores ocupados Por lo tanto,

c = /..-L„= ^

/ Uso de la £
Vinstalación/ c

Se deduce que
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Ejemplo 18.6-1
El estacionamiento para usitanles en el Colegio Ozark se limita a solo 5 espacios. Los autos que 
utilizan estos espacios llegan de acuerdo con una distribución de Poisson a razón de 6 por hora 
El tiempo de estacionamiento esta distribuido e\ponencialmenle con una media de 10 minutos. 
Los visitantes que no pueden encontrar un espacio \acío pueden esperar temporalmente en el 
estacionamiento hasta que un auto estacionado salga El espacio temporal tiene cabida solo para 
3 autos. Otros que no pueden estacionarse o encontrar un espacio de espera temporal deben irse 
a otra parte Determine lo siguiente

(a) La probabilidad,p„. de que haya n autos en el sistema
(b) La tasa de llegadas efectiva de los autos que por lo general utilizan el estacionamiento
(c) El promedio de autos en el estacionamiento
(d) El tiempo promedio que un auto espera un espacio de estacionamiento
(c) E! promedio de espacios de estacionamiento ocupados
(0 La utilización promedio del estacionamiento 

Observamos pnmero que un espacio de estacionamiento actúa como un servidor, de modo 
que el sistema cuenta con un total de c = 5 servidores paralelos. Asimismo, la capacidad máxima 
del sistema es 5 + 3 = 8 autos.

La probabilidad p„ puede determinarse como un caso especial del modelo generalizado en 
la sección 18.5 por medio de

A„ = 6 autos/hora, /i = 0,1,2, .8

_ J ”(li) ~ 2/1 aulos/hora,/I = 1,2,3,4, 5 
I 5(^j = 10 aulos/hora, n = 6,7,8

De acuerdo con la sección 18 5, obtenemos

3"
—Pü. «=1.2,3,4,5 

Pii
^T^Po- " = 6.7.8

El valor de po se calcula sustituyendo p„,« = 1,2, .8. en la siguiente ecuación
P(, + pi + + Pj, = 1

/ 3 3- 3’ 3. 3= 3‘ 3. 3» \
T7 + — + — + — + --- T + ----r ) =4' 5' 5'5 5'5^ 5'5^)

Esto da po = 04812 (jcompruébelo') Con pn, ahora podemos calcularpi a pg como

;;\234^ 5578

p„ 14436 21654 21654 16240 09744 05847 03508 02105

La lasa de llegadas efectiva se calcula observando el diagrama esquemático en la fiS^* 
ra 18 4. donde los clientes llegan de la fuente a razón de A autos por hora Un auto que llega 
puede enlrar al eslacionamienlo a la razón o puede irse a otra parle a la razón A„„aidr 
quiere decir que A = A.r„+Ap^,a,j.
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FIGURA 18 4
Reiacióncnta A A,,ccy Ape,j,o,

Un amo no podrá entrar al estacionamiento si ya entraron 8 Esto significa que la propnr 
ción de autos que no podran entrar al estacionamiento espg Por lo tanto,

Ap^fjida ~ — 6 "X 02105 - 1263 autos/hora

^cfec = A - Ape,Ja = 6 - 1263 = 5 8737 autos/hora

El promedio de autos en el estacionamiento (los que esperan que se desocupe un espacio) 
es Igual a el promedio en el sistema Podemos calcular L¡ con p„ como

- Opo + Ipi + + 8pk = 3 1286 autos

Un auto que espera en el espacio temporal es en realidad un auto que está haciendo cola Por 
lo tanto, su tiempo de espera hasta que encuentra un espacio es W^. Para determinar usamos

w, = vv,-i
Por tanto,

/ = = 31286
" 5 8737

= 53265 - I =

= 53265 horas

03265 horas

El promedio de espacios de estacionamiento ocupados es igual al promedio de servidores 
ocupados,

Ajiec 5 8737 _
c = L,- L„= — = 2 9368 espacios

' P 2

A partir de c, obtenemos

c 2 9368 _
Uso del lote de estacionamiento - - - —^— - 5o/jo

CONJUNTO DE PROBLEMAS 18.6A

1. En el ejemplo 18 6-1, haga lo siguiente 
•(o) Calcule L,, dircclnmentü con la formula " ‘'If’”

(b) Calcule ir, a partir de
*(c) Calcule el promedio de autos que no podran enlrar al cslacionamiento durante un 

periodo de 8 horas
•(d) Demuestre que c - (L, - L„). el promedio de espacios ráelos es igual a

- 'Oo..
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2. Resuelva el problema 18 6-1 con los siguienlcs datos cantidad de espacios de estaciona­
miento = 6, cantidad de espacios temporales = 4. A = 10 autos por hora y tiempo prome­
dio de estacionamiento = 45 minutos.

18.6.2 Modelos de un solo servidor
Esta sección presenta dos modelos para el caso de un solo servidor (c = 1) El primer 
modelo no limita el numero máximo en el sistema, y el segundo supone un límite fini­
to del sistema. Ambos modelos suponen una capacidad infinita de la fuente Las llega­
das ocurren a razón de A clientes por unidad de tiempo y la tasa de servicio es clien­
tes por unidad de tiempo.

Los resultados de los dos modelos (y de hecho de todos los modelos restantes en 
la sección 18.6) se derivan como casos especiales de los resultados del modelo genera­
lizado de la sección 18.5.

Se utilizará la notación ampliada de Kendall para caracterizar cada situación 
Debido a que las derivaciones de p„ en ia sección 18.5 y de todas las medidas de de­
sempeño en la sección 18 61 son totalmente independientes de una disciplina de colas 
específica, se utilizará el símbolo GD (disciplina general) con la notación.

(A//A//l).(GZ)/co/co), Utilizando la notación del modelo general, tenemos

M/i =
0,1,2,...

Incluso, Aefec = A y Apyjjija = o, porque todos los clientes pueden unirse al sistema 
Si p = ^, la expresión para p„ en el modelo generalizado se reduce a 

Pn = pVü. « = 0,1,2, ..
Para determinar el valor de po usamos la identidad

Po(l + p + +•••) = l
La suma de la sene geométnca es (y~), siempre que p < 1 Por lo tanto 

A) = 1 - p, p < 1
En consecuencia, la siguiente distribución geométrica da la fórmula general para pn 

A. = (l-p)p",/I = 1,2,.. (p<l)
La derivación matemática de p„ impone la condición p < 1, o A < /i Si A s A, la sene 
geométrica diverge, y las probabilidades de estado estable p„ no existen. Este resulta­
do tiene un sentido intuitivo, porque a menos que la tasa de servicio sea mayor que la 
tasa de llegadas, la longitud de la cola continuará creciendo y no puede alcanzarse 
ningún estado estable.

La medida de desempeño se deriva como sigue'
00 oo

i-s = 'Znp„ = ~p)p"
n ü íi-ü

^ (1 -p)p-r'Zp"
(ip „=0

^ (1 - p)p-í —)dp\ \ -p )
P

1-p



Debido a que = A en la presente condición, las medidas de desempeflo restantes 
se calculan utilizando las relaciones dadas en la sección 18.6.1 Por lo tanto,
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VP.
A

1
p(l-p)

1
m-a

W,- -
P P{l-p)

Z., = AW,= ^ 

c — L¡ — Lfj = p

Ejemplo 18.6-2

Aulomata es una instalación de lavado de autos de una sola bahía. Los autos llegan según una 
distribución de Poisson con una media de 4 autos por hora y pueden esperar en el estaciona­
miento de la instalación en la calle si la bahía está ocupada El tiempo para lavar y limpiar un 
auto es exponencial, con una media de 10 minutos. Esto significa que, para todo propósito prac­
tico, no hay ningún límite en el tamaño del sistema. Ei gerente de la instalación desea determinar 
el tamaño del estacionamiento

Para esta situación tenemos A = 4 autos por hora, y m ^ ^ autos por hora Como
p = ^ <1, el sistema puede operar en condiciones de estado estable. Los datos de lORA o 
cxcelPoissonQ \¡s para este modelo son

Lambda Mu c Límite del sistema Límite de lu fuente

4 6 1 infinilo infinito

Los resultados del modelo se muestran en la figura 18 5. El promedio de autos que esperan en la 
cola, L,¡ es 1 33 autos.

Por lo general, no es aconsejable utilizar Lg como la única base para determinar la cantidad 
de espacios de estacionamiento, porque el diseño debe, en cierto sentido, tener en cuenta la lon­
gitud máxima posible de la cola Por ejemplo, puede ser más razonable diseñar el cslauonii- 
miento de modo que un auto que llega encuentre un espacio de estacionamiento a! menos 90% 
de las veces. Para hacer esto, sea S la cantidad de espacios de estacionamiento Tener S espacios de 
estacionamiento equivale a tener 5 -t- 1 espacios en el sistema (cola más bahía) Un auto que 
llega encontrará un espacio 90% de las veces si hay cuando mucho S autos en el sistema Esta 
condición es equivalente al siguiente enunciado de probabilidad.

Po + Pi + + p5 ^ .9
De acuerdo con la figura 18 5, la probabilidad acumulada p„ con /i = 5 es 91221. Esto significa 
que la condición se satisface con 5^5 espacios de estacionamiento

La cantidad de espacios S se determina también por medio de la deflmcidn raatemáliea de 
p,„ es decir,

(1 - p)(l + p + p' + ■ + P*) 2 ■!>

La suma de la serie gcométnca truncada es ', ‘1—, la cual reduce la condición a 

(1 -p“') S: .9
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Scenario 1: (M/M/l):(GD/infiniCy/infinity)

Lambda = 4.00000
Lambda eff = 4.00000

Ls = 2.00000
Ws = 0.50000

Mu = 6 
Rho/c

Lq = 1 
Wq = 0

. 00000
= 0.66667

.33333

. 33333

n Probability pn Cumulative Pn n Probability pn Cumulative Pn

0 0.33333 0 33333 13 0 00171 0.99657

1 0.22222 0.55556 14 0.00114 0.99772
2 0.14815 0.70370 15 0.00076 0.99848
3 0.09877 0.80247 16 0 00051 0 99899
4 0 06584 0.86831 17 0 00034 0.99932
5 0.04390 0.91221 18 0.00023 0.99955

6 0.02926 0.94147 19 0.00015 0.99970
7 0.01951 0.96098 20 0.00010 0.99980
6 0.01301 0.97399 21 0 00007 0.99987
9 0.00867 0.98266 22 0.00004 0.99991

10 0.00578 0.98844 23 0.00003 0.99994

11 0.00385 0.99229 24 0 00002 0.99996
12 0.00257 0.99486 25 0.00001 0.99997

FIGURA 18 5
Resultados del ejemplo 18 6-2 obtenidos con TORA (archi%oíorflCr/S 6-2/w)

La simplificación de la desigualdad produce

< .1

Sacando los loganlmos en ambos lados (y observando que log (x) < 0 para 0 < r < 1,1o cual in­
vierte la dirección de la desigualdad), tenemos

S S
In(.l)
'"(í)

- 1 4 679 a 5

CONJUNTO DE PROBLEMAS 18.6B

1. En el ejemplo 18 6-2, haga lo siguiente
(a) Determine la utili/nción en porcentaje de la bahía de lavado
(b) Determine la probabilidad de que un auto que llega tenga que esperar en el estacio 

namiento antes de entrar a la bahía de lavado
(c) Si hay 7 espacios de estacionamiento, determine la probabilidad de que un auto que 

llega encuentre un estacionamiento vacío
(d) ¿Cuántos espacios de estacionamiento deben proporcionarse de modo que un auto 

que llega pueda encontrar un espacio de estacionamiento 99% del tiempo?
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*2. John Macko estudia en la U de Ozark Realiza trabajos peculiares para complementar 
sus ingresos Las solicitudes para que realice un trabajo llegan cada 5 días pero el tiempo 
entre solicitudes es exponencial El tiempo para terminar un trabajo también es exponen 
cial con media de 4 días
(u) (.Cual es la probabilidad de que John se quede sin trabajos**
(b) Si John gana aproximadamente $50 por trabajo ¿cual es su ingreso mensual promedio *
(c) Si al final del semestre John decide subcontratar los trabajos pendientes a $40 cada 

uno. (.cuánto, en promedio debe esperar que le paguen'*
3. Durante años, el detective Columbo, del Departamento ül Policía de Fayetteville, ha te 

nido un éxito fenomenal al resolver todos los casos criminales. Es solo cuestión de iiem 
po antes de que cualquier caso se resuelva Columbo admite que el tiempo por caso es
‘ totalmente aleatorio", pero, en promedio, cada investigación le lleva aproximadamente 
una semana y media Los crímenes en el tranquilo Fayetteville no son mu\ comunes.
Ocurren al azar a razón de un crimen por mes (4 semanas) El detective Columbo esta 
solicitando que un asistente comparta la pesada carga de trabajo Analice la petición de 
Columbo, en particular desde la perspectiva de los siguientes puntos
(a) El promedio de casos en espera de ser investigados.
(b) El porcentaje del tiempo que el detective permanece ocupado
(c) El tiempo promedio necesario para resolver un caso ^

4, Los autos que llegan a la caseta de cobro del túnel Lincoln lo hacen según una distnbu
ción de probabilidades de Poisson, con una media de 90 autos por hora El tiempo para |
cruzar la caseta es exponencial con media de 38 segundos. Los conductores se quejan dU t
largo tiempo de espera, y las autondades desean reducir el tiempo de cruce promedio a '
30 segundos con la instalación de dispositivos de cobro de cuota automáticos siempre |
que se satisfagan dos condiciones (1) que el promedio de autos que esperan en este siste­
ma exceda de 5, y (2) que el porcentaje del tiempo ocioso de la caseta ton el nuevo dis 
positivo instalado no exceda de 10% (Se puede justificar el nuevo dispositixo?

*5. Un restaurante de comida rapida tiene una ventanilla para servicio en su auto Los .lutos 
llegan según una distribución de Poisson a razón de dos cada 5 minutos. El espacio en 
frente de la ventanilla puede acomodar a lo sumo 10 autos, incluso el que se esta atendien- ‘
do Los demas autos pueden esperar afuera de este espacio si es necesano El tiempo de 
servicio por cliente es exponencial, con una media de l 5 minutos. Determine lo siguiente 
(u) La probabilidad de que la ventanilla este ociosa
(b) La cantidad estimada de clientes que esperan ser atendidos.
(c) El tiempo de espera hasta que un cliente llega a la ventanilla para hacer su pedido
(d) La probabilidad de que la linea de espera exceda la capacidad de 10 espacios.

6. Los clientes llegan a la ventanilla de servicio en su auto de un banco según una distribución 
de Poisson, con una media de 10 por hora El tiempo de servicio por cliente es exponencial 
con una media de 5 minutos. Hay tres espacios en frente de la ventanilla, incluido el auto 
que están atendiendo Otros autos que llegan se forman afuera de este espacio para 3 autos.
(a) (.Cual es la probabilidad de que un auto que llega pueda entrar a un de los 3 espacios'
(b) ¿Cual es la probabilidad de que un auto que llega espere afuera del espacio designa 

do para tres 3 autos'*
(c) (.Cuanto tiempo se anticipa que espere un cliente que llega antes de iniciar el servicio?

*(d) ¿Cuantos espacios para autos deben proporcionarse en frente de la ventanilla (in­
cluido el que se está atendiendo) de modo que un auto que llega pueda encontrar un 
espacio allí al menos 90% del tiempo'*

7. En el escenario (A//A//1) (CD/oo/oo), de un argumento convincente de por que en general 
L, no es igual a L,, + I < En que condición se mantendrá la igualdad *

8. Para el escenano (A//A//I) (GD/ooíoo).denve la expresión utilizando la definición basica

E" 2Í"-•)/*«
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9. Para el escenario (A//A//1) (G£)/oc/oo), dcmuesire que
(a) El número esperado en la cola,si la cola no esta vacía es igual a, =
(b) El tiempo de espera anticipado en la cola para los que deben esperar es igual a

(MIMI\y.(GDINIoo). Este modelo difiere de (A//A//l):(GD/oo/oo) en que hay un 
límite N en el número en el sistema (longitud máxima de la cola = N - 1). Algunos 
ejemplos incluyen situaciones de manufactura en las que una máquina puede tener un 
espacio intermedio limitado y una ventanilla de ser\ icio en su coche en un restaurante 
de comida rápida. No se permiten nuevas llegadas cuando la cantidad de clientes en el 
sistema llega a /V. Por lo tanto,

ÍÁ, /I = 0,1. ...N - 1 
\o. /i = N,A' + l

/i. /: = 0,1. .

Utilizando p = ¿, el modelo generalizado de la sección 18.5 da

í /¡^ N
lo. fi >

El valor de po se determina a partir de la ecuación ^p„ = 1, la cual da
/i=0

Po(l + p + p- + ■■ + p") = 1

o

Por lo tanto,

Pi) =

1 - P
1

1 ~ p

I

p 1 

p = 1

(1 - P)P"

(1 - p)p"
■;------üiT’ p = 1

^« = 0,1. ,N

El valor de p = ¿ no tiene que ser menor que 1 en este modelo, porque el límite N con­
trola las llegadas al sistema. Esto significa que la tasa que importa en este caso.
Debido a que los clientes se pierden cuando hay N en el sistema, entonces, como se 
muestra en la figura 18 4,

^perdida ^Pn

\ftc = = \{l~pf^)
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En este caso, A^fcc <
La cantidad esperada de clientes en el sistema ae calcula como

M=1

-Lz£_v «

1 P ;i-(l

(I-P)P d

l-p J
p[l~(N+l)p^ +

Cuando p-l,Lj~j (|Compruébelo!) Podemos derivar Wj, y L,¡ a partir de I, 
utilizando Acfcc como se muestra en la sección 18 6 1

El uso de una calculadora de mano para procesar las fórmulas de colas es. en el mejor 
de los casos, incómodo (jlas fórmulas se vuelven más complejas en los últimos modelos') 
Se recomienda utilizarTORA o la plantilla excelPoissonQ xls para manejar estos cálculos.

Ejemplo 18.6-4

Considere la instalación de lavado de autos del ejemplo 18 6-2 Suponga que la instalación cuen 
la con un total de 4 espacios de eslacionamiento Si el estacionamiento está lleno, los nulos que 
llegan pueden irse a otras instalaciones. El propietario desea determinar el efecto del limitado 
espacio de estacionamiento en la pilrdida de clientes frente a la competencia

En términos de la notación del modelo, el límite en el sistema es /V = 4 + 1 = 5 Los si­
guientes datos permiten obtener los resultados que aparecen en la figura 18 6

Lambda Mu Límite del sistema Límile de la fuente

4 6 ! 5 infínilu

Debido a que el límite en el sistema es = 5. la proporción de clientes perdidos es ps = 
04812. la cual, basada en un día de 24 horas, equivale a perder el negocio de (Aps) x 24 = 4 x 

0 4812 X 24 = 4 62 autos al día La decision en cuanto a incremenlar el tamaño del lote de esta 
cionamiento debe basarse en el valor del negocio perdido

Mirando el problema desde un ángulo diferente, el tiempo loial esperado en el sistema. 
es de 3736 horas, o aproximadamente 22 minutos, por debajo de los 30 minutos del ejemplo 
18 6-3, cuando se permite que lodos los autos que lleguen se unan a la instalación Esta reduc­
ción de aproximadamente 25% se asegura a expensas de perder alrededor de 4 8% de lodos los 
clientes potenciales a causa del limitado espacio de estacionamiento
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Scenario 1;(M/M/1):{GD/5/infinity)

Lambda = 4.00000 Mu = 6.00000
Lambda eff = 3.80752 Rho/c = 0.66667

Ls = 1,42256 Lq = 0.78797
Ws = 0.37362 Wq = 0.20695

n Probability pn Cumulative Pn n Probability pn Cumulative Pn

0 0.36541 0.36541 3 0.10827 0.87970

1 0.24361 0.60902 4 0.07218 0.95188
2 0.16241 0.77143 5 0.04812 1.00000

FIGURA 18 6
Resultados del ejemplo IS 6-4 obtenidos con TORA (archivo foraZLi/S 6-4 tw)

CONJUNTO DE PROBLEMAS 18.6C

*1. En el ejemplo 18.6*4. determine lo siguiente;
(a) La probabilidad de que un auto que llegue entre de inmediato a la bahía de lavado.
(b) El tiempo de espera hasta que se mide el servicio
(e) La cantidad esperada de espacios de estacionamientos vacíos.
(d) La probabilidad de que todos los espacios de estacionamiento estén ocupados.
(e) La reducción en porcentaje del tiempo de servicio promedio que limitará el tiempo 

promedio en el sistema a aproximadamente 10 minutos. {Sugerencia Utilice el méto­
do de prueba y error con excelPoissotiQ xls oTORA.)

2. Considere la instalación de lavado de autos del ejemplo 18 6-4. Determine la cantidad de 
espacios de estacionamiento de modo que el porcentaje de los autos que no puedan en­
contrar un espacio no exceda de 1%.

3. El tiempo que el peluquero Joe Cakes emplea para realizar un corle de pelo es exponen­
cial con una media de 12 minutos Debido a su popularidad, los clientes suelen llegar (de 
acuerdo con una distribución de Poisson) a una razón mayor que la que Joe puede mane­
jar" 6 clientes por hora. Joe en realidad se siente cómodo si la lasa de llegadas se reduce 
efectivamente a alrededor de 4 clientes por hora Para alcanzar esta meta se le ocurrió 
proporcionar asientos limitados en el área de espera, de modo que los clientes que aca­
ban de llegar se vayan a otra parle cuando se dan cuenta de que todos los asientos están 
ocupados. ¿Cuántos asientos debe proporcionar Joe para alcanzar su meta?

*4. El ensamble final de los generadores eléctricos en Electro se realiza a la razón de Poisson 
de 10 generadores por hora Luego los generadores son transportados por una banda al 
departamento de inspección para su revisión final. La banda puede transportar un máxi­
mo de 7 generadores. Un sensor automático detiene al instante la banda una vez que se 
llena, lo que evita que el departamento de ensamble final arme más unidades hasta que 
haya espacio disponible. El tiempo para inspeccionar los generadores es exponencial, con 
una media de 15 minutos.
(a) ¿Cuál es la probabilidad de que el departamento de ensamble final detenga la pro* 

ducción?
(b) ¿Cuál es el promedio de generadores sobre la banda transportadora?
(c) El ingeniero de producaón afirma que las interrupciones en el departamento de en­

samble pueden reduarse si se incrementa la capacidad de la banda De hecho, el inge­
niero afirma que la capacidad puede incrementarse al punto en que el departamento de 
ensamble opere 95% del tiempo sin interrupciones. ¿Es justificable esta reclamación?



5. Una cafclena puede acomodar un máximo de 50 pereonas. Los clientes llegan en una co­
mente Poisson a razón de 10 por hora y son atendidos (uno a la vez) a razón de 12 por hora 
(u) ¿Cual es la probabilidad de que un cliente que llegue no coma en la cafetería poraue

esta llena’ ^
(b) Suponga que a tres clientes (con tiempos de llegada aleatorios) les gustaría sentarle 

juntos ¿Cuál es la probabilidad de que se cumpla su deseo’ (Suponga que puede 
hacerse arreglos para que se sienten juntos en cuanto haya tres sillas disponibles.)

6. Los pacientes llegan a la clínica de un médico de acuerdo con una distribución de Poisson 
a razón de 20 pacientes por hora La sala de espera no puede acomodar mas de 14 pa­
cientes. El tiempo de consulta por paciente es exponencial, con una media de 8 minutos,
(a) ¿Cuál es la probabilidad de que un paciente que llegue no espere’
(b) ¿Cual es la probabilidad de que un paciente que llegue encuentre un asiento en la sala?
(c) ¿Cuál es el tiempo total esperado que un paciente pasa en la clínica?

7. La probabilidad p„ de que haya n clientes en el sistema en un escenario 
(A//AÍ/1) (GD/5/oo)se dan en la siguiente tabla
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n 0 1 2 3 4 5

Pn 399 249 156 097 061 038

La tasa de llegadas A es de 5 clientes por hora La tasa de servicio ji es de 8 clientes por 
hora Calcule lo siguiente

*(a) La probabilidad que un cliente que llega no pueda entrar al sistema 
•(b) La tasa a la cual tos clientes que llegan no podrán entrar al sistema
(c) Numero esperado en el sistema
(d) Tiempo de espera promedio en la cola

8. Demuestre que cuando p = 1 para (A//A//1) (CDW/co). ej numero esperado en el siste­
ma, L,, es Igual a t {SuRcrencta 1 + 2 + + i = " í )

9. Demuestre que Aa« par" (A//A//1) {GDINloo) puede calcularse aplicando la fórmula

Acicc ~

IS 6.3 Modelos de varios servidores

Esta sección considera tres modelos de colas con vanos servidores paralelos. Los pri­
meros dos modelos son las versiones de vanos servidores de los modelos de la sección 
18 6-2 El tercer modelo trata el caso del autoservicio, el cual equivale a tener una can 
tidad infinita de servidores paralelos.

Aplicación de la vida real. Personal de ventas por teléfono de Qantas Airways

Para reducir los costos de operación. Qantas Ainvays buscar dotar de personal a su 
oficina principal de reservaciones y ventas por telefono de forma eficiente, al mismo 
tiempo que píoporciona un servicio de calidad a sus clientes.Tradiuonalmente. las ne­
cesidades de personal se estiman pronosticando las llamadas telefónicas futuras con 
base en el incremento histórico del negocio El aumento de la cantidad de empleados 
se calcula luego con base en el incremento promedio proyectado de las llamadas te­
lefónicas. dividido entre el promedio de llamadas que un operador puede manejar
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Debido a que los cálculos están basados en promedios, la cantidad adicional de em­
pleados contratados no toma en cuenta las fluctuaciones de la demanda durante el día 
En particular, el largo tiempo de espera para el servicio durante horas laborales pico 
ha ocasionado quejas de los clientes y en consecuencia pérdida de negocios El proble­
ma tiene que ver con la determinación de un plan que balancee el número de emplea­
dos contratados y las necesidades de los clientes La solución utiliza el análisis de colas 
(AÍ/Af/c) insertado en un modelo de programación entera. Los ahorros a partir del mo­
delo en la oficina de Sydney fueron alrededor de $173 000 en el año fiscal 1975-1976 
Busque los detalles del estudio en el caso 15, capítulo 26, en el sitio web

{MIMIcy.(GDI<x>lco). Este modelo se ocupa de c servidores paralelos idénticos La 
lasa de llegadas es A y la tasa de servicio por servidor es ¡l. En esta situación Acfcc = ^ 
porque no hay límite en el número presente en el sistema.

El efecto de utilizar c servidores idénticos paralelos es un incremento proporcio­
nal de tasa de servicio de la instalación. En términos del modelo generalizado (sección 
18 5), A„ y se definen por lo tanto como

Así que,

A„ A, /j > 0

n < c 
n ^ c

Pn

A» A”
m(2^)(3m).. {nrí’’° n < c

«se

Si P - ^. y suponiendo que ^ < 1, el valor de po se determina a partir de Xr=o P» 
la cual da,

1.

La expresión para L,¡ se determina como sigue:

í-, =- c)p„

k-0
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(c - l)!(c - p)“

porque Agfcc = Á,Ls = L^ + p Las medidas W¡ y W,¡ se determinan dividiendo L¡ y 
entre A

Ejemplo 18.6-5

Dos compañías de taxis prestan servicio a una comunidad Cada compañía posee dos taxis, y 
ambas comparten el mercado por igual, las llamadas llegan a la oficina de despachos de cada 
compañía a una tasa promedio de 8 por hora El tiempo promedio por viaje es de 12 minutos. Las 
llamadas llegan de acuerdo con una distribución de Poisson y el tiempo de viaje es exponencial 
Las dos compañías fueron adquindas por un inversionista y se consolidarán en una sola oficina 
de despachos. Analice la propuesta del nuevo propietano

Desde el punto de vista de las colas, los taxis son los servidores, y el viaje del taxi es el servi­
cio Cada compañía puede representarse con el modelo ÍA//A//2) (GD/oo/oo) con 1 = 8 llamadas 
por hora y /i = ¡5 = 5 viajes por taxi por hora El modelo consolidado es (A//A//4) (CD/00/00). 
con 1=2x8=16 llamadas por hora y /x = 5 viajes por taxi por hora

Una medida adecuada para comparar los dos modelos es el tiempo de espera promedio 
para un viaje, W^. La siguiente tabla da los datos de entrada de análisis comparativos

Escenario Lambda Mu c Límite del sistema Límite de la fuente

1 8 5 2 infinito infinito
2 16 5 4 infinito infinito

La figura 18 7 proporciona los resultados con los dos escenarios. Los resultados muestran 
que el tiempo de espera para un viaje es de 356 horas (» 21 minutos) en lii situación de dos taxis 
y de 149 (<»9 minutos) en la situación consolidada, una notable reducción de más de 50% y una 
clara evidencia de que la consolidación de las dos compañías está garantizada

Comentarios. La conclusión del análisis anterior es que los grupos de servicio steinprc propor­
cionan un modo de operación más eficiente El resultado es cierto incluso si l.is instalaciones dis­
tintas resultan estar “muy ocupadas" (vea los problemas 2 y 10. conjunto 18 6d).

FIGURAIS?
Resultados del ejemplo 18 6-5 obtenidos con TORA (archivo loraCx ¡8 6-5 ixt) 

Comparative analysis_____________
c Lambda Mu L'da eff pO Ls Ws Lq Wq

2
4

8.000
16.000

5.000
5.000

8.00
16.00

0.110
0.027

4.444
5.566

0.556
0.349

2.844
2.386

0.356
0.149
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CONJUNTO DE PROBLEMAS 18.6D

1. Considere el ejemplo 18 6-5
(a) Demuestre que la notable reducción del tiempo de espera de mas de Sü^o en el caso 

consolidado esta asociada con un incremento del porcentaje del tiempo que los ser­
vidores permanecen ocupados.

(b) Determine la cantidad de taxis que la compañía consolidada debe tener para limitar 
el tiempo de espera promedio de un viaje a 5 minutos o menos.

•2. En el ejemplo de la compañía de taxis, suponga que el tiempo promedio por viaje es en 
realidad de aproximadamente 14 5 minutos, de modo que la utilización (=;^) pura los 2 j 
4 taxis se incrementa a más de 90% ¿Sigue valiendo la pena consolidar las dos compañías 
en una? Use el tiempo de espera promedio de un viaje como medida de comparación

3. Determine el mínimo de servidores paralelos necesarios en cada una de las siguientes si­
tuaciones (llegadas/salidas Poisson) que garantice que la operación de la situación de 
colas sera estable {es decir, que la longitud de la cola no crezca de forma indefinida)
(a) Los clientes llegan cada 5 minutos y son atendidos a razón de 10 clientes por hora
(b) El tiempo entre llegadas promedio es de 2 minutos, y el tiempo de servicio promedio 

es de 6 minutos.
(c) La tasa de llegadas es de 30 clientes por hora, y la tasa de servicios por servidor es de 

40 clientes por hora
4. Los clientes llegan al Thnfl Bank según una distribución de Poisson, con una media de 45 

clientes por hora Las transacciones por cliente tardan alrededor de 5 minutos y están 
distnbuidas exponencialmente El banco desea utilizar una sola linea y vanas cajas, simi­
lar a las que se utilizan en aeropuertos y algunas dependencias. El gerente es consciente 
de que los clientes pueden irse a otros bancos si perciben que su espera en la línea es "ex­
cesiva” Por esta razón, el gerente desea limitar el tiempo de espera en la cola a no mas 
de 30 segundos. ¿Cuantas cajas debe poner en servicio el banco'’

•5. El restaurante de comida rápida McBurger opera con 3 cajas. Los clientes llegan, de 
acuerdo con una distribución de Poisson, cada 3 minutos y forman una línea para ser 
atendidos por la primera caja disponible El tiempo para completar un pedido esta distri­
buido exponencialmcnte con una media de 5 minutos. La sala de espera en el interior del 
restaurante está limitada Sin embargo, la comida es buena, y ios clientes están dispuestos 
a esperar afuera del restaurante, si es necesario Determine el tamaño de la sala de espe­
ra dentro del restaurante {excluidos los de las cajas) de modo que la probabilidad de que 
un cliente que llega no espere afuera del restaurante sea al menos de 999

6. Una pequeña oficina de correos tiene dos ventanillas abiertas. Los clientes de acuerdo con 
una distnbucion de Poisson a razón de 1 cada 3 minutos. Sin embargo, sólo 80% de ellos 
busca servicio en las ventanillas. El tiempo de servicio por cliente es exponencial, con una 
media de 5 minutos.Todos los clientes que llegan forman una línea y acceden a las venta­
nillas con base en la disciplina de primero en llegar, primero en ser atendido {FCFS)
(a) ¿Cual es la probabilidad de que un cliente que llega espere en la línea?
(b) ¿Cuál es la probabilidad de que ambas ventanillas estén ociosas?
(c) ¿Cual es la longitud promedio de la línea de espera?
(d) ¿Sena posible ofrecer un servicio razonable con sólo una ventanilla? Explique

1. El centro de cómputo de la U de A esta equipado con cuatro maxicomputadoras idénti­
cas. La cantidad de usuarios en cualquier momento es de 25 Cada usuario es capaz de 
enviar un trabajo desde una terminal cada 15 minutos en promedio, pero el tiempo real 
entre envíos es exponencial Los trabajos que llegan automáticamente se van a la prinnJ* 
ra computadora disponible El tiempo de ejecución por envío es exponencial con una 
media de 2 minutos. Calcule lo siguiente

*(a) La probabilidad de que un trabajo no se ejecute de inmediato inmediatamente des­
pués de enviarlo

(b) El tiempo promedio hasta que los resultados de un trabajo se le devuelvan al usuario



(c) El promedio de trabajos en espera de ser ejecutados
(d) El porcentaje de tiempo que lodo el centro de cómputo esta ocioso 

•(e) El promedio de computadoras ociosas.
8. El aeropuerto Drake presta servicios a pasajeros, rurales, suburbanos y en trán.ao La 

distribución de las llegadas de cada uno de los tres grupos es Poisson con tasas medias de 
15,10 y 20 pasajeros por hora, respectivamente El tiempo para documentar un pasajero 
es exponencial con media de 6 minutos. Determine la cantidad de mostradores que debe 
haber en Drake en cada una de las siguientes condiciones.
(a) El tiempo promedio total para documentar un cliente es de al menos 15 minutos.
(b) El porcentaje de ociosidad de los mostradores no excede de 10%.
(c) La probabilidad de que todos los mostradores estén ociosos no excede de .01

9. En los Estados Unidos, el uso de una sola fila y vanos servidores es común en las oficinas 
de correos, en mostradores de documentación de pasajeros en aeropuertos. Sin embargo, 
tanto en supermercados como en bancos (especialmente en comunidades pequeñas) 
tiende a favorecer la configuración de una línea y un servidor, a pesar del hecho de que 
configuración de una línea y vanos servidores ofrece una operación más eficiente 
Comente esta observación

10. Para el modelo (A//A//c) (G£>/oo/oo), Morse (1958, pág 103) muestra que ^ 1,
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Con la observación de que ^ —►! ndica que los servidores están extremadamente ocupa­
dos, use esta información para demostrar que la relación del tiempo de espera promedio 
en la cola en el modelo (A//AÍ/c)-(CD/oo/oo) al del modelo (A//A//1) (GD/oo/oo) tiende a 
¿ a medida que f 1. Por lo tanto, con c = 2, el tiempo de espera promedio puede redu­
cirse en un 50% La conclusión de este ejercicio es que siempre es aconsejable agrupar los 
servicios, independientemente de qué tan "sobrecargados” puedan estar los servidores.

11. En la derivación de p„ para el modelo (A//A//c).(CD/oc/oo). indique cuál parte de la deri­
vación requiere la condición ? < 1 Exponga oralmente el significado de la condición. 
¿Qué sucederá si no se satisface la condición'^ ^

12. Compruebe que L¡ = L,, + t comenzando con la definición L¡j — ” ^)Pn<
donde c es el número promedio de servidores ocupados. Por consiguiente, demuestre que 
c = ^

13. Demultre que p„ para el modelo (A//A//1) (GD/oo/cx>) se puede obtener a partir de la 

del modelo (A//A//c)'(GD/oo/oo) con c = 1.
14. Demuestre que para el modelo (A//A//c) {GDI<xJcc>)

cp

IS. Para el modelo (A//A//i:):(GÍ>/oo/oí)), demuestre que
(o) La prob.ibllidad de que un cliente esté esperando es p.

(b) El numero promedio en la cola si no esl.i vacia es,, _p| • ^
(e) El tiempo de espera anltapado en la cola para los clientes que deben esperar es .

(MIMIcViGDINloo', c^N. El modelo difiere de (A//A/fc):(0'DWoo) en que el 
ltardd sfsZn” taitoe Igual a M Esto signtfica que el tamauo de la cola es fV - r. 
Las tasas de llegLL y aerviao son A y p La tasa de llegadas efectiva A,,, es menor 

que A debido al límite del sistema N.
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A„ ^ 

M/. =

En términos del modelo generalizado {sección 18 5), A„ y /x„ para el modelo ac­
tual se definen como

ÍA. 0 < n ^ N 
■ \0 n> N 

j nfi, 0 < n c 
\cfi, c ^ n ^ N

Sustituyendo A„ y en la expresión general de la sección 18 5 y observando que 
p = A , obtenemos

P" 

p"
ele"-'

o ^ n<c 

- Po. c < n < A'

donde

C

^ = 1

Luego calculamos en el caso en que f 1 como

N
^<1 = ^("-P)Pn

n=c
N-c

= ^IPHc 
1=0

- A?)

N-c

“{I)
r / \f^

(Aí-c + l) 1
-P\ U

(c-iy{c-pf 

Se puede demoslrar que con ? = 1, í., se reduce a

, p‘{N - c)(N - c + 1) p
" 2d P<" 7 = ^

Para determinar W,¡ y por consiguiente W, y L^, calculamos el valor de Aef,.c

Apcrdida “ ^Pn

Acfcc — A — Apcfjuja = (1~P/^)A
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Ejemplo 18.6-6

En el problema de la compañía de taxis consolidada de! ejemplo 18 6-5, suponga que no pueden 
asegurarse nuevos fondos para la compra de mas taxis Se le aconsejo al propietano que una 
forma de reducir el tiempo de espera es que la oficina de despachos informe a los nuevos clien­
tes sobre una demora potencial excesiva una vez que la lista de espera llega a ser de 6 clientes. La 
expectativa es que estos clientes busquen el servicio en otra parte, lo que a su ver reducirá el 
tiempo de espera de los que ya están en la lista de espera Evalué la situación

Limitar la lista de espera a 6 clientes equivale a hacer N = 6 -I- 4 = 10 clientes, lo que con­
duce al modelo (AÍ/áí/4) (GD/lO/oo) con A = 16 clientes por hora y /i. = 5 viajes por hora Los si­
guientes datos de entrada proporcionan los resultados que aparecen en la figura 18 8

Lambda Mu c Límite del sistema Límite de la fuente

16 5 4 10 Infinito

El tiempo promedio de espera, Wg, antes de limitar la capacidad del sistema es de 149 horas 
(==9 mmulos)(vea la figura 18 7), lo cual es aproximadamente el doble del nuevo promedio 075 
horas («4 5 minutos) Esta notable reducción se logra a expensas de perder alrededor de 3 6% 
de los clientes potenciales (pio = 03574) Sin embargo, este resultado no refleja la perdida in­
tangible de la buena disposición de los clientes en relación con la operación de la compañía

CONJUNTO DE PROBLEMAS 18.6E

1. En el ejemplo 18 6 6, determine lo siguiente.
(a) El número esperado de taxis ociosos.
(b) La probabilidad de que un cliente que llama sea el ultimo de la lista
(c) El límite en la lista de espera si se desea mantener el tiempo de espera en la cola por 

debajo de 3 minutos.

figura 18 8
Resultados del ejemplo 18 6 6 obtenidos con TORA (archivo loraLxIS 6 6 ixt)

Scenariol: (M/M/4):(GD/lO/infinity)

Lambda = 16 00000 Mu = 5.00000

Lambda eff = 15.42015 Rho/c = 0.80000

Ls = 4.23984 Lq = 1.15421

Ws = 0.27401 Wq = 0.07481

n Probability Cumulative n Probability Cumulative

pn Pn pn Pn

0 0.03121 0.03121 6 0.08726 0.79393

1 0.09906 0.13106 7 0.06981 0.86374

2 0.15977 0.29084 8 0.05504 0 91958

3 0 17043 0.46126 9 0.04468 0.96426

4 0.13634 0.59760 10 0.03574 1.00000
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2. En la tienda de Eai ¿L Gas funciona una estación de gasolina de dos bombas. El carril que 
conduce a las bombas puede alojar cuando mucho 3 autos (automóviles), excluyendo a los 
que se les está dando atención Los autos que llegan se \an a otra parte si el carril esta 
lleno La distnbucion de los autos que llegan es de Poisson con media de 20 por hora El 
tiempo para llenar el tanque y pagar es exponencial con media de 6 minutos. Determine lo 
siguiente
(a) El porcentaje de autos que buscaran servicio en otra parte
(b) El porcentaje de tiempo que una bomba esta en uso 

•(c) La utilización en porcentaje de las dos bombas.
•(d) La probabilidad de que un auto que llega no inicie el servicio de inmediato pero que 

encuentre un espacio vacío en el carril
(e) La capacidad del carril que garantice que, en promedio, no mas de 10% de los autos 

que llegan se vaya
(f) La capacidad del cami que garantice que la probabilidad de que ambas bombas 

estén ociosas es de 05 o menos.
3. Tres mecánicos atienden un pequeño taller de reparación de motores. A pnncipios de 

marzo de cada año. las personas traen sus cañas de limón y podaderas de cesped para 
servicio y reparación El taller esta dispuesto a aceptar todas las cañas de timón y po 
dadoras que traigan los clientes. Sin embargo, cuando los clientes nuevos ven el piso del 
taller lapizado de trabajos en espera, se van a otra parte para un servicio mas rápido El 
piso del taller puede alojar un máximo de 15 podaderas o cañas de timón, excluyendo las 
que están en reparación Los clientes llegan al taller cada 10 minutos en promedio, y a 
cada mecánico le lleva un promedio de 30 minutos completar cada trabajo Tanto los 
tiempos entre llegadas como los de servicio son exponenciales Determine lo siguiente
(a) El promedio de mecánicos ociosos
(b) La cantidad de negocios perdidos ante la competencia por día de 10 horas a causa de 

la limitada capacidad del taller
(c) La probabilidad de que el siguiente cliente que llegue sera atendido por el taller
(d) La probabilidad de que al menos un mecánico esté ocioso
(e) El promedio de cañas de limón o podaderas en espera de servicio 
(0 Un medida de la productividad total del taller

4. En la U de A, los estudiantes de primer año recién matriculados son muy notorios por 
que llegan a la universidad en sus autos (aun cuando se requiere que la mayoría de ellos 
vivan en el campus y puedan utilizar el sistema de transito libre de la universidad) 
Durante el primer par de semanas del semestre, prevalece el caos vial en el campus por 
que los estudiantes de primer año tratan desesperadamente de encontrar espacios de 
estacionamiento Con una rara dedicación, los estudiantes esperan pacientemente en los 
carriles del estacionamiento a que alguien salga de modo que puedan estacionar sus 
autos. Consideremos un escenario específico El estacionamiento cuenta con 30 espacios 
pero también puede acomodar 10 autos mas en los carriles Estos 10 autos adicionales no 
pueden estacionarse en los carriles de forma permanente y deben esperar la disponibih 
dad de uno de los 30 espacios de estacionamiento Los estudiantes de primer año llegan 
al estacionamiento de acuerdo con una distribución de Poisson, con una media de 20 
autos por hora El tiempo de estacionamiento por autos promedia 60 minutos, pero en 
realidad sigue una distribución exponencial

•(a) ¿Cuál es el porcentaje de los estudiantes de primer ano que se van porque no pue­
den entrar al estacionamiento*’

*(b) ¿Cuál es la probabilidad que un auto que llega espere en los carriles?
(c) ¿Cuál es la probabilidad de que un auto que llega ocupe el único espacio de estacio­

namiento que quede en el lote ’
•(d) Determine el promedio de espacios de estacionamiento ocupados
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*(c) Determine el promedio de espacios que está ocupado en los camies.
(0 Determine cuántos estudiantes de primer año no llegaran a tiempo a ciase durante 

un periodo de 8 horas porque el estacionamiento está lleno
5. Verifique la expresión para po para el modelo {MIMIc) {GDINIoq) d do que ^ I
6. Compruebe la siguiente igualdad para {MIMIc) (GDINloo)

Acíce = MC,

donde c es el numero de servidores ocupado
7. Verifique Id expresión parapoy para (A/M//c)(GD/A7oo)cuando^ =l
8. Para {MIMIc) (GDW/c»)con el cual N = c, defina A„ y p,, en función de! modelo general 

(sección 18 5), luego demuestre que la expresión para p„ es

P"
p„= ~ Po.n = ,c

donde

(MtAíloo):{GDI<x> ^ oo)—Modelo de autoservicio. En este modelo, las tasas de 
llegadas y servicio son A y p, respectivamente, y la cantidad de servidores es ilimitada 
porque el cliente también es el servidor Un ejemplo típico es realizar la parte escrita 
del examen para la licencia de conductor. Las gasolineras de autoservicio y los cajeros 
automáticos que operan durante las 24 horas del día no caen dentro de este modelo 
porque los servidores en estos casos son en realidad las bombas de gasolina y los 
cajeros automáticos

En términos del modelo general de la sección 18 5, tenemos 

= A, /I = 0,1,2, .

M/i ~ n/i, n (It L 2,.

Por lo tanto,

Debido a que ^^=0 desprende que

_____ !_____ _ -L = c r
Al - „2 el’

l+P + ^+-

Por resultado,

(U.2

la cual e, Poisson con media L. = Como era de esperarse. L„ y W„ son cero porque 

es una instalación de autoservicio
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Ejemplo 18.6-7

Un inversionista invierte $1000 al mes. en promedio, en el mercado de valores Debido a que el 
inversionista debe esperar una buena oportunidad para ‘ comprar", el tiempo real de compra es 
aleatono El inversionista suele conservar los valores durante unos 3 años en promedio pero los 
vende al azar cuando se le presenta una buena oportunidad para "vender" Aunque al invorsio 
nisla se le suele reconocer como un astuto corredor del mercado de valores, la experiencia pasa­
da indica que alrededor de 25% de los valores declinan a 20% al año, aproximadamente El 15% 
restante aumenta de valor a razón de 12% al año Estime el capital accionano del inversionista 
(a largo plazo) promedio en el mercado de valores.

Esta situación se puede tratar como un modelo (MIMIc) (GDIN/oo/oq) porque, para todos 
los propósitos prácticos, el inversionista no tiene que esperar en linea para comprar o vender sus 
valores. El tiempo promedio entre colocaciones de pedidos es de 1 mes, lo que da A = 12 valores 
por año La lasa de venta de los valores es ^ = 3 valor por año Puede obtener los resultados del 
modelo con los siguientes datos de entrada

Lambda Mu c Límite de! sistema Límite de la fuente

12 3313333 infinito infinito infinito

Dados los valores de A y /x, obtenemos

L, = p = — =36 valores

La estimación del valor neto anual promedio (a largo plazo) del inversionista es 

(25L, X $1000)(1 - 20) + (75L, X $1000)(1 + 12) = $63,990

CONJUNTO DE PROBLEMAS 18.6F

1. En el ejemplo 18 6-7, calcule lo siguiente
(a) La probabilidad de que el inversionista venda todos sus valores.
(b) La probabilidad de que el inversionista posea al menos 10 valores.
(c) La posibilidad de que el inversionista posea entre 30 y 40 valores, inclusive
(d) El capital accionario anual neto del inversionista si sólo 10% de los valores se depre­

cian 30% al año y el 90% restante suben 15% al año
2. Se requiere que los nuevos conductores aprueben exámenes escritos antes de someterlos 

a un examen de manejo en carretera Estos exámenes suelen ser administrados por el de­
partamento de policía de la ciudad Los registros en la ciudad de Springdale muestran 
que el promedio de exámenes escritos es de 100 por día de ocho horas El tiempo prome­
dio necesario para completar el examen es aproximadamente de 30 minutos. Sin embar­
go, la llegada real de los conductores que van a realizar el examen y el tiempo que cada 
uno emplea en el examen son totalmente aleatorios. Determine lo siguiente

*(a) La cantidad promedio de sillas que el departamento de policía debe proporcionar en 
el salón donde se realizan los exámenes.

*(b) La probabilidad de que la cantidad de conductores que van a realizar el examen no 
exceda el promedio de sillas proporcionadas en el salón

(c) La probabilidad de que no se administren exámenes en cualquier día
3. Demuestre (utilizando excelPoissonQ at/í oTORA) que con p = 1, los valores de t,.

\V¡ y y p„ para el modelo {M/MIc) (GDIooloo) pueden estimarse con confiabilidad uU*
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lizando las fórmulas menos complicadas del modelo {MIMloo) (GDIodoo) con c lan pe 
queno como 4 servidores.

4 Repita el problema 3 para p = 9 grande y demuestre que la misma conclusion es valida 
excepto que el valor de c debe ser mayor (al menos 14) A partir de los resultados de los 
problemas 3 y 4 ¿a que conclusión puede llegarse con respecto al uso de (MIMloó) 
(CD/ooJoo) pan estimar los resultados del modelo (MIMIc) (GD/oo/oo)*’

18 6 4 Modelo de servicio de maquinas {M/M/R) {GD/K/K), R< K

La jurisdicción de este modelo es un taller con K maquinas Cuando una maquina 
se descompone, se llama a uno de los técnicos en mantenimiento para que la repare 
La tasa de descomposturas por maquina es A descomposturas por unidad de tiempo y 
un técnico reparará las maquinas descompuestas a razón de p. maquinas por unidad de 
tiempo Todas las descomposturas y servicios siguen la distribución de Poisson

La fuente en este modelo es finita porque las maquinas que están funcionando 
pueden descomponerse, y por consiguiente puede generar llamadas de servicio Una vez 
que todas las máquinas se descompongan, no podrá haber más llamadas de servicio 

Dada A la tasa de descomposturas por maquina, la tasa de descomposturas de 
todo el taller es proporcional a la cantidad de maquinas que están funcionando En fun­
ción del modelo de colas, tener n maquinas en el sistema significa que n maquinas están 
descompuestas, y que la tasa de descomposturas asociada de todo el taller es

k„ = {K- ;i)A, K

En función del modelo generalizado de la sección 18 5, tenemos

1

1 Q ^ n ^ K
- lo, n^ K

í «p 0 :< n ^ R
R n ^ K

A partir del modelo generalizado podemos obtener (iCompruébelo')
rC,V'Po OsnsR

P" “ 1 C,y "'^"bPo R^nSK 
[ " R< R"-’‘

No hay expresión alguna de forma cerrada para L, y por consiguiente debe calcu 
larse por medio de la siguiente definición básica

K
í; =

n-0

El valor de Acf,.c se calcula como

A.ac = EW< - »)} = - E.)

Utilizando las fórmulas de la sección 18 6 1, podemos calcular las medidas restantes de 

desempeño W¡, W,¡ y L¡¡
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Ejemplo 18.6-8

Toolco opera un taller con 22 maquinas. En promedio, una maquina se descompone cada 2 horas. 
Se requiere un promedio de 12 minutos completar una reparación. Tanto el tiempo entre des­
composturas como el tiempo de reparación son exponenciales. A Toolco le interesa determinar 
la cantidad de léemeos en reparaciones para mantener el taller funcionando “bien"

La situación se analiza inxcstigando la productividad de las maquinas como una función 
de la cantidad de técnicos, definida como

/ Productividad 
\de las máquinas,

Maquinas disponibles - Máquinas descompuestas 
Maquinas disponibles

X 100

22 - L, 
22

X 100

Los resultados en esta situación se obtienen utilizando los siguientes datos de entrada lambda 
= .5. mu -5,R= 1,2,3 o 4. límite del sistema = 22, y límite de la fuente = 22 La figura 18 9 pro­
porciona los resultados. La siguiente tabla da la productividad asociada como una función del 
numero de técnicos en reparaciones.

Técnicos en reparaciones 1 2 3 4

Productividad de las maquinas (100%) 45 44 80 15 88 79 90 45
Incremento marginal (10U°a) 34 71 864 I 66

Los resultados muestran que con un técnico la productividad es baja (= 45 44%) Si se au­
menta la cantidad de técnicos a dos. la productividad salta 34 71 % a 80 15% Cuando el taller em­
plea tres técnicos, la productividad se incrementa sólo en aproximadamente de 8 64% a 88 79%, 
mientras que los cuatro técnicos incrementarán la productividad en un escaso 1 66% a 90 45% 

Juzgando a partir de estos resultados, se justifica el uso de dos léemeos. El caso de tres no es 
tan fuerte ya que eleva la productividad en sólo 8 64% Tal vez una comparación monetaria 
entre el costo de contratar un tercer técnico y el ingreso atnbuido al incremento de 8 64% de la 
productividad pueda usarse para resolver este punto (vea la sección 18 10 para un análisis de los 
modelos de costos).

FIGURA 18 9

Resultados del análisis comparalivo realizado con TORA p.ira el ejemplo 18 6 8 (archivo loraCxIB 6 8 txt)

Comparative Analysis

C Lambda Mu L'da eff pO Ls Lq Ws Wq
1 0.500 5.00 4.9980 0.0004 12.0040 11.0044 2.4018 2.2018
2 0.500 5.00 8.8161 0.0564 4.3677 2.6045 0.4954 0 2954
3 0.500 5.00 9.7670 0.1078 2.4660 0.5128 0.2525 0.0525
4 0.500 5.00 9 9500 0 1199 2.1001 0.1102 0 2111 0.0111
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CONJUNTO DE PROBLEMAS 18.6G

1. En el ejemplo 18 6-8, haga lo siguiente
(a) Verifique los valores de Acf« dados en la figura 18 9 

*(b) Calcule la cantidad esperada de técnicos ociosos, si /? = 4
(c) Calcule la probabilidad de que los técnicos ésten ociosos,si /? = 3 

*(d) Calcule la probabilidad de que la mayoría (más de la mitad) de los técnicos estén 
OCIOSOS, SI R = 3

2. En el ejemplo 18 6-8, defina y calcule la productividad de los técnicos para R - 1.2,3. y 4 
Utilice esta información junto con la medida de productividad de la maquina para deci­
dir el numero de técnicos que Toolco debe contratar

3. En los cálculos de la figura 18 9, puede parecer confuso que la tasa promedio de descom­
posturas de máquinas en el taller, se incrementa con el meremento de R Explique por 
que debe esperarse el incremento de A^fec

*4. Un operador atiende 5 maquinas automáticas. Después de que cada maquina completa 
un lote, el operador debe reiniciarla antes de que se inicie un nuevo lote El tiempo para 
completar un lote es exponencial con media de 45 minutos. El tiempo de preparación 
también es exponencial con media de 8 minutos.
(a) Determine el promedio de máquinas en espera de ser preparados o que se están pre­

parando
(b) Calcule la probabilidad de que todas las maquinas estén funcionando
(c) Determine el tiempo promedio que una maquina esta detenida

S. Kleen All es una compañía de servicios que realiza vanos trabajos peculiares, como jardi­
nería, poda de árboles y pintura de casas. Los 4 empleados de la compañía salen de la ofi­
cina con la pnmera asignación del día Después de completar una asignación, el empleado 
llama a la oficina para pedir instrucciones para el siguiente trabajo que se va a realizar El 
tiempo pora completar una asignación es exponencial con una media de 45 minutos. El 
tiempo de viaje entre los trabajos también es exponencial con una media de 20 minutos.
(a) Determine el promedio de empicados que viajan entre los trabajos.
(b) Calcule la probabilidad de que ningún empleado ande en camino

*6. Luego de una larga espera, los Newborns fueron recompensados con quintuples, 2 niños 
y 3 niñas, gracias a los maravillosos avances de la medicino Durante los primeros 5 
meses, la vida de los niños consistía en dos estados, despiertos (la mayor parte del tiempo 
llorando) y dormidos. De acuerdo con los Newborns, las actividades de los bebes de “des- 
pertar-dormir ’ nunca coinciden En su lugar, lodo el asunto es totalmente aleatorio De 
hecho, la señora Newborn, profesional en estadísticas, cree que el tiempo que cada bebe 
llora es exponencial, con una media de 30 minutos. La cantidad de sueño que cada bebe 
obtiene también resulta ser exponencial, con media de 2 horas. Determine lo siguiente 
(u) El promedio de bebés despiertos en cualquier momento
(b) La probabilidad de que todos los bebés esten dormidos
(c) La probabilidad de que los Newborns no se sientan felices porque lia>a mus bebes 

despiertos (y llorando) que dormidos.
7. Verifique la expresión de p„ para el modelo {Af/MIR) {GDIKIK)
8. Demuestre que la tasa de descomposturas en el taller puede calcularse a partir de la formula

'^cíce ~

donde R es el promedio de técnicos ocupados.
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9. Venfiquc los siguientes resollados en el caso especial de un lecnico (/? - 1) 1 

Pn =

Pi) =

L,=

K'p''
{K - n)'^"

(1 - A))

P

18.7 (/W/6/1):(GD/oo/oo)—FÓRMULA DE POLLACZEK-KHINTCHINE (P-K)

Los modelos de colas en los que las llegadas y salidas no siguen la distribución de 
Poisson son complejos. En general, es aconsejable utilizar la simulación como una he­
rramienta alternativa para analizar estas situaciones (vea el capitulo 19)

Esta sección presenta una de las pocas colas no Poisson para la cual hay disponi­
bles resultados analíticos Se trata del caso en que el tiempo de servicio, l, esta repre­
sentado por cualquier distribución de probabilidad con media £{/) y vananza varj/} Los 
resultados del modelo incluyen las medidas de desempeño básicas VV, y W^,asi 
como también pq El modelo no proporciona una expresión de forma cerrada para p„ 
debido a la incontrolabihdad analítica

Sea A la tasa de llegadas a la instalación de un solo servidor Dadas E{r} y varjl) de 
la distribución del tiempo de servicio y que A£{í} < 1, se puede demostrar por medio 
de un análisis de cadena de Markov/probabilidad compleja que

L¡ — A£{f) +
A^(£^[r} + var{r|)

2(1-A£|0)
, A£{/} < 1

La probabilidad de que la instalación este vacía (ociosa) se calcula como

A) - 1-A£(íl - 1 - p
Dada A^.fcc = A, las medidas de desempeño restantes (L^, y W^) se derivan a partir 
de ¿5, como se explica en la sección 18 6 1

La plantilla excelPKFornuila \ls automatiza los cálculos de este modelo

Ejemplo 18.7-1

En la instalación de lavado de autos Automata del ejemplo 18 6 2, suponga que se instala un sis 
lema nuevo de modo que el tiempo de servicio de todos los autos es constante e igual a 10 
ñutos. ¿Como afecta el nuevo sistema al funcionamiento de la instalación*’

A partir del ejemplo 186 2,Aefcc = A = 4 autos por hora E! tiempo de servicio es constan- 
te de modo que C|() = sí = i hora y var |(| = 0 Por lo lamo,

i. =
4^((;)^ + o)

2(l - s)
- 1 333 - (jj) = 667 autos
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^ = 333 horas 
4

tVq = —^ = 167 horas

Es interesante comparar los tiempos de espera con los del caso Poisson en el ejemplo 18 6-2, 
(A//A//1) (GDfoolco) Las tasas de llegadas y salidas son las mismas en ambos casos (A = 4 autos 
por hora y ^ =6 autos por hora) No obstante, como se muestra en la tabla siguiente, el 
tiempo de espera anticipado es menor en el modelo actual Los resultados tienen sentido porque 
un tiempo de servicio constante indica nws certeza en la operación de la instalación

(A//A//I) (CDIixJoo) (A//D/1) (CD/oc/ca)

IV, (hr) iOO 333
11', (hr) 333 167

CONJUNTO DE PROBLEMAS 18.7A

1. En el ejemplo 18 7-1, calcule el porcentaje de tiempo que la instalación está ociosa
2. Resuelva el ejemplo 18 7-1 suponiendo que la distribución del tiempo de servicio es 

como sigue
*(a) Uniforme entre 8 y 20 minutos.
(b) Normal con ^ = 12 minutos y o- = 3 minutos.
(c) Discreto con valores iguales a 4,8 y 15 minutos y probabilidades de 2, 6 y 2, respec­

tivamente
3. Layson Roofing Inc instala techos de tejas en casas nuevas y viejas en Arkansas. Los 

clientes potenciales solicitan el servicio al azar a razón de nueve trabajos por mes de 30 
días y se les pone en una lista de espera para ser procesados sobre la base de FCFS Los 
tamaños de las casas varían, pero es bastante razonable suponer que las áreas del techo 
están uniformemente distribuidas entre 150 y 300 metros cuadrados Por lo común, la 
cuadrilla de trabajo puede completar 75 cuadrados al día Determine lo siguiente
(a) Los trabajos de lechado pendientes promedio de Layson
(b) El tiempo promedio que un cliente espera hasta que se completa el trabajo de techado
(c) Si la cuadnlla de trabajo se incrementa al punto de que pueden completar 150 cuadra­

dos al día, ¿cómo afectará esto al tiempo promedio hasta que se completa un trabajo/
*4. Optica elabora lentes de prescripción de acuerdo con los pedidos de los clientes. Cada 

trabajador se especializa en ciertos tipos de lentes. La compañía ha estado experimentan­
do demoras inusuales en el procesamiento de prescripciones bifocales y trifocales. El tra­
bajador a cargo recibe 30 pedidos por día de 8 horas. El tiempo para completar una 
prescripción en general está normalmente distribuido, con una media de 12 minutos y 
una desviación estándar de 3 minutos. Después de emplear entre 2 y 4 minutos, unifor­
memente distribuidos, para inspeccionar los lentes, el trabajador puede empezar a proce­
sar una nueva prescripción Determine lo siguiente
(a) El porcentaje de tiempo que el trabajador está ocioso
(b) El promedio de prescripciones bifocales y trifocales pendientes en Óptica

(c) El tiempo promedio hasta que se completa una prescripción
5. Un producto llega de acuerdo con una distribución de Poisson a ra/on de uno cada 4*1 

minutos. El producto requiere dos operaciones aleatorias atendidas por un trabajador La 
pnmera operación utili/a una máquina semiautomática que completa su ciclo en exacta­
mente 28 minutos. La segunda operación realiza ajustes y cambios menores, y su tiempo



638 Capitulóla Sistemas de colas

depende de la condición del producto cuando sale de la operación 1 Especificanítme, el 
tiempo de la operación 2 es uniforme entre 3 > 6 minutos. Debido a que cada operación 
requiere toda la atención del trabajador, no se puede cargar un nuevo producto en la ma­
quina semiautomatica hasta que el producto actual sale de la Operación 2
(a) Determine la cantidad de productos en espera de ser procesados en la maquina se- 

miautomatica
(b) ¿Cual es el porcentaje de tiempo que el trabajador estará ocioso'^
(c) Cuanto tiempo se requiere, en promedio, para que un producto que llega salga de la 

operación 2*^
(A//A//1) {GDccJoo) Demuestre que en el caso en que el tiempo es constante, la lormula 
P-K se reduce a

L, = p + p-
2(1-p)

donde p.= íiñyp = ¿ =A£1i|

7. (A//£„,/l) {GDfocJco) Dado que el tiempo de servicio es Erlang con parámetros m y n 
(esdecir,£j/) = = ^), demuestre que la formula P-K se reduce a

L, mp +
//i(l + m)p“ 

- /»P)

8. Demuestre que la formula P K se reduce a L¡ del modelo (MIMIl) (CD/oo/oo) cuando el 
tiempo de servicio es exponencial con media de ¿ unidades de tiempo

9. En una instalación de servicios con c servidores paralelos, suponga que los clientes según 
una distribución de Poisson, con tasa media de A Los clientes que llegan son asignados a 
los servidores (ocupados o desocupados) de una forma cstnctamente de rotación
(a) Determine la distribución de la probabilidad del tiempo entre llegadas,
(b) Suponga en el inciso (a) que los clientes que llegan son asignados al azar a los c ser­

vidores con probabilidades a„ a, £ 0. i = 1,2, , c. y oi + «2 + + = 1
Determine la distribución de la probabilidad del tiempo entre llegadas.

18.8 OTROS MODELOS DE COLAS

Las secciones anteriores se concentraron en el modelo de colas de Poisson La literatu­
ra sobre colas abunda con otros tipos de colas En particular, las colas con prioridad de 
servicio, las colas en red y las colas no Poisson forman un importante cuerpo de la lite­
ratura de teoría de colas. Estos modelos se encuentran en la mayoría de libros especia­
lizados en la teoría de colas

18.9 MODELOS DE DECISIÓN EN COLAS

El nivel de servicio en una instalación de colas es una función de la tasa de servicios, nh 
y de la cantidad de servidores paralelos, c Esta sección presenta dos modelos de deci­
sión para determinar niveles de servicio “adecuado” en sistemas de colas (1) un mode­
lo de costos, y (2) un modelo de nivel de aspiración El objetivo es encontrar un balan­
ce entre el nivel de servicio y la espera
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Los modelos de costos tratan de balancear dos costos conflictivos

1. El costo del ofrecimiento del servicio
2. El costo de la demora al ofrecer el servicio (tiempo de espera del cliente)

Un incremento de un costo provoca automáticamente una reducción del otro, como se 
demostró antes en la figura 18 1

Si .r (= ^ o c) representa el nivel de servicio, el modelo de costos se expresa como 

ETC{x) = EOC{x) + EWC{x)

donde

ETC = Costo total esperado por unidad de tiempo
EOC = Costo de operación esperado de la instalación por unidad de tiempo
EWC = Costo de espera anticipado por unidad de tiempo

Las formas más simples de EOC y EV/C son las siguientes funciones lineales 

EOC{x) = Ci.v 

EWC{x) = CjL,

donde

C\ = Costo marginal por unidad de x por unidad de tiempo
C2 = Costo de espera por unidad de tiempo por cliente (en espera)

Los dos ejemplos siguientes ilustran el uso del modelo de costos. El primer ejem­
plo supone X = p. y e\ segundo supone x = c.

Ejemplo 18.9-1

KecnCo Publishing se encuentra en el proceso de comprar una copiadora comercial de alia ve­
locidad Los vendedores propusieron cuatro modelos cuyas especificaciones se resumen a conti­
nuación

Modelo de copiadora Cosío de operación (5/h) Velocidad (hojns/mm)

1 15 30
2 20 36
3 24 5Ü
4 27 66

Los trabajos llegan a KeenCo en una comente Poisson a razón de cuatro trabajos por día de 24 
horas. El tamaño del trabajo es aleatorio con promedios apro\imadamcnle de lO.OOü hojas por 
trabajo Los contratos con los clientes especifican un costo de pcnalizacion por entrega retrasa­
da de $80 por trabajos por día ¿Cuál copiadora debe comprar KeenCo?
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El costo total esperado por día asociado ton la copiadora / es 
ETC. = COC, + EWC,

= C„ X 24 +
= 24Ci, + 80L„.í = 1,2.1.4

Los dalos del problema dan los valores de Cu Determinamos reconociendo que, para 
todos los propósitos prácticos, cada copiadora puede ser tratada como un modelo 
(A//A//1):(G£)oq/co). La lasa de llegadas es A = 4 trabajos/dia La tasa de servicios p., asociada 
con el modelo i se calcula como

Modelo 1 Tas.i de servicios(trabajos/diu)

1 4 32
2 5 18

3 7 20
4 9 50

El cálculo de la lasa de servicios se demuestra para el modelo 1
10.000 1

Tiempo promedio por trabajo = —— x — =5 Sonoras

Por lo tanto,
24

/X] = TT7 = 4 32 irabajos/día 
5 56

Los valores de L„ calculados por TORA o cxcelPoissonQ \ls, se dan en la siguiente tabla

Modelo I A, (Trahajos/dla) ^,(Trabjjos/dfa) Lj,(Trabajos)

1 4 4 32 1250
2 4 5 18 3 39
3 4 7 20 1 25
4 4 9 50 0.73

Los costos de los cuatro modelos se calculan como sigue.

Modelo; COC, (S) EWC, (S) CTC,(S)

1 360 00 1000 00 1360 00
2 480 00 271 20 751 20
3 576.tl0 100.00 676.00
4 648 00 58 40 706 40

El modelo 3 produce el costo mínimo

CONJUNTO DE PROBLEMAS 18.9A

1. En el ejemplo 18 9-1, haga lo siguiente
(a) Verifique los valores de p2< Ai y dados en el ejemplo
(b) Suponga que la penali7ación de $80 por trabajo por día se aplica sólo a trabajos 

que no “están en proceso” ai final del día <,Cuál copiadora produce el costo mínitno 
total por día?
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•2. Metalco va a contratar a un técnico en mantenimiento para un taller de 10 máquinas. Se 
están considerando dos candidatos El primero puede realizar reparaciones a razón de 
5 maquinas por hora y gana S15 por hora El segundo, por estar mas calificado, recibe 
$20 por hora y puede reparar 8 máquinas por hora Metalco estima que cada maquina 
descompuesta incurrirá en un costo de $50 por hora a causa de la producción perdida 
Suponiendo que las maquinas se descomponen de acuerdo con una distribución de 
Poisson con una media de 3 por hora y que el tiempo de reparación es exponencial, ¿cual 
técnico debe ser contratado?

3. B&K Groceries va a abnr una tienda que presumirá de constar con lectores de barras de 
“última generación" El señor Bih, uno de los propicíanos de B&K ha limitado las opcio­
nes a dos lectores El lector A puede procesar 10 artículos por minuto, y el lector B puede 
leer 15 artículos por minuto El costo diario de operación (10 horas) y mantenimiento de 
los lectores es de $25 y $35 para los modelos Ay B respectivamente Los clientes que ter­
minan sus compras llegan a la caja de acuerdo con una distribución de Poisson a razón de 
10 clientes por hora Cada carrito lleva entre 25 y 35 artículos, distribuidos de manera 
uniforme El señor Bih estima que el costo promedio por cliente que espera por minuto 
es aproximadamente de 20 centavos. ¿Cuál lector debe adquinr B&K’’ {Sugerencia El 
tiempo de servicio por cliente no es exponencial, sino unirormemente distribuido)

4. H&I Industry produce una maquina especial con diferentes tasas de producción (piezas 
por hora) para satisfacer las espcciricacioncs del cliente El propietario de un taller esta 
considerando comprar una de estas máquinas y desea adquirir la de velocidad mas econó­
mica (en piezas por hora) Por c\pcriencias pasadas, el propietario estima que los pedidos 
de tos clientes llegan al taller de acuerdo con una distnbución de Poisson a razón de tres 
pedidos por hora Cada pedido promedia 500 piezas. Los contratos entre el propictano y 
los clientes especifican una penalización de $100 por pedido retrasado por hora
(a) Suponiendo que el tiempo de producción real por pedido es exponencial, desarrolle 

un modelo de costos general como una función de la lasa de producción 
•(b) A partir del modelo de costos en (a), determine una expresión para la tasa de pro 

duccion óptima
•(c) Aplicando los datos del problema, determine la tasa de producción óptima que el 

propietario debe obtener de H&I
5. A un taller llegan trabajos a una taza de distribución de Poisson a razón de 80 trabajos por 

semana Una máquina automática representa el cuello de botella en el taller Se estima que 
un incremento unitario de la producción de la maquina costará $250 por semana Los traba­
jos retrasados normalmente onginan un negocio perdido, el que se supone es de $500 por 
trabajo por semana Determine la tasa de producción optima para la maquina automática

6. Pizza Unlimited vende dos modelos de restaurantes franquiciados La capacidad del mo­
delo A es de 20 grupos de clientes, la del modelo B es de 30 grupos. El costo mensual de 
operación del modelo A es de $12,000 y el del modelo B es de $16,000 Un inversionista 
desea montar un restaurante de pizzas estilo buffet que grupos de clientes, cada uno ocu­
pando una mesa, lleguen siguiendo una distribución de Poisson a razón de 25 grupos por 
hora Si todas las mesas están ocupadas, los clientes se irán a otra parle El modelo A ser­
virá a 26 grupos por hora, el modelo B servirá a 29 grupos por hora Debido a la varia­
ción de los tamaños de los grupos y de los tipos de órdenes, el tiempo de servicio es expo 
nenciat El inversionista estima que el promedio de negocio perdido por grupo de 
Chentes por hora es de $15. Se estima que una demora en el servicio de los clientes que 
esperan cuesta un promedio de $10 por grupo de clientes por hora
(a) Desarrolle un modelo de costos apropiado
(b) Suponiendo que el restaurante estará abierto 10 horas al día, ¿cual modelo rcLomeii- 

daría para el inversionista?
7. Suponga que en el problema 6 el inversionista puede elegir cualquier capacidad de restauran­

te deseada basado en un costo marginal especifico por cada unidad de capacidad adicional 
solicitada. Denve el modelo de costos general, y defina lodos sus componentes y términos.



642 Capítulo 18 Sistemas de colas

8. Second Time Around \endc a consignación artículos populares usados. Su operación 
puede considerarse como un problema de inventario en el cual las existencias se repo 
nen y agotan al azar, de acuerdo con una distribución de Poisson con tasas de A y ^ 
artículos por día Cada unidad de tiempo que el articulo esta agolado. Second Time pier 
de $C, a causa de las oportunidades perdidas, y cada unidad de tiempo que un articulo se 
mantiene en existencia, se incurre en un costo de retención de $C2
(a) Desarrolle una expresión para el costo total esperado por unidad de tiempo
(b) Determine el valor óptimo de p = ^ ¿Cual condición debe imponerse a los valores 

relativos de Ci y Ci para que la solución sea consistente con las suposiciones del mo­
delo (A//A//1) {GDocJcc)"^

Ejemplo 18.9-2

En una instalación de almacén de herramientas manejado por sanos empleados, las solicitudes 
de cambio de herramientas llegan de acuerdo con una dislnbucion de Poisson a razón de 17 5 so 
licitudes por hora Cada empleado puede manejar un promedio de 10 solicitudes por hora El 
costo de contratar un empleado en la instalación es de $12 por hora El costo de la producción 
perdida por máquina de espera por hora es aproximadamente de $50 Determine la cantidad op 
tima de empleados para la instalación

La situaaón corresponde a un modelo (MIMIc) en el cual se desea determinar el valor ópti­
mo de c Por lo tanto, en el modelo de costos general presentado al inicio de esta sección, con \ 
= c. obtenemos el siguiente modelo de costos

ETCic) = C,c + CzL,(c)

= 12c + 50L,(c)

Observe que Ls(c) es una función de la cantidad de empleados (paralelos) en el almacén
Utilizamos {MIMIc) (GD/cc/oo) con A = 17 5 solicitudes por hora y = 10 solicitudes por 

hora El estado estable se alcanza solo si c > ¿es decir c s 2 en este ejemplo La tabla siguien­
te proporciona los cálculos necesarios para determinar el c óptimo Los valores Lj(c) (detenrii 
nados por excelPoissonQ t/í oTORA) muestran que el numero óptimo de empleados es 4

c L,(c) (respuestas) ETC(c) ($)

2 7 467 397 35
3 2 217 146 85
4 1.842 140.10
5 1769 148 45
6 1754 159 70

CONJUNTO DE PROBLEMAS 18.9B

1. Resuelva el ejemplo 18 9-2, suponiendo que Cj = $20 y Cj = $45 
*2. Tasco Olí posee una unidad propulsora de oleoducto que opera de forma continua El 

tiempo entre descomposturas de cada propulsor es exponencial con una media de 20 horas 
El tiempo de reparación es exponencial con una media de 3 horas. En una estación particu­
lar. dos técnicos de mantenimiento atienden 10 propulsores. El salario por hora de cada 
técnico es de $18 Se estima que las perdidas del oleoducto son de $30 por propulsor des­
compuesto por hora Tasco esta estudiando la posibilidad de contratar un técnico adicional
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(o) ¿Se ahorrarán costos con la contratación de un tercer técnico*^
(b) ¿Cuál es pérdida programada en dolares por descompostura cuando la cantidad de 

técnicos en servicio es de dos?, ¿de tres?
Una compañía renta una línea telefónica de telecomunicaciones de banda ancha (WATS, 
por sus siglas en inglés) por S2000 al mes. La oficina esta abierta 20ü horas laborales por 
mes. Durante el tiempo restante, la línea WATS se utiliza para otros propósitos y no está 
disponible para la compañía El acceso a la línea WATS durante las horas laborales se 
amplía a 100 vendedores, cada uno de los cuales puede necesitar la línea en cualquier mo­
mento dos veces en promedio por día de 8 horas con tiempo exponenaal entre llamadas. 
Un vendedor siempre espera sí la línea WATS está ocupada a un costo estimado de 1 cen­
tavo por minuto de espera Se supone que mientras un vendedor espera una llamada dada 
no se presentará la necesidad de hacer llamadas. El costo normal de las llamadas (sin utili­
zar la línea WATS) promedia aproximadamente 50 centavos por minuto, y la duración de 
cada llamada es exponencial, con una media de 6 minutos. La compañía está considerando 
rentar (al mismo precio) una segunda línea WATS para mejorar el servicio 
(a) ¿La línea WATS única le está ahorrando dinero a la compañía en comparación con 

un sistema sin línea WATS? ¿Qué tanto está ganando o perdiendo la compañía por 
mes en comparación con el sistema sin línea WATS?

<b) ¿Debe rentar la compañía una segunda línea WATS? ¿Cuánto ganaría o perdería 
sobre el caso de una línea WATS única al rentar una línea más*^

*4. Un taller mecánico incluye 20 máquinas y 3 técnicos en reparaciones. Una máquina en 
funcionamiento se descompone de acuerdo con una distribución de Poisson El tiempo 
de reparación por maquina es exponencial con una media de 6 minutos. Un análisis de 
colas de la situación muestra un promedio de 57 8 de solicitudes de reparación por día de 
8 horas para todo el taller Suponga que la tasa de producción por máquina es de 25 uni­
dades por hora y que cada unidad producida genera $2 en ingresos. Ademas, asuma que 
el salario de un técnico es de $20 por hora Compare el costo de contratar los técnicos 
con el costo de los ingresos perdidos cuando las máquinas se descomponen.

S. Las condiciones necesarias para que el ETC(c) (definidas antes) para asumir un valor 
mínimo con c = c* son

ETCic*-\) a ETC{c*) y ETC{c* + l) a LTC{c*)

Demuestre que estas condiciones se reducen a

L.(c>) - +!)==§ s í..(c< - I) -

Aplique el resultado al ejemplo 18.9-2, y demuestre que el resultado es c* = 4

18.9.2 Modelo de nivel de aspiración
La viabilidad del modelo de costos depende de qué tan bien podamos estimar los pará­
metros de costos En general, estos parámetros son difíciles de estimar, en particular el 
asociado con el tiempo de espera de clientes El modelo de nivel de aspiración mitip 
esta dificultad al trabajar directamente con las medidas de desempeño de la situación 
de colas. La idea es determinar un intervalo aceptable para el nivel de servicio (/i o c) 
especificando límites razonables en las medidas de desempeño conflictivas Tales lími­
tes son los niveles de aspiración que el tomador de decisiones desea alcanzar.
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FIGURA 18 10

Aplicjción ilu los ni\clcs de aspiración 
la loma de decisiones de colas

El modelo se aplica al modelo de vanos servidores para detemiinar una cantidad 
“aceptable” de servidores, c*, teniendo en cuenta dos medidas de desempeño (conflictivas):

1. El tiempo promedio en el sistema, W^.
2. El porcentaje de ociosidad de los servidores. A'.

El porcentaje de ociosidad se calcula como sigue:

C ~ C ^ ^i¡)
-------- X 100 = ---------------- -- X 100 : 100

(Vea el problema 12, conjunto 18 6D para la comprobación.)
El problema se reduce a determinar la cantidad de servidores c* de modo que

W, < a y A' ^ p

Las constantes ay p son los niveles de aspiración especificados por el tomador de de­
cisiones Por ejemplo, a = 3 minutos y /3 = 10%.

La solución del problema puede determinarse trazando una gráfica de VV5 y X 
como una función de c, como se muestra en la figura 18.10. Localizando a y /3 en la grá­
fica, podemos determinar un intervalo aceptable para c*. Si no se pueden satisfacer las 
dos condiciones al mismo tiempo, entonces una o ambas deben relajarse antes de que 
se pueda encontrar un intervalo factible

Ejemplo 18.9-3

, En el ejemplo 18.9-2, suponga que se desea determinar la cantidad de empleados de modo que 
el tiempo de espera hasta que se recibe una herramienta permanezca por debajo de 5 minutos. 
Al mismo tiempo, el porcentaje de ociosidad debe estar por debajo de 20%

Sm pensar, y antes de realizar cualquier cálculo, es inalcanzable un límite de aspiración de 5 mi­
nutos en el tiempo de espera hasta que se recibe una herramienta (es decir, £ 5 minutos) porque 
de acuerdo con los datos del problema, el tiempo de servicio promedio sólo es de 6 minutos.

La siguiente tabla resumen W¡ y X como una función de c:

C 2 3 4 5 6 7 8

tV, (min) 25 4 7.6 63 6 1 60 60 60
Xi%) 125 417 56 3 65 0 70 8 75 0 78 0
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Con base en estos resultados debemos, o reducir el tiempo de servicio o reconocer que la causa 
del problema es quejas herramientas se solicitan a una tasa irrazonablemente alta (A = 17 5 so­
licitudes por hora). Ésta, sin duda, es el área que hay que atacar Por ejemplo, nos gustaría inves­
tigar la razón de tan alta demanda de reemplazo de herramientas. ¿Podría ser que el diseño de la 
herramienta está defectuoso en sí? O, ¿podría ser que los operadores de las máquinas tratan a 
propósito de interrumpir la producción para e.xpresar sus quejas?

CONJUNTO DE PROBLEMAS 18.9C

*1. Un taller utiliza 10 máquinas idénticas. Cada máquina se descompone una vez cada 8 
horas en promedio. Se requiere media hora en promedio para reparar una máquina des­
compuesta. Los procesos de descompostura y reparación siguen la distribución de 
Poisson. Determine lo siguiente:
(a) La cantidad de técnicos de mantenimiento necesarios de modo que el número pro­

medio de máquinas descompuestas sea menor que 1.
(b) La cantidad de técnicos en mantenimiento necesarios de modo que el tiempo de de­

mora hasta que se inicie una reparación sea de menos de 10 minutos.
2. En el modelo de costos de la sección 18 9-1, en general es difícil estimar el parámetro de 

costo C2 (costo de espera). En consecuencia, puede ser útil calcular el costo Cj implicado 
por los niveles de aspiración. Utilizando el modelo de nivel de aspiración para determi­
nar c*. podemos entonces determinar el C2 implicado mediante la siguiente desigualdad:

- Uc‘ + I) s ^ s L,(c* - 1) -

(Vea el problema 5, conjunto 18 9B, para la derivación.) Aplique el procedimiento al pro­
blema del ejemplo 18.9-2, con c* = 3 y Cj = $12.00.
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CAPITULO 19

Modelado de simulación

19.1 SIMULACÍÓN MONTECARLO

Un precursor de la simulación actual es el expenmenlo Montecarlo, un esquema de mo­
delado que estima parámetros estocasticos o determinísticos con base en un muestreo 
aleatorio Algunos ejemplos de aplicaciones Montecarlo incluyen la evaluación de inte­
grales múltiples, la estimación de la constante 7t(= 3.14159), y la inversión de matrices.

Esta sección utiliza un ejemplo para demostrar la técnica Montecarlo El objetivo 
del ejemplo es enfatizar la naturaleza estadística de la simulación

Ejemplo 19.1*1

Utilizaremos un muestreo Montecarlo para estimar el area del siguiente círculo 

(l - I)' + (y - 2)= = 25

El radio del círculo es r = 5 cm, y su centro es (t,y) = (1,2)
El procedimiento para estimar el área requiere encerrar estrechamente el círculo en un cua 

drado cuyo lado sea igual al diámetro del círculo, como se muestra en la figura 19 1 Los puntos 
de esquina se determinan a partir de la geometría del cuadrado

La estimación del área del círculo se basa en un experimento de muestreo que brinda una 
oportunidad igual de seleccionar cualquier punto en el cuadrado Si ni de n puntos mucstreados 
quedan dentro del círculo, entonces

/Área aproximada\ _ ÍüíÁrea deljy^
\ del círculp / n Vcuadrado/ n ''

Para asegurarnos de que todos los puntos en el cuadrado son igualmente probables, las 
coordenadas i y y de un punto en el cuadrado se representan por medio de las siguientes distri­
buciones uluforntes'

/i(0=

My)=

647



648 Capítulo 19 Modelado de simulación

(-4.7) (6.7)

FIGURA 19 1
Estimación Monlccarlo del arca 
de un circulo (-4.-3) (6.-3)

La determinación de una muestra (r.3) se basa en el uso de números (seudo) aleatonos inde­
pendientes 0-1 La tabla 19 1 induje una muestra de tales números, los cuales utilizaremos en los 
ejemplos de este capitulo Para el proposito de simulación general se utilizan operaciones aritméti­
cas especiales para generar números (seudo) aleatonos 0-1, como se demostrara en la sección 19 4 

Se puede usar un par de números aleatorios 0-1, /?i y Rz, para generar un punto aieatono 
(t. >) en el cuadrado utilizando las siguientes fórmulas

^ = -4 + (6 - (-4)]/?, = -4 + 10/?,

> = -3 + [7 - (-3)]/?, = -3 + 10/?2

Para demostrar la aplicación del procedimiento consideremos /?, = 0589 y Rz~ 6733 

r = -4 + 10/?, = -4 + 10 X 0589 = -3 411

y = -3 + 10/?2 = -3 + 10 X 6733 = 3 733

Este punto queda dentro del circulo debido a que

(-3411 - 1)2 -I- (3 733 - 2)2 = 22 46 < 25

Coméntanos. La precision de la estimación del area se puede mejorar por medio de 
experimentos estadísticos comunes.

1. Aumente el tamaño de la muestra, n
2. Use réplicas, N

TABLA 19 1 Una lisia breve de números .ilcalonos 0-1

0589
6733
4799
9486
6139
5933
9341
1782
3473
5644

3529
3646
7676
8931
3919
7876
5199
6358
7472
8954

5869
1281
2867
8216
8261
3866
7125
2108
3575
2926

3455
4871
8111
8912
4291
2302
5954
5423
4208
6975

7900
7698
2871
9534
1394
9025
1605
3567
3070
5513

6307
2346
4220
6991
9745
3428
6037
2569
0546
0305
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El anahsis en el ejemplo 19.1-1 plantea dos preguntas con respecto al experimen­
to de simulación.

1. ¿Que tan grande debe ser la muestra?
2. ¿Cuantas réplicas se requieren*’

Hay algunas fórmulas en la teoría estadística para determinar ny N, y dependen de la 
naturaleza de! experimento de simulación y también del nivel de confianza deseado 
Sin embargo, como en cualquier experimento estadístico, la regla de oro es que los va­
lores altos de /I y Ai producen resultados de simulación más precisos. Al final, el tamaño 
de la muestra dependerá del costo asociado con la realización del experimento de si­
mulación Sin embargo, un tamaño de muestra seleccionado se suele considerar “ade­
cuado” SI produce una desviación estándar “relativamente pequeña”

Es necesario expresar los resultados como un intervalo de confianza para tener 
en cuenta la variación aleatona del resultado del experimento Si A y í son la media y 
la raíz cuadrada de la vananza de N réplicas, entonces, con un nivel de confianza a, el 
intervalo de confianza del área verdadera A es

El parámetro se determina con las tablas de distnbucion rdado un nivel de con­
fianza a y A’ - 1 grados de libertad (vea la tabla t en el apéndice A o utilice la plantilla 
cxcdStatTable xls) Observe que N es igual al número de replicas, el cual es distinto del 
tamaño n de la muestra

Momento de Excel
Los cálculos asociados con cada muestra en el ejemplo 19 1-1 son voluminosos. Se utiliza la plan- 
lilla de Excel excelCirclc xls (con macros VBA) para probar el efecto del tamaño de la muestra y 
la cantidad de replicas en la precision de la estimación Los datos de entrada incluyen el radio 
del círculo, y su centro (cr, cy), el tamaño de la muestra, n, el numero de replicas, N, y el nivel de 
confianza a La entrada Sieps en la celda D4 permite ejecutar vanas muestras en la misma 
ejecución Por ejemplo, si n = 30,000 y Steps == 3, la plantilla producirá de forma automática el 
resultado con n = 30,000,60,000 y 90,000 Se realizan nuevas estimaciones cada vez que se hace 
clic en el botón Press to Execute Montecario porque Excel reaviva la semilla del generador de 
números aleatorios.

La figura 19 2 resume los resultados de 5 replicas y los tamaños de muestra de 30,000.60,000 
y 90,000 El área exacta es de 78 54 cm^ y los resultados Monte Cario muestran que las áreas me 
días estimadas con tos tres tamaños de muestra son ligeramente diferentes.

La figura 16 2 da los intervalos de 95% de confianza para cada n Por ejemplo,el inlerNalo 
de confianza 78 452 :S /I s 78 68 corresponde a /i = 90,000,con N = 5, = 78 566 cm',ys= 092 
cm y / 025 4 = 2 776 En general, para obtener una precision razonable en la estimación del inter­
valo de confianza, el valor de N debe ser al menos 5

CONJUNTO DE PROBLEMAS 19.1A
1. En el ejemplo 19 1-1, estime el área del círculo utilizando las primeras dos columnas

de los números aleatorios 0-1 en la tabla 19.1 (PorconNcmencia. repase cada columna de 
arriba a abajo, y seleccione primero R\ y luego /íi) ¿Como se compara esta estimación 
con las dadas en la figura 19 2’
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|r - B C _ D _ E
1 Monte Cario Estimation of the Area of a Circle
2 Input data
3 Nbr. Replications, N = 5 as 0.025
4 Sample size, n = 30.000 Steps = 3
5 Radius, r - 5
6 Center, cx - 1
7 Center, cv - 2
8 Output results

9 Exact area = 78 540

10
Press to Execute Monte Csrto i

11 Monte Carlo Calculations
12 n-30000 n=60000 n=90000
13 Replication 1 78 590 78 543 78 536
14 Replication 2 78447 78 695 78 731
15 Replication 3 78 747 78 648 78.534
16 Replication 4 76 363 76 500 78 512
17 Replication 5 76 540 78420 78 517
18
19 Mean = 78 537 76 561 78.566
20 Std. Deviation = 0142 0118 0.092
21
22 95% lower conf limit = 78 361 78 415 78 452
23 J 95% upper conf limit = 78 714 78 708 78 680

FIGURA 19 2

Resultados de la estimación Montecarlo del área de un círculo obtenidos con Excel (archivo cxcelCirclcJcls)

2. Suponga que la ecuación de un círculo es

(r - 3)’ + (>< + 2)2 = 16

(a) Dcfína las distribuciones correspondientes/(r) y f{y) y luego demuestre cómo se de­
termina un punto (r.y) de la muestra utilizando el par de aleatorios (0.1),(/?|, /?2)-

(b) Use la plantilla excelCirclc xls para estimar el área y el intervalo de 95% de confian­
za asociado, dados n = 100,000 y N = \Q

3. Use el muestreo Montecarlo para estimar el área del lago que se muestra en la figura 19.3 
Base su estimación en las pnmeras dos columnas de números alentónos (0,1) en la tabla 19.1

4. Considere el juego en el cual dos participantes, Jan y Jim, se turnan para lanzar al aire una mo­
neda Si el resultado es cara, Jim obtiene $10 de Jan De lo contrano. Jan obtiene $10 de Jim.

•(a) ¿Cómo se simula el juego con un experimento Montecarlo?
(b) Ejecute el experimento con 5 réplicas de 10 lanzamientos cada una Use las primeras 

5 columnas de los números aleatorios 0-1 en la tabla 19 1 con cada columna corres­
pondiendo a una réplica.
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FIGURA 19 3

Mapa del lago para el problema 3, 
conjunto 19 lA

(c) Establezca un intervalo de 95% de confianza para las victorias de Jan
(d) Compare el intervalo de confianza en (c) con las victorias leóncas esperadas de Jan

5. Considere la siguiente integral definida

í x~dx 
Jo

(a) Desarrolle el experimento Montecarlo para estimar la integral
(b) Use las primeras cuatro columnas de la tabla 19 1 para evaluar la integral con 4 ré­

plicas, cada una de tamaño 5 Calcule el intervalo de 95% de confianza, y compárelo 
con el valor exacto de la integral

6. Simule cinco ganancias o pérdidas del siguiente juego de “craps" El jugador lanza dos 
dados. Si la suma resultante es 7 u 11, el jugador gana $10 De lo contrario, el jugador 
anota la suma resultado (llamada punto) y continua lanzando los dados hasta que la 
suma resultante coincida con el punto anotado, en cuyo caso el jugador gana $10 Si se 
obtiene un 7 antes de la coincidencia con el punto, el jugador pierde $10

*7. El tiempo de espera para recibir un pedido puede ser de 1 o 2 días con probabilidades 
Iguales. La demanda por día supone los valores 0,1 y 2 con las probabilidades respectivas 
de 2, 7 y 1 Use los números aleatorios de la tabla 19 1 (comenzando con la columna l) 
para estimar la distribución conjunta de la demanda y el tiempo de espera A partir de la 
distribución conjunta, estime la función de densidad de probabilidad de la demanda du­
rante el tiempo de espera {Sugerencia La demanda durante el tiempo de espera supone 
valores discretos de 0 a 4 }

8. Considere el experimento de la aguja de Buffon Se traza un plano horizontal con líneas 
paralelas con una separación de Dcm entre ellas. Se deja caer una aguja de dem de longi 
tud {d < D) al azar sobre el plano El objetivo del experimento es determinar la probabi­
lidad de que cualquiera de los extremos toque o cruce una de las líneas. Defina 

h = Distancia perpendicular óc\ centro de la aguja a una línea (paralela)
0 = Ángulo de inclinación de la aguja con respecto a una línea

(a) Demuestre que la aguja locará o cruzará una línea sólo si

/i £ ^ sen 0,0 s /í £ y, 0 £ tí ^ 7T

(b) Diseñe el experimento Montecarlo, y estime la probabilidad deseada
(c) Use Excel para obtener 4 réplicas, cada una de tamaño 10 de la probabilidad desea­

da Determine el intervalo de 95% de confianza para la estimación Suponga que D 
= 20cmyrf= 10 cm
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(d) Demuestre que ia siguiente formula da la probabilidad teórica
2(¡

75
(e) Use el resultado en (c) junto con la formula en (d) para estimar tt

9. Diseñe un experimento Montecarlo para estimar el \ alor de la constante tt

[Sugerencia Area de un círculo)/(Area de un rectángulo que en\ ucix e estrechamente 
al círculo) = tt/4 ]

19.2 TIPOS DE SIMULACIÓN

La simulación de este día se basa en la idea del rauestreo utilizado con el método 
Montecarlo. Difiere en que estudia el comportamiento de sistemas reales como una 
función de tiempo. Existen dos tipos distintos de modelos de simulación

1. Los modelos continuos se ocupan de sistemas cuyo comportamiento cambia conti­
nuamente con el tiempo Estos modelos suelen utilizar ecuaciones diferenciales 
para descnbir las interacciones entre los diferentes elementos del sistema. Un 
ejemplo típico tiene que ver con el estudio de la dinámica de la población mundial

2. Los modelos discretos tienen que ver principalmente con el estudio de líneas de 
espera con el objetivo de determinar medidas como el tiempo de espera prome­
dio y la longitud de la cola. Estas medidas cambian sólo cuando un cliente entra 
o sale del sistema. Los instantes en que ocurren los cambios en puntos discretos 
específicos del tiempo {eventos de llegada y salida), originan el nombre simulación 
de exento discreto.
Este capítulo presenta los fundamentos de la simulación de evento discreto, in­

cluida una descripción de los componentes de un modelo de simulación, la recolección de 
estadísticas de simulación y el aspecto estadístico del experimento de simulación. 
También pone énfasis en el papel de la computadora y los lenguajes de simulación en 
la ejecución de modelos de simulación.

CONJUNTO DE PROBLEMAS 19.2A

1. Calegoncc las siguientes situaciones como discretas o continuas (o una combinación de 
ambas) En cada caso, especifique el objetivo de desarrollar el modelo de simulación

*(a) Los pedidos de un artículo llegan al azar a un almacén. Un pedido que no puede ser 
completado de inmediato con las existencias disponibles debe esperar la llegada de 
nuevos envíos.

(b) La población mundial se ve afectada por la disponibilidad de los recursos naturales, 
la producción de alimentos y las condiciones ambientales, el nivel educativo, el cui­
dado de la salud y las inversiones de capital.

(c) A una bahía receptora de un almacén automatizado llegan mercancías en tarimas. 
Las tarimas se cargan sobre una banda transportadora y se izan mediante un ele­
vador a una transportadora elevada que mueve las tarimas a los corredores. Los 
corredores son atendidos por grúas que recogen las tarimas de la banda y las co­
locan en compartimientos de almacenamiento

2. Explique por qué estaría de acuerdo o en desacuerdo con el siguiente enunciado “La ma­
yoría de los modelos de simulación de evento discreto pueden ser considerados en una u 
otra forma como sistemas de colas, compuestos de fuentes desde las cuales llegan los clien­
tes. colas donde los clientes pueden esperar, e instalaciones donde se atiende a los clientes"
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19 3 ELEMENTOS DE LA SIMULACIÓN DE EVENTO DISCRETO

El objetivo final de la simulación es estimar algunas medidas de desempeño deseables 
que describan el comportamiento del sistema simulado Por ejemplo, en una instala­
ción de servicio, las medidas de desempeño asociadas pueden incluir el tiempo de es­
pera promedio hasta que un cliente es atendido, la longitud promedio de la cola y la 
utilización promedio de la instalación de servicio Esta sección muestra como se reco­
pilan las estadísticas del sistema simulado con base en el concepto de eventos

19.3.1 Definición genérica de eventos

Todas las simulaciones de eventos discretos describen, directamente o indirectamente, 
situaciones de colas en las que los clientes llegan (para servicio), esperan en la cola (si 
es necesario) y luego reciben el servicio antes de salir de la instalación de servicio 
Como tal, cualquier simulación de evento discreto, independientemente de la comple 
jidad del sistema que describe, se reduce a tratar con dos eventos básicos llegadas 
y salidas El siguiente ejemplo ilustra el uso de los eventos de llegada y salida para 
describir un sistema compuesto de colas distintas

Ejemplo 19.3-1

Mctalco Jobshop recibe dos tipos de trabajos regulares y urgentes.Todos los trabajos se proce­
san en dos maquinas consecutivas con amplias arcas intermedias. Los trabajos urgentes siempre 
suponen prioridad preventiva sobre los trabajos regulares.

Esta situación consta de colas en tándem que representan las maquinas. Al principio nos po­
demos inclinar a identificar los eventos de la situación como 

A11 Un trabajo regular llega a la máquina I 
A21 Un trabajo urgente llega a la máquina 1 
DI 1 Un trabajo regular sale de la maquina 1 
D21 Un trabajo urgente sale de la maquina 1 
/U2. Un trabajo regular llega a la maquina 1 
A22. Un trabajo urgente llega a la maquina 2 
D11 Un trabajo regular sale de la máquina 2.
D22. Un trabajo urgente sale de la máquina 2

En realidad sólo hay dos esentos la llegada de un (nuevo) trabajo al taller y la salida de un ira 
bajo (terminado) de una maquina En primer lugar observe que los eventos Dll y A12 ui reali 
dad son los mismos Lo mismo aplica a D21 y A22 Luego, en la simulación discrela podemos uti­
lizar un evento (llegada o salida) de ambos tipos de trabajos y simplemente “etiquetar ’el evento 
con un utributu que identifique d tipo de trabajo como regular o urgente (En este caso pode 
mos pensar en el atribulo como un descriptorile ideniipuiciuiipcrsoiuil.y úc hecho loes) Dado 
este razonamiento, los eventos del modelo se reducen a (l) una llegada A (al taller),v (2) una sa 
lida D (de una máquina) Las acciones asociadas con el evento de llegada dependen del tipo de 
trabajo que llega (urgente o regular) y de la disponibilidad de una maquina Asimismo, el proce 
samicnlo del evento de salida dependerá de la maquina y del estatus de los trabajos en espera 

I labiendo definido los eventos básicos de un modelo de simulación, demostramos como se 
ejecuta el modelo La figura 19 4 ofrece una representación esquematiea de ocurrencias típicas 
de eventos en la escala de tiempo de la simulación Una vez que se han realizado todas las accio 
nes asociadas con un evento e\!slente. la simulación “salta" al siguiente evento cronológico En 
esencia, la ejecución de la simulación ocurre en los instantes en que ocurren los eventos.
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í Tiempo

Eventol Evento! Evento! Evento 4 Evento!

FIGURA 19 4

Ejemplo de* la ocurrencia de eventos de simul iciun en 11 escala de tiempo

¿Como determina la simulación el tiempo de ocurrencia de los eventos'^ Los eventos de lle­
gada están separados por el tiempo entre llegadas (el intervalo entre llegadas sucesivas) y los 
eventos de salida son una función del tiempo de servicio en la instalación Estos tiempos pueden 
ser deterministicos (por ejemplo un tren que llega a una estación cada 5 minutos) o probabilisti- 
cos (como la llegada aleatoria de los clientes a un banco) Si el tiempo entre eventos es deter 
minístico, la determinación de sus tiempos de ocurrencia es sunple Si es probabilistico, utilizamos 
un procedimiento especial para muestrear de la distribución de probabilidad correspondiente 
Este punto se trata en la siguiente sección

CONJUNTO DE PROBLEMAS 19.3A

1. Identifique los eventos discretos necesarios para simular la siguiente situación Llegan 
dos tipos de trabajos de dos fuentes diferentes. Ambos tipos se procesan en una sola ma­
quina, con pnondad dada a los trabajos de la primera fuente

2. Llegan trabajos a una tasa constante en un sistema transportador de carrusel Tres esta­
ciones de servicio están equidistantes entre si alrededor del carrusel Si el servidor está 
ocioso cuando llega un trabajo a la estación, el trabajo se retira del transportador para 
procesarlo De lo contrario, el trabajo continua girando en el carrusel hasta que el servi­
dor vuelve a estar disponible Un trabajo procesado se guarda en un area de envío adya­
cente Identifique los eventos discretos necesanos para simular esta situación

3. Los autos llegan a los carriles de una caja de servicio en su coche de un banco, donde 
cada carril puede alojar un máximo de cuatro autos. Si los dos carriles están llenos, los 
autos que llegan buscan servicio en otra parte Si en cualquier momento un carril es al 
menos dos autos mas largo que el otro, el ultimo auto en el caml mas largo se pasará a la 
ultima posición del caml mas corto El banco opera la instalación de servicio en su coche 
de 8 00 A M a 3 00 pm cada día laboral Defina los eventos discretos de la situación

*4. La cafetería en la escuela primaria EImdale proporciona un almuerzo de menu fijo de una 
sola charola a lodos sus alumnos Los niños llegan a la ventanilla despachadora cada 30 
segundos. Se requieren 18 segundos para recibir la charola del almuerzo Trace el mapa 
de los eventos de llegada y salida en la escala de tiempo de los primeros cinco alumnos.

19.3.2 Muestreo de distribuciones de probabilidad

La aleatonedad de la simulación surge cuanto el intervalo, t, entre eventos sucesivos es 
probabilístico Esta sección presenta tres métodos para generar muestras aleatorias su­
cesivas (/ = ti, í2, . ) de una distnbución de probabilidad

1. Método inverso
2. Método de convolución
3. Método de aceptación y rechazo
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El método inverso es particularmente adecuado para funciones de densidad de proba­
bilidad analíticamente solubles, como la exponencial y la uniforme Los otros dos mé­
todos se ocupan de casos mas complejos, como el normal y el de Poisson Los tres 
métodos se derivan del uso de números aleatorios 0 1 independientes e idénticamente 
distribuidos

Esta sección presentará solo los dos primeros métodos Los detalles del método 
de aceptación y rechazo se pueden encontrar en la bibliografía

Método inverso. Suponga que se desea obtener una muestra aleatona v de la función 
de densidad de probabilidad (continua o discreta) El método inverso determina 
primero la expresión de forma cerrada de la función de densidad acumulada f(r) = 
P|y s v}, donde 0 ^ F(x) ^ 1, para todos los valores definidos de y

Se puede demostrar que la variable aleatoria z = F{x) esta distribuida de modo 
uniforme en el intervalo 0 ^ z ^ 1 Con base en este resultado, se determina una mues­
tra aleatona de^l^A.) mediante los siguientes pasos (F~^ es la inversa de F)

Paso 1. Genere un numero aleatorio 0 1,/?
Paso 2. Calcule la muestra deseada \ = F~^ {/?)

La figura 19 5 ilustra los procedimientos tanto de una distribución continua como de 
una distribución aleatoria discreta

Ejemplo 19 3-2 (Distribución exponencial)

La función de densidad de probabilidad exponencial /(f) = Ae ■'*,/> 0 representa el tiempo 
entre llegadas i a una instalación con valor medio de j La función de densidad acumulada ts

Fi¡) = f = 1 - > 0

Estableciendo R = F{í), podemos resolver i como

FIGURA 19 5
Muestreo de una distribución de probabilidad por medio del mótodo inverso

nx) Fix)

r

(a) T continua (b) t discreta
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Por ejemplo, para A = 4 clientes por hora y ^ = 9. el periodo de tiempo hasta que ocurre la 
siguiente llegada es

-0) ln(l • 577 horas = 34 5 minutos

Observe que ln(l - 7?) puede ser reemplazado con ln(/?) porque 1 - /? es el complemento de R

CONJUNTO DE PROBLEMAS 19.3B

•1. En el ejemplo 19 3-2, suponga que el primer cliente llega en el instante 0 Use los prime­
ros tres números aleatorios de la columna 1 de la tabla 19 1 para generar los tiempos de 
llegada de los 3 clientes siguientes, y trace la gráfica de los eventos resultantes en la esca­
la de tiempo.

*2. Distribución umfornuL Suponga que la siguiente distnbución uniforme describe el tiem­
po necesario para fabncar una pieza en una máquina.

/(') = ^ .as I sb
b — a

Determine una expresión para la muestra r, dado el numero alcatono R
3. En un taller se reciben trabajos al azar El tiempo entre llegadas es exponencial con 

media de 2 horas. El tiempo necesario para procesar un trabajo es uniforme entre 11 y 
2 horas. Suponiendo que el primer trabajo liega en el instante 0, determine el tiempo de 
llegada y salida de los primeros cinco trabajos mediante los números aleatorios (0,1) 
de la columna 1 de la tabla 19.1.

4. La demanda de una pieza cara de repuesto de un avión de pasajeros es de 0,1,2 o 3 unida­
des por mes con probabilidades de 2, 3, 4 y 1, respectivamente. El taller de manteni­
miento de la aerolínea inicia la operación con existencias de 5 unidades y regresará el 
nivel de las existencias a 5 unidades inmediatamente después que se reduzca a 2 unidades.

*(a) Idee el procedimiento para mucstrear la demanda 
(b) ¿Cuántos meses transcurrirán hasta que ocurra la pnmera reposición? Use valores 

sucesivos de R de la primera columna de la tabla 19 1
5. En una situación de simulación, las unidades de TV se inspeccionan en busca de posibles 

defectos. Hay 80% de probabilidades de que una unidad pase la inspección, en cuyo caso 
se le envía a empaque De lo contrarío, la unidad se repara Podemos representar la situa­
ción simbólicamente de dos maneras.

goloREPARACIÓN/ 2. EMPAQUE/ 8 
gotoEMPAQUE/ 8. REPARACIÓN/.2

Estas dos representaciones parecen equivalentes. No obstante, cuando se aplica una se­
cuencia dada de números aleatorios (0,1) a las dos representaciones, pueden resultar de­
cisiones diferentes (REPARACIÓN o EMPAQUE). Explique por qué

6. Un jugador lanza una moneda repetidamente hasta que cae una cara. La retnbución aso­
ciada es 2". donde n es la cantidad de lanzamientos hasta que sale una cara.
(a) Idee el procedimiento de muestreo del juego
(b) Use los números aleatorios de la columna 1 de la tabla 19 1 para determinar la retri­

bución acumulada después de que salen dos caras.
7. Distribución triangular En la simulación, la carencia de datos puede hacer imposible de­

terminar la distnbución de probabilidad asociada con una actividad de simulación En In 
mayoría de estas situaciones puede ser fácil describir la variable deseada estimando sus 
valores mínimos, los más probables y los máximos. Estos tres valores bastan para definir 
una distribución triangular, la cual puede utilizarse entonces como una estimación 
minar” de la distribución real
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(a) Desarrolle la fórmula para tomar muestras de la siguiente distnbución tnangular. 
cuyos parámetros respectivos son a,byc.

f(x)

2(t - a) 

ib - fl)(c - fl)’ 
2(c - X)

(c - b){c - a)’

Í7 < JT S 6 

b ^ X £ c

(b) Genere tres muestras de una distribución triangular con parámetros (1,3.7) utilizan­
do los primeros tres números aleatorios de la columna 1 de la tabla 19.1

8. Considere una distribución de probabilidad compuesta de un rectángulo flanqueado por 
los lados izquierdo y derecho por tnángulos rectángulos simétricos. Los intervalos res­
pectivos del tnángulo de la izquierda y del triángulo de la derecha son [a,b], [6, c] y[c,d], 
a<b<c<d Ambos tnángulos tienen la misma altura que el rectángulo
(a) Desarrolle un procedimiento de muestreo
(b) Determine cinco muestras con [a,b,c,d) = (1,2,4,6) utilizando los cinco primeros 

números aleatorios de la columna 1 de la tabla 19 1.
*9. Dislnbiiaón geométrica Demuestre cómo se puede obtener una muestra aleatona de la 

siguiente distnbución geométrica

fix) = p(l - p)^x = 0.1,2, .

El parámetro r es el número (de Bernoulli) de fallas hasta que ocurre un éxito, y p es la 
probabilidad de un éxito, 0 < p < 1 Genere cinco muestras para p = 6, utilizando los 
cinco primeros números aleatorios de la columna 1 de la tabla 19 1.

10. Distribución de Weibull. Demuestre cómo se puede obtener una muestra aleatoria de la 
distribución de Wcíbull con la siguiente función de densidad de probabilidad:

fix) = v > 0

donde a > 0 es el parámetro de forma y ^ > 0 es el parámetro de escala

Método de convoludón La idea básica del método de convolución es expresar la 
muestra deseada como la suma estadística de otras variables aleatorias fáciles de maestrear. 
Típicas entre estas distribuciones están las de Eriand y la de Poisson, cuyas muestras 
pueden obtenerse con las muestras de la distribución exponencial.

Ejemplo 19.3-3 (Distribución Erlang)

La variable aleatona m Erlang se define como la suma estándar (convoluciones) de ni vanables 
aleatorias exponenciales independientes e idénticamente distnbuidas. Sea v la variable aleatona 
m Erlang, entonces

y = >'i + )■: + • + >'»>

donde= 1,2, .,/;i son exponenciales independientese idénticamente distnbuidascon la si­
guiente función de densidad de probabilidad

fiy,) = > 0.1 = 1.2. ...m
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Según el ejemplo 19 3-2, una mueslra de la i-csima distnbucion exponencial se calcula como

In (;?,). 1 1,2. ,m

Por lo tamo la muestra m Erlang se calcula como

lln(/?,) + ln(/?;) +-a) + ln(«„)l

Para ilustrar el uso de la formula, suponga que wi = 3 v A = 4 eventos por hora Los tres prime­
ros números aleatorios de la columna 1 de la tabla 19 l resultan R\R2R^ = ( 0589) ( 6733)( 4799) 
= 0190, los cuales dan

> = -(5) !n( 019) = 991 horas

Ejemplo 19.3-4 (Distribución de Poisson)

La sección 18 4 1 muestra que si la distribución del tiempo entre las ocurrencias sucesivas de 
eventos es exponencial, entonces la dislnbución de la cantidad de eventos por unidad de tiempo 
es Poisson, y viceversa Utilizamos la relación para muestrear la distribución de Poisson

Suponga que la media de la distribución de Poisson es A eventos por unidad de tiempo Se 
desprende que el tiempo entre e\entos es exponencial con media de \ unidades de tiempo Esto 
significa que una muestra n, de Poisson se repetirá durante / unidades de tiempo si. y sólo si,

El Periodo hasta que ocurre el evento « £ f < el periodo hasta que ocurre el evento ii + 1 
Esta condición se traduce a

r, + Í2 + + /„ s í < r, + /2 + + /, > o

0 :S f < f,, /I = 0

La variable aleatoria i„i = 1,2, ,/i 4- l.es una muestra de la distribución exponencial con 
media ^ Con el resultado del ejemplo 193-3, tenemos

> o

= o

" n-H
n«, a > n«.." > o
/ I /I

1 a > fi|, ,1 = ü

Estas expresiones se reducen a



19 3 Elementos de la simulación de evento discreto 659

Para ilustrar la implcmcntación del proceso de muestreo supongamos que A = 4 eventos 
por hora Para obtener una muestra durante un periodo r — ^ hora primero calculamos t ^ = 
1353 El numero aleatorio «j = 0589 es menor que c”*' = 1353 Por consiguiente la muestra 

correspondiente es/i = 0

Ejemplo 19.3-5 (Distribución normal)

El teorema del límite central (vea la sección 14 4 4) expresa que la suma (convolución) de n va­
riables aleatorias independientes e idénticamente distnbuidas se hace asmtoticamcntc normal a 
medida que n se hace lo bastante grande Utilizamos este resultado para generar muestras de 
una distnbucion normal con media /i y desviación estándar c 

Defina

' /?1 + /?2

La variable aleatoria es asintóticamente normal de acuerdo con el teorema del límite central 
Dado que el numero aleatorio (0.1) uniforme R tiene una medida de 5 y una vananza de se 
desprende que la media y la vananza de r son f y respectivamente Por lo tanto, una muestra 
aleatoria,y, de una distribución normal N{¡í,<j) con mediay desviación estándar cr, se calcula a 
partir de rcomo

y = M +

En la practica, consideramos que n = 12 por conveniencia, lo cual reduce la fórmula a 

y = ix-¥(r{x- 6)

Para ilustrar el uso de este método, supongamos que deseamos generar una muestra de 
N{1Q,2) (media /i = 10 y desviación estándar tr = 2) Sumando los primeros 12 números aléalo 
nos de las columnas 1 y 2 de la tabla 19 l, tenemos t = 6 1094 Por lo tantoy = 10 + 2(6 1094 
-6) = 10 2188 ____________ ________

Fórmula de muestreo normal de Box-Muller La desventaja del procedimiento 
anterior es que requiere generar 12 números aleatorios por muestra normal, lo cual es 
computacionalmente ineficiente. Un procedimiento mas eficiente ulili/a la trans­
formación

X = cos(27ry?2)\/—21n(/íi)

Box y Muller (1958) demostraron que \ es una Aí(O.l) estándar Por lo tanto,y = +
(r\ producirá una muestra de /V{/x,(r) El nuevo procedimiento es más eficiente porque 
requiere sólo dos números aleatorios (0,1) En realidad, este método es aun mas efi­
ciente de lo que se formulo, porque Box y Muller demostraron que la formula dada 
produce otra muestra yV(0,i) si sen(27rf?2) reemplaza a cos(27t/?2)



Para ilustrar la aplicación del procedimiento de Box y Muller a la distribución 
normal N(10,2), los dos primeros números aleatorios de la columna 1 de la tabla 19 1 
producen las siguientes muestras N(0,1)

X, = cos(2jt X .6733) \/-2 \n(05S9) = -1 103

V, = sen{27T X 6733) V-2 ln( 0589) = -2 109

Por lo tanto, las muestras A/(10,2) correspondientes son

= 10 + 2(-l 103) = 7 794 
= 10 + 2(-2 109) = 5 782

CONJUNTO DE PROBLEMAS 19.3C’

*1. En el ejemplo 19 3-3, calcule una muestra Erlang, si m = 4 y 1 = 5 eventos por hora
2. En el ejemplo 19 3-4, genere tres muestras Poisson durante un periodo de 2 horas, dado 

que la media de la distnbucion de Poisson es de 5 eventos por hora
3. En el ejemplo 19 4-5, genere dos muestras desde A^(8,l) utilizando tanto el método de 

convolución como el de Box-Muller
4. A Metalco Jobshop llegan trabajos de acuerdo con una distribución de Poisson, con una 

media de 6 trabajos por día Los trabajos se asignan a los cinco centros de maquinado del 
taller en una forma estrictamente rotacional Determine una muestra del intervalo entre 
llegadas de trabajos al pnmer centro de maquinado

5. Las calificaciones del examen ACT de la clase de estudiante de ultimo año de 1994 en la 
prepatona de Springdale son normales, con una medida de 27 puntos y una desviación 
estándar de 3 puntos. Supongamos que sacamos una muestra aleatoria de seis estudiantes 
del ultimo año de esa clase Utilice el método de Box Muller para determinar la media y 
la desviación estándar de la muestra

*6. El profesor de psicología Yataha está llevando a cabo un expenmento de aprendizaje en 
el cual se entrenan ratones para que encuentren su camino en un labennto La base del 
labennto es un cuadrado Un ratón entra al laberinto por una de las cuatro esquinas y 
debe encontrar su camino a través del labennto para salir por el mismo punto por donde 
entró El diseño del laberinto es tal que el ratón debe pasar por cada uno de los tres pun­
tos de esquina restantes exactamente una vez antes de que salga Las multiples rulas del 
labennto conectan las cuatro esquinas en un eslncto orden en el sentido de las maneci­
llas del reloj El profesor Yataha estima que el tiempo que el ratón emplea para llegar a 
un punto de esquina desde otro está distribuido uniformemente entre 10 y 20 segundos, 
según la ruta que tome Desarrolle un procedimiento de muestreo para el tiempo que un 
ratón pasa en el labennto

7. En el problema 6, suponga que una vez que el ratón sale del laberinto, de inmediato 
entra otro ratón Desarrolle un procedimiento de muestreo para la cantidad de ratones 
que salen del labennto en 5 minutos.
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'Para lodos los problemas de este conjunto, utilice los números aleatorios de la tabla 19 I comenzando con 
columna 1
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8 Binomial negaiiva Demuestre cómo se puede determinar una muestra alcatona a partir 
de la binomial negativa cuya distribución es

/U) = - pr T = 0,1.2,

donde v es la cantidad de fallas hasta que ocurre el r Csimo cxito en una secuencia de en 
sayos de Bernoulli independientes y p es la probabilidad de éxito 0 < p < 1 {Sugerencia 
La binomial negativa es la convolucion de r muestras geométncas independientes. Vea el 
problema 9 conjunto 19 3B)

19 4 GENERACIÓN DE NUMEROS ALEATORIOS

Los números aleatorios uniformes (0,1) desempeñan un papel clave en el muestreo de 
dislnbuciones Sólo los dispositivos electrónicos pueden generar números aleatorios 
(0,1) verdaderos Sin embargo, debido a que los modelos de simulación se ejecutan en 
la computadora, el uso de dispositivos electrónicos para generar números aleatonos es 
demasiado lento para este propósito Ademas, los dispositivos electrónicos son activa­
dos por leyes de probabilidades, lo que hace imposible duplicar la misma secuencia de 
números aleatonos a voluntad Este punto es importante porque la depuración, la ve­
rificación y la validación del modelo de simulación a menudo requieren la duplicación 
de la secuencia de los números aleatorios

La única forma factible de generar números aleatorios (0,1) para usarlos en una 
simulación esta basada en operaciones aritméticas Tales números no son verdadera­
mente aleatorios debido a que toda la secuencia puede generarse con anticipación Es 
por lo tanto mas apropiado referirse a ellos como números scudoalcatonos

La Operación aritmética mas común para generar números aleatonos (0,1) es el 
método congrucncíal multiplicativo Dados los parámetros iiot b,cy m, un numero seu- 
doaleatono R„ se puede generar con las fórmulas

u„ - (¿»/n-i + c)mod(m),« = 1,2,

^,« = 1,2,

Al valor inicial wq se le suele conocer como la scmiila del generador
En Law (2007) se pueden encontrar variaciones del método congruencial multi 

plicativo que mejoran la calidad del generador

Ejemplo 19.4-1
Genere tres números aleatorios basado en el método congruencial multiplicativo aplicando 
6 = 9, c = 5 y m = 12 La semilla es wq = 11

H, = (9 X 11 + 5)modl2 = 8, R, = = 6667

= (9 X 8 + 5)modl2 = S.Rz =

2
Uj = (9 X 5 + 5)mod 12 = 2, «j = -¡J = 1667
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Momento de Excel

La plantilla exce¡RN..xls implemenla el mútodo congruencia! multiplicativo. La figura 19.6 genera 
la secuencia asociada con los parámetros del ejemplo 19.4-1. Observe que la duración del ciclo es 
exactamente 4, tras de lo cual la secuencia se repite. El punto aquí es que los valores selecciona­
dos de Uo,b,cy m son críticos para determinar la calidad (estadística) del generador y la duración 
de su ciclo. Por lo tanto, la impicmenlación “casual”de la fórmula congrucncial no se recomienda. 
En su lugar debemos utilizar un generador confiable y probado. Todos los programas de compu­
tadora comerciales están equipados con generadores de números aleatorios confiables.

CONJUNTO DE PROBLEMAS 19.4A

•1. Use la plantilla exceIRNxis con el siguiente conjunto de parámetros, y compare los resul­
tados con los del ejemplo 19.4-1:

6 = 17,c = lll.m = 103, semilla = 7

FIGURA 19.6
Números aleatorios obtenidos con Excel para los datos del ejemplo 19.4-1 {archivo cxcelRN.xls)

A B
1 Multiplicative Conqnientíal Method
2 Input dataíB7<=1000l
3 b = 9
4 c = 5
5 u0 = 11
6 m = 12
7 How many numbers? 10
8 Output results

9
1 Pre» to Generate Sequence |

10 Generated random numbers:
11 1 0.66667
12 2 0.41667
13 3I 0.‘l6667
14 4 Ó.91667
15 5i Ó.66667
16 6 0.41667

0.1666717 7
18 8 0.91667
19 9 0.66667
2Ó 10 0.41667
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2. Encuentre un generador de números aléatenos en su computadora, y utilícelo para gene 
rar 500 números aléatenos (0,1) Elabore el histograma de los valores resultantes (por 
medio de la herramienta histograma de Microsoft vea la sección 12^) y convénzase vi 
sualmente de que los números obtenidos siguen razonablemente la distnbucion (01) En 
realidad para probar adecuadamente la secuencia, necesitaría aplicar las siguientes pruc 
bas bondad de ajuste de ji cuadrada (vea la sección 14 6) realice la prueba en busca de 
independencia y la prueba de correlación para los detalles, vea Law (2007)

19.5 MECÁNICA DE LA SIMULACIÓN DISCRETA

Esta sección detalla como se reúnen las estadísticas típicas en un modelo de simu­
lación El vehículo de explicación es un modelo de una sola cola La sección 19 5 1 uti­
liza un ejemplo numérico para detallar las acciones y cálculos que ocurren en modelo 
de simulación de colas de un solo servidor Debido a los tediosos cálculos que tipifican 
la ejecución de un modelo de simulación, la sección 19 5 2 muestra cómo se maneja y 
ejecuta el modelo de un solo servidor con la hoja de calculo de Excel

19.5.1 Simulación manual de un modelo de un solo servidor
El tiempo entre llegadas de los clientes a la peluquería HairKare es exponencial con 
media de 15 minutos La peluquería es atendida por solo un peluquero, y se lleva entre 
10 y 15 minutos, distribuidos de manera uniforme, para realizar un corle de pelo Los 
clientes son atendidos con base en la disciplina primero en llegar, pnmero en salir 
(FIFO) El objetivo de la simulación es calcular las siguientes medidas de desempeño

1. La utilización promedio de la peluquería
2. La cantidad promedio de clientes que esperan
3. El tiempo promedio que un cliente espera en la cola

La lógica del modelo de simulación se puede describir en función de las acciones 
asociadas con los eventos de llegada y salida del modelo

Evento de llegada
1. Genere y guarde cronológicamente el tiempo de ocurrencia del siguiente evento 

de llegada (= tiempo de simulación actual + tiempo entre llegadas)
2. Si la instalación (peluquero) está ociosa

a. Inicie el servicio y declare ocupada la instalación Actualiza las estadísticas de 
utilización de la instalación

b. Genere y guarde cronológicamente el tiempo del evento de salida del cliente 
(= tiempo de simulación actual + tiempo de servicio)

3. Si la instalación esta ocupada, ponga al diente en la cola, y actualice las estadísti­

cas de la cola

Evento de salida
1. Si la cola está vacía, declare ociosa la instalación Actualice las estadísticas de uti­

lización de la instalación
2. Si la cola no esta vacía * . , i„., ..

a. Seleccione un cliente de la cola, póngalo en la instalación Actualice las es
tadisticas de utilización de instalación y la cola



b. Genere y guarde cronológicamente el tiempo de ocurrencia de! evento de sa­
lida del Chente (= tiempo de simulación actual + tiempo de serv’icio)

Según los datos del problema, el tiempo entre llegadas es exponencial con media 
de 15 minutos, y el tiempo de servicio es uniforme entre 10 y 15 minutos Si p y q re­
presentan muestras aleatorias de tiempos entre llegadas y de servicio, entonces, como 
se explica en la sección 19 3 2, obtenemos

p = -15 ln(/?) minutos, 0 s /? £ 1 

q = IQ + 5R minutos, 0 s ^ 1

Para el objetivo de este ejemplo, utilizamos R de la tabla 19 1, comenzando con la 
columna 1 También utilizamos el símbolo Tpara representar el tiempo del reloj de si­
mulación Suponemos además que el pnmer cliente llega en el instante T= Oy que la 
instalación comienza vacía

Debido a que los cálculos de simulación suelen ser voluminosos, la simulación se 
limita sólo a las primeras 5 llegadas. El ejemplo está diseñado para cubrir todas las si­
tuaciones posibles que pudieran surgir en el curso de la simulación Mas adelante, en la 
sección 19 5 2, presentamos la plantilla excelStngleSen’er xls que permite experimentar 
con el modelo sin tener que realizar manualmente los cálculos

Llegada del cliente 1 en el instante T — Q. Genere la llegada del cliente 2 en el 
instante

T = 0 + pi=0 + [-151n(0589)] = 42 48 minutos

Debido a que la instalación esta ociosa en el instante 7 = 0, el cliente inicia el servicio 
de inmediato Por lo tanto, el tiempo de salida se calcula como

7 = 0 + í/i=0 + {10 + 5x 6733) = 13 37 minutos 

La lista cronológica de eventos futuros es por lo tanto
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Tiempo, r Evento

13 37 Salida del clicnic 1

42 48 Llegada del clicnle 2

Salida del cliente 1 en el instante T — 13.37. Debido a que la cola está vacia, la 
instalación se declara ociosa Al mismo tiempo, registramos que la instalación ha 
estado ocupada entre T — 0 y T ~ 13.37 minutos La lista actualizada de eventos 
futuros es

Tiempo 7* Evento

42 48 Llegada del clicnic 2

Llegada del cliente 2 en el instante T = 42.48. El cliente 3 llegará en el instante 

7 = 42 48 + [-151n( 4799)] = 53 49 minutos



Debido a que la instalación esta ociosa, el cliente 2 inicia el servicio, y la instalación se 
declara ocupada El tiempo de salida es

r = 42 48 + (10 + 5 X 9486) = 57 22 minutos 

La lista de eventos futuros se actualiza como
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Tiempo T Evenlo

53 49 Llegada del clicnlc 3
57 22 Salida dcl diente 2

Llegada del cliente 3 en el instante T = 53.49. El cliente 4 llegará en el instante

r = 53 49 + [-15 In ( 6139)] = 60 81 minutos

Debido a que actualmente la instalación está ocupada (hasta T-5122), el cliente 3 se 
coloca en la cola en el instante 7 = 53 49 La lista de eventos futuros actualizada es

Tiempo. T Evento

57 22 Salida dcl diente 2
60 81 Llegada dcl cliente 4

Salida del cliente 2 en el instante T = 57.22. El cliente 3 se retira de la cola para 
iniciar el servicio El tiempo de espera es

W3 = 57 22 - 53 49 = 3 73 minutos

El tiempo de salida es

7 = 57 22 + (10 + 5 X 5933) = 7019 minutos 

La lista actualizada de eventos futuros es

Tiempo T Evento

60 81 Llegada dcl diente 4

70 19 Salida del cliente 3

Llegada del cliente 4 en el instante T = 60.81. El cliente 5 llegará en el instante 

7 = 60 81 + [-15ln(9341)j = 61 83 minutos 
Debido a que la instalación está ocupada hasta 7 = 70 19, el cliente 4 se coloca en la 
cola La lista actualizada de eventos futuros es

Tiempo, T Evento

6183 Llegada del diente 5

70 19 Salida del cliente 3
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Llegada del cliente 5 en el instante T = 61.83. La simulación se limita a 5 llegadas, por 
consiguiente no se genera la llegada del cliente 6. La instalación sigue ocupada, porque 
el cliente se coloca en la cola en el instante T = 61.83. La lista de eventos actualizada es

Tiempo, 7* Evenlo

70 19 Salida del cliente 7

Salida del cliente 3 en el instante T = 70.19. El cliente 4 se retira de la cola para 
iniciar el servicio. El tiempo de espera es

W4 = 70.19 - 60.81 = 9.38 minutos

El tiempo de salida es

T = 70.19 + [10 + 5 X .1782] = 81.08 minutos 

La lista actualizada de eventos futuros es

Tiempo, T Evcnlo

8108 Salida del clicnlc 4

Salida del cliente 4 en el instante T = 81.08. El cliente se retira de la cola para iniciar 
el servicio. El tiempo de espera es

IV5 = 81.08 - 61.83 = 19.25 minutos

El tiempo de salida es

T = 81.08 + {10 + 5 X .3473) = 92.82 minutos 

La lista de eventos actualizada es

Tiempo, T Evento

92 82 Salida del cliente 5

Salida del cliente 5 en el instante T = 92.82. No hay más clientes en el sistema (cola e 
instalación) y la simulación termina.

La figura 19.7 resume los cambios de longitud de la cola y la utilización de la ins­
talación como una función del tiempo de simulación.

La longitud de la cola y la utilización de la instalación se conocen como variables 
basadas en el tiempo porque su variación es una función del tiempo. En consecuencia, 
sus valores promedio se calculan como

/ Valor promedio de una 

\variable basada en el tiempo.
Área bajo la curva 

Periodo simulado



Longitud de Incola
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KH'4-H

Utilización de la instalación

1 —-—I
/lj=13J7

ill 1
10 20 30

h—92—

/l4=50J4
ill I I I I

40 50 60 70 80 90

FIGURA 19.7
Cambios de la longitud de la cola y de la utilización de instalación como una función del tiempo 
de simulación, T

Implementando esta fórmula con los datos que aparecen en la figura 19.7, obtenemos

/Longitud promedio 
\ de la cola

/Utilización promedio 
\ de la instalación ,

Aj + A2 ^ 32.36 
92.82 ~ 92.82 .349 dientes

Aj + A^ ^ 63.71 
92.82 “ 92.82 .686 peluqueros

El tiempo de espera promedio en la cola es una variable basada en observaciones 
cuyo valor se calcula como

/Valor promedio de una variable\ _ Suma de las observaciones 
V basada en observaciones / Cantidad de observaciones

El examen de la figura 19.7 revela que el área debajo de la curva de longitud de la cola 
en realidad es igual a la suma del tiempo de espera de los tres clientes que se unen a la 
cola, es decir,

Wi + IV2 + ^3 + ^^4 + ^^5 = 0 + 0 + 3.73 + 9.38 + 19.25 = 32.36 minutos 

El tiempo de espera promedio en la cola de todos los clientes se calcula por consi­
guiente como

VV,, = ^ = 6.47 minutos

CONJUNTO DE PROBLEMAS 19.5A
1. Suponga que la peluquería de la sección 19 5.1 es atendida por dos peluqueros en base al 

primero en llegar, primero en ser atendido (FCFS). Suponga ademas que el liempo para 
obtener un corte de pelo está uniformemente distribuido entre 15 y 30 minutos. El tiempo
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entre llegadas de los clientes es exponencial con una media de 10 minutos. Simule manual­
mente el sistema durante 75 unidades de tiempo Con los resultados de la simulación,deter­
mine el tiempo promedio que un cliente espera en la cola, el promedio de clientes que espe­
ran y la utilización promedio de los peluqueros. Use los números aleatorios de la tabla 1 1 

2. Clasifique las siguientes sanables como basados en observauones o basadas en el iiempo 
*(a) Tiempo para la falla de un componente electrónico 
*(b) Nivel del inventano de un articulo

(c) Cantidad de pedido de un articulo de inventano
(d) Cantidad de artículos defectuosos en un lote
(e) Tiempo necesano para calificar exámenes.
(0 Cantidad de autos en el lote de estacionamiento de una agencia de renta de autos. 

*3. La siguiente tabla representa la variación de la cantidad de clientes que esperan en una 
cola como una función del tiempo de simulación.

Tiempo de simulación. T(h) Cantidad de clientes que esperan

0 s r s 0

3 < r s 4 1
4 < r s 6 2

6 < r s 7 1
7 < r s 10 0
10 < r £ 12 2
12 < r s 18 3

18 < r £ 20 2

20 < r s 25 1

Calcule las siguientes medidas de desempeño
(a) La longitud promedio de la cola
(b) El tiempo de espera promedio en cola de los que deben esperar

4, Suponga que la peluquería descrita al inicio de la sección 19 5 1 es atendida por tres pelu­
queros. Suponga, ademas que la utilización de los servidores (peluqueros) se resume en 
la Siguiente taHa

Tiempo de simulación, T(h) Cani de servidores ocupados

(X 7 s 10 0
10 < 7* s 20 1
20 < r s 30 2
30 < r £ 40 0
40 < r £ 60 1

60 < r £ 70 2
70 < r £ 80 3
80 < r £ 90 1
90 < 7 £ 100 0
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Delermme las siguientes medidas de desempeño
(a) La utilización promedio de la instalación
(b) Tiempo promedio que permanece ocupada la instalación
(c) Tiempo OCIOSO promedio de instalación

19 5.2 Simulación basada en una hoja de calculo del modelo de un solo servidor

Esta sección desarrolla una hoja de calculo basada en el modelo de un solo servidor El 
objetivo del desarrollo es reforjar las ideas presentadas en la sección 19 5 1 Desde luego 
un modelo de un solo servidor es una situación simple fácil de modelar en un entorno de 
hoja de calculo Otras situaciones requieren un esfuerzo de modelado mas complicado, 
una tarea que se facilita con los paquetes de simulación disponibles (vea la sección 197)

La presentación en la sección 19 5 1 muestra que el modelo de simulación de la 
instalación de un solo servidor requiere dos elementos básicos

1. Una lista cronológica de los eventos del modelo
2. Una gráfica que rastree los cambios del uso de la instalación y la longitud de la cola 

Estos dos elementos permanecen esenciales en el desarrollo de un modelo de simula­
ción basado en la hoja de calculo (en realidad, basado en cualquier computadora) La 
diferencia es que la implementación se realiza de modo que sea compatible con el uso 
de la computadora Como en la sección 19 5 1, a los clientes se les atiende en el orden de 
llegada (FIFO, primero en llegar, primero en salir)

La figura 19 8 proporciona los resultados obtenidos con excelSmgleServer\fs Los 
datos de entrada permiten representar el tiempo entre llegadas y de servicio en una de 
cuatro formas constante, exponencial uniforme y triangular La distribución triangular 
es Util porque se puede utilizar como una estimación inicial aproximada de cualquier 
distribución, simplemente con tres estimaciones a,b y c que representan los valores

FIGURA 19 8
Rtsulndos cIl un modelo de simulación de un solo servidor oblcnido con Excel (archivo tra/5»ii/t.r/j)

A 0 c DlElPlR HlKl L 1 M |ri! O 1 P 1 Q

1
2 llbrol arrivals* 20 «Máximum SCO

4
ar K In colurr 1 3 73 1 2 83 0 00^ 1283 000 12 83

y ; = 0 067
3975 1845 3066

a * b* --
a - b- le-l

65 85 23 89 
60 07 3 1 45 
94 58 9 97 

107 93 23 87 
120 38 32 97

39 80•r » In roliimn A10 seleci larvlca tim# pcfr
.1

ExDontnllal u •
13 35 70 71 ir

1C b ■ 1»| • r ..
a * b- lc*l 12 43 M !»b tr «r

OulDui Summarv xa 11
14'll A/ U'1 Ij ul lixsi on = 0 99

1 99 12 49 79 12 65 96 23 
14 12 US 01
13 69 146 43 
10 50 155 20
13 78 166 38 
12 29 209 20 
1295 22907 
12 99 233 33
14 68 252 31

15943 50 36 
173 55 13 43 
187 24 27 13 
197 75 32 05 
211 53 31 36 
223 82 2 33 
242 0 3 0 00 
255 02 3 70 
269 90 2 71

63 20 
27 54

Piatt F910

19
20

»
23

lull..

1ST 
2S5 

2124 
1147 

2U 65 
424 60 
689 44

tigjtta 
rtrw (vnuUbon 

run
15
16
17
18
19
20

11 19
42 82
19 87 
925

13 98
58 46

42 55 
45 14 
14 62 
12 95
16 69
17 59



670 Capítulo 19 Modelado de simulación

mínimo, el más probable y el máximo del tiempo La única otra información necesaria 
para controlar la simulación es la duración de la ejecución de la simulación, la cual en este 
modelo es especificada por el número de llegadas que se pueden generar en el modelo 

Los cálculos de la hoja de calculo reservan una fila para cada llegada Los tiempos 
entre llegadas y de servicio de cada llegada se generan con los datos de entrada Se su­
pone que la pnmera llegada ocune en el instante 7* = 0 Debido a que la instalación co­
mienza ociosa, el cliente inicia el servicio de inmediato La hoja de calculo proporciona 
suficiente información para demostrar los cálculos internos dados en la sección 19 5 1 

Se desarrollo otra hoja de calculo para simular modelos de vanos servidores 
(excelMuiíiSen’er xls) El diseño de la plantilla se basa en las mismas ideas utilizadas en 
caso de un solo servidor Sin embargo, la determinación del tiempo de salida no es tan 
simple y requiere el uso de macros VBA

CONJUNTO DE PROBLEMAS 19.5B

1. Con los datos de la sección 19 5 1 ejecute el simulador E\cel para lü llegadas y trace la 
gráfica de los cambios del uso de la instalación > la longitud de la cola como una función 
del tiempo de simulación Compruebe que las areas bajo las curvas son iguales a la suma 
de los tiempos de servicio y la suma de los tiempos de espera, respectivamente

2. Simule el modelo A//A//1 para 500 llegadas, con la tasa de llegadas A = 4 clientes por hora 
y la tasa de servicios n- 6 salidas por hora Ejecute 5 aplicaciones (refrescando la hoja 
de calculo, oprimiendo F9) y determine un intervalo de 95% de confianza con todas las 
medidas de desempeño del modelo Compare los resultados con los valores leoncos de 
estado estable del modelo A//A//1

3. Cada 15 minutos llegan televisores sobre una banda transportadora para ser inspeccionados 
por un solo operador No están disponibles los datos detallados de la estación de inspección 
Sm embargo el operador estima emplear 10 minutos “en promedio” para inspeccionar una 
unidad En las peores condiciones, el tiempo de inspección no excede de 13 minutos, y para 
ciertas unidades el tiempo de inspección puede ser tan bajo como 9 minutos.
(a) Use el simulador de Excel para simular la inspección de 200 televisores.
(b) Basado en 5 replicas, estime la cantidad promedio de unidades en espera de ser ins 

peccionadas y el uso promedio de la estación de inspección

19.6 METODOS PARA REUNIR OBSERVACIONES ESTADÍSTICAS

La simulación es un experimento estadístico y sus resultados deben interpretarse por 
medio de herramientas de inferencia estadística apropiadas (por ejemplo, intervalos de 
confianza y pruebas de hipótesis) Para realizar esta tarea, un experimento de simu­
lación debe satisfacer tres condiciones

1. Las observaciones se extraen de distribuciones estacionarias (idénticas)
2. Las observaciones se muestrean a partir de una población normal
3. Las observaciones son independientes

En un sentido estricto, el experimento de simulación no satisface ninguna de estas con­
diciones No obstante podemos garantizar que estas condiciones permanecen estadís­
ticamente aceptables al restringir la forma de reunir las observaciones
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En pnmer lugar consideremos el tema de las distnbuciones estaaonanas. Los re 
sultados de una simulación son una función de la duración del penodo simulado El pe­
riodo inicial produce un comportamiento errático conocido en general como penodo 
transitorio o de calentamiento Cuando los resultados de la simulación se estabilizan, el 
sistema opera en estado estable Desafortunadamente, no hay una forma definitiva de 
predecir de antemano el punto de inicio del estado estable Por lo general, una ejecución 
mas larga de la simulación tiene una mejor probabilidad de alcanzar el estado estable, 
es decir que el problema se aborda con un tamaño de muestra suficientemente grande 

Luego consideramos el requerimiento de que las observaciones para la simula­
ción se extraen de una población normal Este requisito se cumple utilizando el teorema 
del ¡imite central (vea la sección 14 4 4) el cual confirma que la distribución del prome­
dio de una muestra es asintóticamente normal, de manera independiente de la pobla­
ción padre Por consiguiente, el teorema del límite central es la herramienta principal 
que utilizamos para satisfacer la suposición de distnbucion normal

La tercera condición tiene que ver con la independencia de las observaciones. En 
una simulación, una observación se puede basar en una sola ejecución independiente o 
en la subdivisión de una sola ejecución en subintervalos donde cada uno representa 
una observación Cada método presenta desventajas y ventajas. El primero alivia la 
cuestión de independencia pero tiene la desventaja de incluir el periodo transitorio en 
cada observación En el segundo método, el efecto del periodo transitorio no es tan 
pronunciado, pero empeora de manera inherente el tema de la independencia Como 
se explicará mas adelante en esta sección, un posible remedio consiste en prolongar el 
tiempo de la ejecución de la simulación

Los métodos mas comunes para reunir observaciones en una simulación son
1. Método de subinlervalos
2. Método de réplica
3. Método regeneralivo (o de ciclos)

Los dos pnmeros son fáciles de automatizar en todos los lenguajes de simulación am­
pliamente utilizados (vea la sección 19 7) Por otra parte, el tercer método, aun cuando 
aborda directamente el tema de la independencia al buscar condiciones iniciales idcn 
ticas para las diferentes observaciones, puede ser difícil de implemcntar en la práctica 

Las secciones 19 6 1 y 19 6 2 presentan los primeros dos métodos. Los detalles del 
tercer método se hallan en Law (2007)

19.6.1 Método de subíntervalos
La figura 19 9 ilustra la idea del método de subíntervalos. Supongamos que la duración 
de la simulación es de Tunidades de tiempo El método de subíntervalos primero trunca 
un penodo transitono inicial y luego subdivide el resto de la ejecución de la simulación 
en n subíntervalos (o lotes) iguales. El promedio de una medida de desempeño deseada 
(por ejemplo, longitud de la cola o tiempo de espera en la cola) dentro de cada subinter- 
valo se utiliza entonces para representar una sola observación El truncamiento del pe 
nodo transitorio inicial significa que durante ese penodo no se reúnen datos estadísticos.

La ventaja del método de subíntervalos es que el efecto de las condiciones tran 
silorias (no estacionarias) se mitiga, en particular para las observaciones que se reúnen 
al final de la ejecución de la simulación La desventaja es que los lotes sucesivos ton 
condiciones restrictivas comunes no son necesariamente independientes El problema 
puede aliviarse incrementando el tiempo de cada observación
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FIGURA 19 9

Recolección de dntos de simulación utilizando el mólodo de submicrvalos

Ejemplo 19.6‘1

La fígura 19.10 muestra el cambio de longitud de la cola en un modelo de una sola cola como 
una función del tiempo de simulación La longitud de la ejecución de la simulación es T = 35 
horas, y la longitud del penodo transitorio es de 5 horas La base de tiempo para una observación 
es de 5 hwas, lo que produce /i = 5 observaciones

Sea Q, la longitud promedio de la cola en el lote i. Debido a que la longitud de la cola es una 
variable basada en el tiempo, tenemos

G=y.< = 1.2, ,5

donde A, es el área bajo la curva de la longitud de la cola asociada con el lote (observación) /, y 
t(= 6) es la base de tiempo por lote

Los datos que aparecen en la figura 1910 producen las siguientes observaciones

Observación i 1 2 3 4 5

A, i4 10 11 6 15

Qi 233 167 183 1 00 250

Media muestral = 187 Desviación estándar muestral = 59

FIGURA 19 10

Cambio de longitud de la cola con el licmpo de simulación en el ejemplo 19 6-1

Longitud 
de la cola Q

Periodo Lote 1 Lote 2 Lole 3 Lote 4 Lote 5
jransiiono

luMj-iil_______-|J 1 Lj = ^,"15 L_|

5 10 15 20 25 30 35

Tiempo de simulación
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La media y vananza muéstrales pueden usarse para calcular un intervalo de confianza si se 
desea El calculo de vananza muestral en e! ejemplo 19 6 l se basa en la siguiente formula conoada

Esta fórmula es solo una aproximación de la desviación estándar verda Jera porque ignora el 
efecto de la autocorrelación entre los lotes sucesivos. La fórmula exacta se encuentra en Law 
(2007)

19 6.2 Método de replica

En este método cada observación está representada por una ejecución de simulación 
independiente en la cual el periodo transitorio se trunca, como se ilustra en la figura 
19 11 El cálculo de los promedios de observación para cada lote es el mismo que en el 
método de subintcrvalos. La única diferencia es que la fórmula de la vananza estándar 
es aplicable porque los lotes no son independientes.

La ventaja del método de réplica es que a cada ejecución de simulación la con 
trola una comente de números aleatorios 0-1 distinta, la cual produce observaciones 
estadísticamente independientes La desventaja es que cada observación puede ser in­
fluida por el efecto inicial de las condiciones transilonas. Dicho problema puede ate­
nuarse si se prolonga lo suficiente la duración de la ejecución

CONJUNTO DE PROBLEMAS 19 6A

1. En el ejemplo 19 6-1, use el método de submtervalos para calcular el tiempo de espera 
promedio en la cola para los que deben esperar 

*2. En un modelo de simulación se utiliza el método de submtervalos para calcular promc 
dios de lotes. Se estima que el penodo transitono es de 100, y cada lote también tiene una 
base de tiempo de 100 unidades de tiempo Aplicando los siguientes datos, los cuales pro 
porcionan los tiempos de espera de los clientes como una función del tiempo de simula 
ción estime el intervalo de 95% de confianza para el tiempo medio de espera

FIGURA 19 11
Recolección de datos de simulación siguiendo el método de réplica

Lote 2

T

Lole »

r
T
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tnlcrxalü dt iicmpo Tíi-mpus dt csptn

O-IW) 10 20 n 14 S H 6 S

100-200 12 M) 10 14 16
:oo--íoo IS 17 20 22
100-100 10 20 10 2.*» 11

4ÜO-51X) IS 17 20 14 11

500-61X) 25 10 15

19 7 LENGUAJES DE SIMULACIÓN

La ejecución de modelos de simulación implica dos tipos distintos de cálculos (1) manejo 
de archivos que tienen que ver con el almacenamiento y procesamiento cronológicos de 
los eventos del modelo y (2) cálculos aritméticos y de contabilidad asociados con la gene 
ración de muestras aleatonas y recolección de estadísticas del modelo El pnmer tipo de 
cálculo implica una lógica extensa en el desarrollo del procesamiento de listas, y el según 
do tipo implica cálculos tediosos que requieren mucho tiempo La naturaleza de estos 
cálculos hace que la computadora sea una herramienta esencial para ejecutar modelos de 
simulación y, a su vez, promueve el desarrollo de lenguajes de simulación especiales para 
computadora para realizar estos cálculos de una forma conveniente y eficiente

Los lenguajes de simulación discretos quedan comprendidos en dos amplias cate 
gorias

1. Programación del evento
2. Onentado al proceso

En los lenguajes de programación del evento, el usuario detalla las acciones asociadas 
con la ocurrencia de cada evento, como en el ejemplo 19 5-1 El rol principal del len 
guaje en este caso es (1) la automatización del mueslreo a partir de las distribuciones, 
(2) el almacenamiento y recuperación de los eventos en orden cronológico, y (3) la re 
colección de estadísticas del modelo

Los lenguajes orientados al proceso utilizan bloques o nodos que pueden vmcu 
larse entre sí para formar una red que describe los movimiento de transacciones o en­
tidades (es decir, clientes) en el sistema Por ejemplo los tres bloques/nodos mas pro 
minentes en cualquier lenguaje de simulación orientado al proceso son una fuente de la 
cual se crean las transacciones, una cola donde pueden esperar si es necesario, y una 
instalación, en la que se realiza el servicio Cada uno estos bloques/nodos se define con 
toda la información necesaria para controlar automáticamente la simulación Por 
ejemplo, una vez que se especifica el tiempo entre llegadas, un programa onentado al 
proceso “sabe" de manera automática cuando ocurrirán los eventos de llegada De 
hecho, cada bloque/nodo del modelo cuenta con instrucciones permanentes que defi 
nen como y cuando se mueven las transacciones en la red de simulación

Los lenguajes orientados al proceso están controlados internamente por las niis 
mas acciones que se utilizan en los lenguajes de programación de evento La diferencia 
es que estas acciones se automatizan para liberar al usuario de los tediosos detalles de 
cálculo y lógicos En cierto modo podemos considerar a los lenguajes orientados ai 
proceso como basados en el concepto de entrada y salida del método de la “caja 
negra” Esto en esencia significa que los lenguajes orientados al proceso intercambian 
la flexibilidad del modelo por la sencillez y facilidad de uso
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Los lenguajes de programación de evento (como SIMSCRIPT SLAM y SIMAN) 
son anticuados y rara vez se utilizan en la práctica Recientemente, un nuevo leneuaie 
llamado DEEDS (Elizandro y Taha, 2008) se basa en el uso de la hoja de calculo de 
Excel para controlar la programación del evento DEEDS permite la flexibilidad 
de modelado de los lenguajes de simulación orientados al evento al mismo tiempo que 
logra la naturaleza intuitiva de un lenguaje orientado al proceso

El paquete comercial predominante orientado al proceso es Arena Utiliza una 
extensa interfaz de usuario para simplificar el proceso de crear un modelo de simula* 
ción También cuenta con capacidades de animación donde pueden observarse visual­
mente los cambios del sistema Sin embargo, para un profesional expenmentado en la 
simulación, estas interfaces parecen reducir el desarrollo de un modelo de simulación a 
un paso de “cámara lenta” No sorprende que algunos usuarios prefieran seguir escri­
biendo modelos de simulación en lenguajes de programación de alto nivel.

CONJUNTO DE PROBLEMAS 19.7A^

1. Los clientes llegan al azar a una oficina de correos atendida por tres empleados con 
media de 5 minutos. El tiempo que un empleado pasa con un cliente es exponencial 
con media de 10 minutos Todos los clientes que llegan hacen cola y esperan al primer 
empleado libre disponible Ejecute un modelo de simulación del sistema durante 480 
minutos para determinar lo siguiente
(a) El promedio de clientes que esperan en Id cola
(b) El uso promedio do los empleados.
(c) Compare los resultados de la simulación con los del modelo de colas MIMIc (capítu­

lo 18) y con la hoja de calculo MiilíiSen erStnmloíor xls.
2. En una banda transportadora llegan televisores para ser inspeccionados a una velocidad 

constante de 5 unidades por hora El tiempo de inspección requiere entre 10 y 15 minu­
tos distribuidos uniformemente La experiencia pasada muestra que 20% de las unidades 
deben ser ajustadas y enviadas de nuevo para reinspeccion El tiempo de ajuste también 
esta distribuido uniformemente entre 6 y 8 minutos Ejecute un modelo de simulación 
durante 480 minutos para calcular lo siguiente
(a) El tiempo promedio que una unidad requiere hasta que pasa la inspección
(b) El promedio de veces que una unidad debe ser reinspeccionada antes de que salga 

del sistema
3. Un ratón se encuentra atrapado en un laberinto y “desea salir” desesperadamente 

Después de tratar entre 1 y 3 minutos, distribuidos de mantra uniforme, hay 30% de pro­
babilidades de que encuentre la ruta correcta De lo contarlo, vagara sin rumbo entre 2 >
3 minutos, distribuidos de manera uniforme, y a la larga terminara donde comen/u, solo 
para intentarlo una vez mas. El ratón puede “tratar de liberarse” las veces que le plazca, 
pero hay un limite para todo Con tanta energía consumida al intentarlo una y otra vtz, 
es seguro que el ratón muera si no logra liberarse dentro de un periodo normalmente dis­
tribuido, con una media de 10 minutos y una desviación estándar de 2 minutos Escriba 
un modelo de simulación para estimar la probabilidad de que el ratón se libere Para 
estimar la probabilidad, suponga que el modelo procesara 100 rutones

4. En la etapa final de fabricación, un auto que se desplaza sobre un transportador se sitúa 
entre dos estaciones de trabajo paralelas para que se le realicen trabajos en los lados i/-

-Rcsuclva estos problcnns con un lenguaje tic simiitación de su prcdikeeion, o un lenguaje de piogMinacion 

de alio grado
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quierdo y derecho al mismo liempo Los tiempos de operación en los lados i/quierdo y 
derecho son uniformes enlre 15y20 minutos, y entre I8> 22 minutos, rcspectnamentc 
El transportador llega al area de las estaciones cada 20 minutos. Simule el proceso duran 
te 480 minutos para determinar la utilización de las estaciones izquierda y derecha

5. A una instalación de lavado de autos de una bahía donde el tiempo entre llegadas es ex­
ponencial, los autos llegan con una media de 10 minutos. Los autos que llegan se forman 
en un solo caml que tiene espacio a lo sumo para cinco autos. Si el carril esta lleno, los 
autos que llegan se van a otra parte. Se requieren entre lU y 15 minutos distribuidos uni­
formemente para lavar un auto Simule el sistema durante 960 minutos, y estime el tiem­
po que el auto pasa en la instalación
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CAPITULO 20

Teoría de optimización clásica

20.1 PROBLEMAS NO RESTRINGIDOS

Un punto extremo de una función/(X) define o un máximo o un mínimo de la función 
Matemáticamente, un punto X» = (, r" , es un máximo si

/(Xo + h) ^ /(Xo)

para todas las li = (hi, , , h„) donde |//J es suficientemente pequeña para todas las y
Asimismo, Xq es un mínimo si

/(Xo + li) ^ /(Xo)

La figura 20 1 ilustra los máximos y mínimos de una función de una sola variable y(v) 
definida en el intervalo n s x < ¿> Los puntos xi, X2, xj, X4 y xo son los extremos 
con xi, X3 y Yficomo máximos, y X2y X4Como mínimos El valor/(Xfi) = ma\[/(xi),y(x3), 
yi[x6)]es un máximo global o absoluto, y J\\\) yA'3) son máximos locales o relativos 
Asimismo,7^X4) es un mínimo local yj{\2) es un mínimo global

Aunque xj (en la figura 20 1) es un punto máximo (local), difiere de los máximos 
locales restantes en que el valor de /correspondiente al menos un punto en la vecindad 
de \\ es Igual a/[x|) A este respecto, x¡ es un máximo débil, en tanto que X3 y X(, son 
máximo fuertes En general, para b como se definió antes, X« es un máximo débil si 
/{Xa + h) ^/(Xo) y un máximo fuerte siy(Xo + Ii) </(X())

En la figura 20 1,1a primera derivada (pendiente) de/es igual a cero en todos los 
extremos Esta propiedad también se satisface en puntos de inflexión o silla, como es el 
caso de X5 Si un punto con pendiente (gradiente) cero no es un extremo (máximo o mí­
nimo), entonces debe ser un punto de inflexion o silla

677
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FIGURA 20 1

Ejemplos de punios extremos de una función de una sola variable

20.1.1 Condiciones necesarias y suficientes

Esta sección desarrolla las condiciones necesarias y suficientes para que una función 
f[X) de n variables tenga extremos Se supone que la primera y segunda denvadas par­
ciales de/(X) son continuas para todas las X

Teorema 20.1-1 Una condición necesaria para que Xq sea un punto extremo de f{X) es que 

V/(Xü) = 0

Debido a que la condición necesaria también se satisface en puntos de inflexión 
o silla, es más apropiado referirse a estos puntos obtenidos con la solución de V/{Xq) = 
0 como puntos estacionarios. El teorema siguiente establece las condiciones de sufi­
ciencia para que Xo sea un punto extremo

Teorema 20.1-2 Una condición suficiente para que un punto estacionario Xo sea un 
extremo es que la matriz Hessiana H evaluada en Xq satisfaga las siguientes condiciones’

(i) H se define positiva si Xo es un punto mínimo 
(¡i) H se define negativa si Xo es un punto máximo.

Ejemplo 20.1-1 

Considere la función

f(Xi,X2,Xi) = A, -I- 2t3 + X2X3 - X] - x\~ x]



La condición necesaria V/(Xo) = 0 da
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ÜL.
ar, l-2v, =

t3 - 2t2 = 0

2 + T2 - 2.T3 = o

La solución de estas ecuaciones simultaneas es

Para determinar el tipo de punto estacionano, considere

Hlxo =

liL _ÍL Jl.\

dvf dX¡dX2 dx¡dXj

_ÍL

dX2ffX] (lX¡ 3r->i9r3
\j!L

_ÍL
sV

XdxylXi (fX3dX2
^ /

-2 0 0 
0 -2 I 
0 1 -2,

Los determinantes menores principales de H|x^ tienen los valores - 2,4 y - 6, respectivamente 
Por lo tanto, como se muestra en la sección D3, H|x, se define negativa y Xo = (í 3.3) rcpre 
sonta un punto máximo

Por lo común, si H|x,, es indefinida, Xo debe ser un punto silla En casos no conclu­
yentes, Xq puede o no ser un extremo, y la condición de suficiencia se hace algo compli­
cada, porque en la expansión de Taylor se deben considerar términos de mayor orden 

La condición de suficiencia establecida por el teorema 20 1-2 aplica funciones dt 
una sola variable como sigue Dado que yo es un punto estacionario, entonces

(i) yo es un máximo si /"(yo) < 0
(ii) yo es un mínimo si /"O’o) > 0

Si /"(yo) = 0, deben investigarse las derivadas de mayor orden como lo requiere el si­
guiente teorema

Teorema 20.1-3 Dado y^,un punto estaaonario de f(y),st las primeros (n - l)denva- 
das son cero }' /"C)'o) ^ 0. entonces

(i) Si n es impar, yn es un punto de inflexión
(ii) 5/ n es par, entonces yo es un mínimo 5//"(yo) > 0 >’ tm máximo si f\\'o) < 0
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FIGURA 20 2

Puntos cxlrcmoidc/O) = '^y
i'(>) =

Ejemplo 20.1-2

La figura 20 2 muestra las gráficas de las siguientes funciones

siy) = v'
Con /(>') = y*,f'(y) = 4>' = 0, la cual da el punto eslacionano \o = 0 Ahora 

/'(O) = /"(O) = /‘3>(0) = 0 /'■’>(0) = 24 > 0

Por consiguiente,>0 = 0 es un 
ParagC>-) = v-^.g'O) = 3\

punto mínimo (vea la figura 20 2)
■ = 0, la cual da >o = 0, como un punto estacionario Ademas

g’(0) = g"(0).g‘^>(0) = 6^0

Por consiguiente,>o = 0 es un punto de inflevión

CONJUNTO DE PROBLEMAS 20.1A

1. Determine ios puntos extremos de las siguientes funciones 
•(o) /(r) = jr> + r
*(b) f(x) = í' + X-

(c) /(JT) = 4r-' - t’- + 5
(d) /(t) = (3t - 2)-(2t - 3)=
(e) /(r) = 6t* - 4r’ + 10

2. Determine los puntos extremos de las siguientes funciones.
(a) /(X) = jrf + - 3v,V2
(b) /(X) = 2tí + 4 + V5 + 6(vi + \2 + jTj) + 2j:iA2V3

3. Verifique que la función

/('^i. '^2- ^3) = 2xiV2r3 - 4t|r3 - 2T2t3 + V? + a:? + v5 - 2vi - 4x1 + 4t3

tiene los puntos estacionarios (0,3,1), (O.l.-l), (1.2.0), (2,1,1) y (2,3,-l) Utilice la condi­
ción de suficiencia para identificar los puntos extremos.

*4. Resuelva las siguientes ecuaciones simultaneas convirtiendo el sistema en una función 
objetivo no lineal sin restricciones

V; - n = o 
r. - t| = 2

[Sugerencia mfnocurre cn/'(ri, ,2) = ü]
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20 1.2 Método de Newton*Raphson

Por lo general, la condición necesaria Vy(v) ^ 0 puede ser extremadamente no lineal y, 
en consecuencia, difícil de resolver El método de Newton Raphson es un algoritmo 
Iterativo para resolver ecuaciones no lineales 

Considere las ecuaciones simultaneas

/,(X) = 0,1 = 1,2, ,m
Sea un punto dado Luego, mediante la expansion de Taylor,

/.(X) ^ /.(X,) + V/.(X0(X - X^).i = 1,2,

Por lo tanto, las ecuaciones originales/(X) = 0, i = 1,2, m pueden representarse de 
forma aproximada como

/i(XO + V/,(XO(X - X,) = 0, i = 1,2, , m

Estas ecuaciones se pueden escribir en notación matricial como 

+ B^(X - XO = 0

Si es no singular, entonces

X = Xi - Bi'Ai

La idea del método es iniciar desde un punto inicial X(j y luego utilizar la ecua­
ción anterior para determinar un nuevo punto El proceso puede o no converger de­
pendiendo de la selección del punto de inicio La convergencia ocurre cuando dos pun­
tos sucesivos X¿ y X^+i, son aproximadamente iguales (dentro de una tolerancia 
especificada aceptable)

En la figura 20 3 una interpretación geométrica del método se ilustra mediante 
una función de una sola vanable La relación entre y para una funcióny(x) de una 
sola variable se reduce a

_ Ihú.

Los términos se pueden acomodar como/'(v¿) = -■ —lo que significa que r/.+i

se determina a partir de la pendiente úcj{x) en x^, donde tand =/'(rx) como lo mués 
Ira la figura

La figura 20 3 demuestra que la convergencia no siempre es posible Si el punto 
inicial es a, el método divergirá Por lo común, podría requerirse intentar vanos puntos 
de inicio antes de que se logre la convergencia

Ejemplo 20.1-3
Para demostrar l1 uso del método de Ntwion Raphson. considere la función 

¿.(v) = (1.r-2)-(2i-3)'

Para determinar los puntos estacionarios de g(r), tenemos que resolver 

fix) = g'(x) = V2x’ - 234\- + 241r - 78 = 0
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FIGURA 20 3

llustmciun del proceso iterativo en el método de Ncvuon-Raphson

Por lo tanto, para el método de Newton-Raphson, tenemos 

f'(x) = 216t= - 468t + 241

_ nx' - 2341- + 241' - 78
- xx ^

Iniciando con jtq = 10, la siguiente tabla proporciona las iteraciones sucesivas'

k ti
/(tr)

/'(n) •*■* + 1

ü lOOUUOÜO 2 978923 7 032108
1 7U32I08 1 976429 5 055679
2 5 055679 1 314367 3741312
3 3 741312 0 871358 2 869995
4 2 H69995 ü 573547 2 296405
5 2 296405 0 371252 1 925154
ri 1 925154 0230702 1 694452
7 1 694452 0128999 1 565453
K 1 565453 0 054156 1 511296
9 1 511296 0108641 1 500432

10 1 5(XM32 0(K)43131 I 500001
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_ ^El muodo converge a r = 1 5 En realidad f(.x) nene tres pumos estacionarios en

^ 3''^- íiV^- 2 Los dos puntos restantes se delermintrn intentando difertnits valores
para \(| inicial De hecho to = 5 y to = 1. deberían dar por resultado los puntos estaciónanos 
([Compruébelo')

Momento de Excel

Se puede utilizar la plantilla t xcelNcwtonRaphson xls para resolver cualquier ecuación de um 
sola variable Requiere que se ingrese ^ en la celda C3 Para el ejemplo 20 1-3. ingresamos

=(72*A3^3-234*A3^2+241*A3“78)/(216*A3'2-468*A3+24l)

La variable t se reemplaza con A3 La plantilla permite establecer un límite de tolerancia A, el 
cual cspecifíca la diferencia permisible entre y que señala la terminación de las ileracio- 
ncs. Se le pide que utilice puntos iniciales diferentes, Vq, para que tenga una idea de cómo fun­
ciona el método

CONJUNTO DE PROBLEMAS 20.1 B

1. Use la plantilla NeiuonRapiison xls para resolver el problema 1(c). conjunto 20 la
2. Resuelva el problema 2(b). conjunto 20 la. por medio del método de Newlon-Raphson

20.2 PROBLEMAS RESTRINGIDOS
Esta sección se ocupa de la oplimizacion de funciones continuas restringidas. La sec­
ción 20 2 1 presenta el caso de restricuones de igualdad, y la sección 20 2 2 se ocupa de 
las restricciones de desigualdad La presentación en la sección 20 2 1 se cubre en su 
mayor parle en Beightler and Associates (1979, págs. 45-55).

20.2.1 Restricciones de igualdad
Esla sección presenta dos métodos el Jacobiano y el Lograngiano El método 
Lagrangiano se puede desarrollar lógicamente a partir del Jacobiano Esla relación 
proporciona una interpretación interesante económica del método Ldgrangiano

Método de derivadas restringidas (Jacobiano) Considere el problema

Minimizarz = /(X)

sujeto a

tí(X) = 0

donde
X = (xi. V:, , v„)

g = (i’ii
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Las funciones/(X) y g(X),/ = son dos veces continuamente diferenciables
La idea de utilizar denvadas restnngidas es desarrollar una e\presion de forma 

cerrada para las primeras denvadas parciales de f[X) en todos los puntos que satisfa­
cen g(X) = 0. Los puntos estaciónanos correspondientes se identifican como los pun­
tos donde estas derivadas parciales se desvanecen. De este modo, las condiciones de 
suficiencia presentadas en la sección 20.1 pueden utilizarse para verificar la identidad 
de los puntos estacionarios.

Para aclarar el concepto propuesto, considere/(ri, ri) ilustrada en la figura 20.4 
Esta función se tiene que minimizar sujeta a la restricción

íiCvj. X2) = X2 ~ b = 0

donde b es una constante. En la figura 20.4, la curva designada por los tres puntos A, B 
y C representa los valores de/(.vij:2) que satisfacen la restricción dada. El método de 
derivadas restringidas define el gradiente de cualquier punto de la curva
ABC. El punto B donde la denvada restringida se desvanece es un punto estacionano 
para el problema restringido

Ahora se desarrolla el método matemáticamente. De acuerdo con el teorema de 
Taylor, para X + AX en la vecindad factible de X, tenemos

/(X + AX) - /(X) = V/(X)AX + 0(A.r;)

FIGURA 20 4
Demostración de la idea del 
mólodo Jacobiano
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y
8(X + AX) - g(X) = Vg(X)AX + 0(Av;)

A medida que Axj —* 0. las ecuaciones se reducen a 

d/(X) = v/(X)ax 

y
dg(X) = Vg{X)dX

Para faclíbilidad. debemos tener g(X) = 0, flg(X) = 0 Por consiguiente 

df(X) ~ V/(X)aX = 0 

Vg(X) ¿tX = 0

Así se obtienen (m + 1) ecuaciones en (n + 1) incógnitas, df[X) y 3X. Observe que sí 
dJ{X) es un variable dependiente cuyo valor se determina una vez que se conoce DX 
Esto significa que. de hecho, tenemos m ecuaciones en n incógnitas.

Si m > n, al menos (m - n) ecuaciones son redundantes. Sí se elimina la redun­
dancia, el sistema se reduce am ^ n. Si m = n la solución es 3X = 0, y X no tiene nin­
guna vecindad factible, lo que significa que el espacio de soluciones se compone de 
sólo un punto El caso restante (m < n) es más elaborado 

Definamos
X = (V,Z)

de modo que
Y = (yuyz.. ,,y,„),Z = (z,.zj, .,,z„-,„)

Los vectores Y y Z representan las variables dependientes e independientes, respectiva­
mente. Rescribiendo los vectores gradiente de fyg en función de Y y Z, obtenemos

V/{Y,Z) = (Vv/.V2/)

Vg(Y,Z) = (VYg.Vzg)

Definamos

J = Vvg

C= Vzg

conoce como la mufríz Jacobiana y C,„xm como la matriz de control Se supo­
ne que ia Jacobiana J es no singular. Esto siempre es posible debido a que las m ecua­
ciones dadas son independientes por definición. Los componentes del vector Y deben 
seleccionarse por lo tanto, de modo que J sea no singular.
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El conjunto ongmal de ecuaciones en df[X) y OX se puede escribir como 

a/(Y. Z) = V^pY + v¿/-ctz

y
J()Y = -CdZ

Dado que J es no singular, se deduce que

a Y = -J ‘caz

Sustituyendo aY en la ecuación para a/(X) se obtiene a/como una función de aZ, es 
decir,

a/(Y z) = (Vz/ - v./j-'c)sz

Según esta ecuación, la derivada restringida con respecto al vector independiente Z es
üjjy z) 

a^z
Vz/ - Vv/J-'C

donde V^/es el vector gradiente restringido de/con respecto a Z. Por lo tanto Vc/^Y.Z) 
debe ser nulo en los puntos estacionarios

Las condiciones de suficiencia son similares a las desarrolladas en la sección 20 1 
La matriz Hessiana (restringida) corresponde al vector independiente Z, y los elemen­
tos de la matriz Hessiana deben ser las segundas derivadas restringidas

Ejemplo 20.2-1

Considere el siguiente problema

/(X) = t¡ + 3« + 5c,j:j 

Sl(X) = t,tj + 2r, + V? - 11 = 0 

gi(X) = n + 2x¡x, + 4 - M = 0

Dado el punto factible X'* = (1,2,3), deseamos estudiar la variación de /l= i),/l en la vecindad 
factible de X**

Sean

Y = (ri, tj) y Z = X2

Por lo tanto

Vv/

üL 6t2
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h)T, ‘Ici l /f3 Vi \
te te Ui,+ zt, ixj

Vn, svj/

/te\
áv2

\ex,j
eir)

Supongamos que tenemos que estimar dj en la vecindad factible del punto factible X„ = 
(1,2,3), dado un pequeño cambio ¿Ixj = 01 de la variable independiente at2 Tenemos

De ahí que el valor incremental de/restringida se da como

<\f = (Vz/ - ?v/J^'C),1Z = (ó(2) - («.30)(_25g))<1^2 = -460Ut2

Especificando el valor de ¿ivj para la variable iiuicpeiuiicnte Vi, los valores factibles de flvi y dx^ 
se determinan para las variables dependientes rj y aplicando la fórmula

SY = -J-'C.1Z

Por lo tanto, para f)v2 = 01,

Ahora comparamos el valor de dc/antes calculado con la diferencia f{X{) + dX) - /(Xh), 
dada dv2 = 01

Xo + í)X = (1 - 0283,2 + 01,3 + 025) = (9717,2 01,3 025)

Se obtiene

/(X„) = 58,/(X„ + dX) = 57 523

/(X„ + dX)-/(X„) = -477

La cantidad - 477 se compara favorablemente con t\f = - 46 üldV2 = - 4601 La diferencia 
entre los dos valores es el resultado de la aproximación lineal al calcular iijcn Xp



CONJUNTO DE PROBLEMAS 20.2A 

1. Considere el ejemplo 20.2-1.
(a) Calcule dc/por medio de los dos métodos presentados, utilizando (1x2 = 001 en lugar 

de 5^2 = .01. t,Se hace el efecto de la aproximación lineal mas insignificante con la 
reducción del valor de drs?

*(b) Especifique una relación entre los elementos de dX = (dvi.dtT diO en el punto fac­
tible Xü = (1.23) que mantendrá factible al punto Xo + dX 

(c) Si Y = y Z = .ti. ¿cuál es el valor de dii que producirá el mismo valor de í)^f
dado en el ejemplo"’
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Ejemplo 20.2-2

Este ejemplo ilustra el uso de derivadas restnngidas. Considere el problema 

Minimizar /(X) = tr + .ti + .t§

sujeto a

gi(X) = ,ti + .t2 -I- 3t, - 2 = 0 

ft(X) = 5ti 4- 2V, + - 5 = 0

Determinamos los puntos extremos restringidos como sigue Sean 

Y = (ti.-<2) y Z = .tj

Por lo tanto,

Por consiguiente,

Vy/
= f V V y

\d.ti’ dti/
(2v,.2x,),V^/ = |^ = 2a,

(! -(1 -!)■'■ o 

(1 lo- (2m.2v,)(

= T-'^l “ f '2 + 2v,

Las ecuaciones para determinar los pumos eslucionnrios se dan por lo lamo como 

V,/ = 0 

,?i(X) = ü 

«2ÍX) = U

La solución es

-28 6\/i,

i il::

X„ » ( 81,.35, .28)
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La identidad de este punto estacionario se verifica mediante la condición de suficiencia 
Dado que t3 es la variable independiente.de V../se desprende que

dfxl 3 Xdxi)

Por el método Jacobiano.

+ 2

La sustitución da —> 0 De ahí que, Xo sea el punto mínimo 
(Vt5 y

Anúlísis de sensibilidad en el método Jacobiano. El método Jacobiano se puede utilizar 
para estudiar el efecto de pequeños cambios en el lado derecho de las restricciones en el 
valor Optimo de/ Específicamente, ¿cuál es el efecto de cambiar g,(X) = 0 a g,(X) = dg, 
en el valor deP Este tipo de investigación se llama análisis de sensibilidad y es similar al 
realizado en la programación lineal (vea los capítulos 3 y 4). Sin embargo, el análisis de 
sensibilidad en programación no lineal es válido sólo en la pequeña proximidad del 
punto extremo El desarrollo será útil al estudiar el método Lagrangiano 

Anteriormente demostramos que

a/(Y, Z) = VvpY + V^JdZ 

f)g = Jf)Y + Cf)Z

Dada i)g5*0, entonces

SY = J"'í)g - J“'G1Z

Sustituyendo cu la ecuación para Z) se obtiene

a/(Y, Z) = Vy/J-'ilg + V,/t1Z

donde
- Vy/J 'C

como ya antes se definió La expresión para (T/(Y,Z) se puede utilizar para estudiar la 
variación de / en la vecindad factible de un punto factible X,i producida por los pe­
queños cambios ñg y DZ -V 1 1

En el punto extremo (de hecho en cualquier punto estacionario) Xa - (Yii,Z|i), el 
gradiente restnngldo V,/dcbe desvanecerse Por lo tanto 

,1/(Y„,Z„) = Vy,,/J-'flg(Y„,Z„)
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El efecto del pequeño cambio f)gen el valor optima de fiC puede estudiar e\aluando la 
razón de cambio de /con respecto a g Por lo común, estas razones se conocen como 
coeficientes de sensibilidad

Ejemplo 20.2-3

Considere el mismo problema del ejemplo 20 2-2 Xo = (xoi-\o24oi) = ( SI. 28) da U punto 
óptimo Dado Yo = (tqi. tos), entonces

Por consiguiente

(!;■£) = ^'^•’■' = ““•'>(1 =
Esto quiere decir que para (Igi = 1 /se incrementara H/7rou»iflf/íimtviíe en 0867 Asimismo, para 
ag2 = l./se incrementara apronmoí/a»it7iít’en 3067

CONJUNTO DE PROBLEMAS 20.2B

1. Suponga que el ejemplo 20 2-2 se resuelve de la siguiente manera Primero, utilice las res- 
Incciones para expresar tj y ri en función de T3. luego utilice las ecuaciones resultantes 
para expresar la función objetivo solo en función de T3 Calculando la derivada de la 
nueva función objetivo con respecto a t3. podemos determinar los puntos de máximos y 
mínimos
(a) ¿Sena diferente la derivada de la nueva función objetivo (expresada en función de 

V3) de la obtenida por medio del método Jacobiano*^
(b) ¿Como difiere el método sugendo del método Jacobiano*’

2. Aplique el método Jacobiano al ejemplo 20 2-1 seleccionando Y = (V2..t3) y Z = (vi)
*3. Resuelva por medio del método Jacobiano

Minimizar/(X) = ^ ^
1-1

sujeto a

rív,=c
donde C es una constante positiva Suponga que el lado derecho de la restricción se cam­
bia a C + 6, donde 6 es una pequeña cantidad positiva Determine el cambio correspon­
diente del valor Optimo de /

4. Resuelva por medio del método Jacobiano

Minimi/ar/(X) = 5r| + rj + 2x|t2

sujeto a

g(X)= r,t2 - 10 = 0



(■o Encucnirc el cambio del valor opimo de/i;X) s, r,r, - 9 99 = 0 reemplaza a la roe- 
Inccion

(b) Encuentro el cambio del valor de/^X) en la vecindad del punto factible J) dado 
que X1V2 = 999y/)t| = 01

5. Considere el problema

Maximizar /(X) = vf + Zts + lOn + 5r,r2

sujeto a

g](X) = X| + \? + 3x2X2 -5 = 0 

i'2(X) = xj + StiVj + - 7 = 0

Aplique el método Jacobiano para hallar dJ{X) en la vecindad del punto factible (1.1.1) 
Suponga que flgi = - 01, Agí = 02 y <)ri = 01 se especifican en esta vecindad

6. Considere el problema

Minimizar/(X) = rí + xt + xi + q

sujeto a

gi(X) = X\ + 2x2 + 3v3 + 5q - 10 = o 

gn(X) = «i + 2x2 + 5xi + 6x4 - 15 = 0
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(a) Demuestre que seleccionando xx y t4 como \ ariables independientes, el método 
Jdcobiano no proporciona una solución ni establece la razón 

*(b) Resuelva el problema utilizando X| y (3 como variables independientes y aplique la 
condición de suficiencia para determinar el tipo de punto estacionario resultante

(c) Determine los coeficientes de sensibilidad, dada la solución en (b)

Método Lagrangiuno. En el método Jncobiano, si el vector A representa los coefi­
cientes de sensibilidad, es decir

Por lo tanto.

f)/ “ A c7g = 0

Esta ecuación satisface las condiciones necesarias para puntos estacionarios porque —

se calcula de modo que = 0 Una forma mas conveniente para represent.ir estas 
ecuaciones es calcular sus derivadas parciales con respecto a todas las Esto da por 
resultado

T^(/-Ag)=ll, ]= 1,2, ,H
,n,

Las ecuaciones resultantes junto con la ecuaciones de restricción g(X) ~ t) producen 
los valores factibles de X y A que satisfacen las condiciones iiccaiirim para los puntos 

estacion.irios
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El procedimiento define el mciodo Liigrnngumo para identificar los puntos esta­
ciónanos de problemas de optimizacion con restricciones de igualdad Sea

¿(X.A)=/(X) - Ag(X)

La función L se llama función Lagrangmna y los elementos del vector A constilujen 
los multiplicadores Lagrange Por definición, estos multiplicadores tienen la misma in­
terpretación que los coeficientes de sensibilidad del método Jacobiano 

Las ecuaciones

proporcionan las condiciones necesarias para determinar los puntos estacionarios de 
J\X) sujeta a g(X) = 0 Existen condiciones de suficiencia para el método Lagrangiano, 
pero en general son difíciles de calcular

Ejemplo 20.2-4

Considere el problema del ejemplo 20 2-2 La función Lagrangiana es

L(X. A) = rj + t? + t5 - A|(r, + t2 + - 2) ~ A^ÍSxj + 2x1 + Xs - 5)

Resultan las siguientes condiciones necesanas

SL ,
— 2x\ Aj — 5A2 ~ 0 

AL
— = 2x2-A,-2A2 = 0

- 2x3 - 3Aj - A2 = 0AX3

ÜL
— = - (X, + X2 + 3^:3 - 2) = 0

— = - (5.x, + 2.X2 + X3 - 5) = 0

La solución de estas ecuaciones simultaneas produce

Xo = (xu Xz, X3) = (8043, 3478, 2826)

A = (A,. A2) = (0870, 3043)

Esta solución combina los resultados de los ejemplos 20 2-2 y 20 2-3 Los valores de los multipli­
cadores Lagrange, dados por el vector A, son iguales a los coeficientes de sensibilidad obtenidos 
en el ejemplo 20 2-3 El resultado muestra que estos coeficientes son independientes de la selec­
ción especifica dd vector Y dependiente en el método Jacobiano
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CONJUNTO DE PROBLEMAS 20.2C

1. Resuelva el siguiente problema de programación lineal mediante los métodos Jacobiano 
y Lagrangiano:

Maximizar /(X) = 5ri + 3.T2

sujeto a

g,(X) = r, + lv2 + .X3 “6 = 0

ftíX) = 3r, + X2 + jt4 - 9 = 0

•f|.-t2.-'^3.-'^4 ^ 0

*2. Determine la solución óptima del problema

Minimizar/(X) = + ivf + lO.rj

sujeto a

fii(X) = -t, + Vi + .vj “ 5 = 0 

gi(X) = ri + 5.t2 + .T3 - 7 = 0

Suponga que gi(X) = .01 y g2(X) = .02. Determine el cambio correspondiente del valor 
óptimo dc/(X)

3. Resuelva el problema 6, conjunto 20.2b, por medio del método Lagrangiano, y verifique 
que los valores de los multiplicadores de Lagrange son los mismos que los coeficientes de 
sensibilidad obtenidos en el problema 6, conjunto 20.2b.

20.2.2 Restricciones de desigualdad. Condiciones de Karush-Kuhn-Tucker (KKT)^

Esta sección amplía el método Lagrangiano a problemas con restricciones de desigual­
dad. La contribución principal de la sección es el desarrollo de las condiciones necesa- 
rías de Karush-Kuhm-T\icker para determinar los puntos estacionarios. Estas condicio­
nes también son suficientes conforme a ciertas reglas que más adelante se formularán. 

Considere el problema

Maximizarz = /(X)

sujeto a

g(X) s 0

Las restricciones de desigualdad se pueden convertir en ecuaciones por medio de va­
riables de holgura no negativas. Sea 0) la cantidad de holgura agregada a la res­
tricción í-ésima g,(X) £ 0 y definamos

S = (Si,S2.......5„,f, S^ = (Sis?........sif

'W Karushíue el primero en desarrollar las condiciones KKTen 1W9 como parte de una tesis de maeslría 
en la Universidad de Chicago Las mismas condiciones fueron desarrolladas de forma independíenle en ly.*)! 
por W Khun y A Tbcker
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donde m es el total de restricciones de desigualdad La función Lagrangiana es por 
consiguiente

L(X,S,A)=/(X)-A[g(X) + S=]

Dadas las restricciones g(X) ^ 0, una condición necesana para optimalidad es que A 
sea no negativo (no positivo) para problemas de maximizacion (minimizacion) El re­
sultado se justifica obser\ ando que el vector A mide la razón de variación de /con res­
pecto a g, es decir,

En el caso de maximizacion, a medida que se incrementa el lado derecho de la restnccion 
g(X) £ 0 desde 0 hasta el vector (Ig el espacio de soluciones se hace menos restringido 
y por consiguiente /no puede disminuir, lo que significa que A s 0 Igualmente para 
minimizacion, a medida que se incrementa el lado derecho de las restncciones,/no puede 
incrementarse, lo cual implica que A s 0 Si las reslncciones son igualdades, esto es, g(X) = 0 
entonces A se hace no reslnngido en cuanto a signo (vea el problema 2, conjunto 20 2d) 

Las restricciones en A se mantienen como parte de las condiciones KKT necesa­
rias. Ahora se desarrollaran las condiciones restantes.

Calculando las derivadas parciales de L con respecto a X, S y A, obtenemos

^ = V/{X) - AVg(X) = 0

— = -2A,S, = 0,1 = 1,2, ,m 

^ = -(g(X) + S^) = 0

El segundo conjunto de ecuaciones revela los siguientes resultados

1. Si A, ^ 0, entonces S? = 0 Este resultado indica que el recurso correspondiente 
esta escaso (es decir, agotado por completo)

2. Si S? > 0, entonces A, = 0 Esto indica que el recurso i no esta escaso y, por con­
siguiente. no tiene ningún efecto en el valor de /(es decir. A, = = 0)

Del segundo y tercer conjuntos de ecuaciones, obtenemos

'^.ft(X) = 0, í = 1,2, ,m
Esta nueva condición repite en esencia el argumento anterior, porque si A, > 0, g,(X) = 
ü o 5r = 0, y si g,(X) < 0, S? > 0, y A, = 0

Las condiciones KKT necesarias para problemas de maximizacion se resumen 
como sigue

A > 0

V/(X) - AVg(X) = 0

^j¿'i(X) = 0, í = l,2, ,/íi

g(X) ^ 0
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TABLA 20 1 Suficiencia de las condiciones KkT

St.ntido de la
Condiciones requendas

runción objciix o Espacio de solucionesoptimizaciun

Maximize ctón Cóncava Conjunto convexo
Minimización Convexa Conjunta convexo

Estas condiciones también aplican a! caso de mimmización excepto que A debe ser no 
positivo (|Compruebclo') Tanto en maximizacion como en mimmizacion, los mullipli 
cadores de Lagrange correspondientes a restricciones de igualdad no están restnngidos 
en cuanto a signo

Suficiencia de las condiciones KKT. Las condiciones KKT necesarias también son 
suficientes si la función objetivo y el espacio de soluciones satisfacen las condiciones 
que aparecen en la tabla 20 1

Es mas fácil verificar que una función sea convexa o cóncava que demostrar que 
un espacio de soluciones es convexo Por esta razón, ofrecemos un sitbconjunio de las 
condiciones de suficiencia que aunque no tan general como los de la Tabla 20 1 son 
mas fáciles de aplicar tn la practica Para proporcionar estas condiciones definimos los 
problemas no lineales generalizados como

Maximizar o minimizar z = /(X)

sujeto a
g,(X)^0, ( = 1.2, ,r 

g,(X) a o, I = r + 1 ,P

g,(X) = 0, / = + 1, , m
r P lit

i.(X,S,A) = /(X) - + 5?) - 2 - -sil - S '',«,{X)
I 1 i-r+l t p+l

El parametro A, es el multiplicador de Lagrange asociado con la restricción / Las condi­
ciones para establecer la suficiencia de las condiciones KKT se resumen en la tabla 20 2

TABLA 20 2

j1i

Sentido de la 
optimiz ición

Condiciones requeridas

/(XJ í,(X) A

Mnximizaeion Cune IV i
I ConveXT 
< Cóncav 1 
[ Line il

2: 0 
s 0

No reslrinj,id i
(r 4 1 S 1 s />)
(/> + 1 S / S /íl)

Minimi/acion Convexn
I Convexn 

< Conc IV1 
[ Line il

(1
Z: 0

No restrinydn

(l £ Í s r)
(r -t 1 fi / s ,») 
(/I + l s 1 5 m)
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Las condiciones que aparecen en la tabla 20 2 son un subconjunto de las condi­
ciones que aparecen en la tabla 20 1 porque un espacio de soluciones puede ser conve­
xo sin que satisfaga las condiciones que aparecen en la tabla 20 2

La tabla 20.2 es válida porque las condiciones dadas producen una función 
Lagrangiana L(X,S,A) en el caso de maximizacion y convexa Z-{X,S,A) en el caso de 
minimización. Este resultado se verifica observando que si g(i) es convexa, entonces 
A,g,(v) es convexa si A, ^ 0 y cóncava si A, s 0. Se pueden establecer interpretaciones 
similares para todas las condiciones restantes Observe que una función lineal es tanto 
convexa como cóncava. Además, si una función/es cóncava, entonces (~f) es convexa, 
y viceversa

Ejemplo 20.2-5

Considere el siguiente problema de minimizacion
Minimizar /(X) = rf -f- rv +

sujeto a

gi(X) =2xi + t2 - 5 s 0

g2(X) = ri + V3 - 2 < 0

g3(X) = I - T| <0

g4(X) = 2 - X2 £ 0

gs(X) = - t3 <0

Este es un problema de minimización, de ahí que A £ 0 Las condiciones KKT se dan por lo 
tanto como

(2 tj, 2x2,2x3) (Al, A2, A3, A4, A5)

(A], A2, A3, Aj, A5) £ 0

/ 2 1 0\
1 0 1

-1 0 0=0
0-10 

\ o 0-1/

^igl = A2g2 = = Asgs = 0

g(X) £ 0

Estas condiciones se reducen a

Al, A2, A3, A4, A5 £ 0 

2aT| — 2A] — Al + A3 = 0 

2^2 ~ A| -I- A4 = 0 

2x3 — A2 + Aj = 0 

Ai(2vi + rj - 5) = 0 

A2Íri + jt3 - 2) = 0 

A3(1 - X|) = o
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^4(2 ~ JTi) “ 0

Asís - 0

2.ti + V2 s 5

ri + X3 £ 2

xi a 1, r2 a 2, Tj > 0

La solución es X] = 1, T2 = 2,1:3 = 0, A| = A2 = A5 = 0, A3 = —2, A4 = — 4 Debido a que 
tantoy(X) como el espacio de soluciones g(X) s O son convexos, L(X,S,1) debe ser convexa, y el 
punto estacionan© resultante da un mínimo rcstnngido global Las condiciones KKT son funda­
mentales para el desarrollo de los algontmos de programación no lineal del capítulo 21

CONJUNTO DE PROBLEMAS 20.2D

1. Considere el problema

Maximizar /(X)

sujeto a
g(X) s 0

Demuestre que las condiciones KKT son las mismas que en la sección 20 2 2. excepto que 
A<0

2. Considere el siguiente problema

Maximizar /(X)

sujeto a
b(X) = o

Demuestre que las condiciones KKT son

V/(X) - AVg(X) = 0 

B(X) = 0 

A sin restricción de signo

3. Escriba las condiciones KKT necesarias para los siguientes problemas.
(a) Maximizar/(X) = W - r| + XjXj 

sujeto a
+ X? + JT3 = 5

5rí - - t3 s 2

^1. V3 a 0

(b) Minimizar/(X) = Jr) + + 5t,r2M

sujeto a
tí - t5 + s lü 

v} + V? + 4ií 2 20



4. Considere el problema

Ma\imizar /(X)

sujeto a

e(x) = o
Dado que/(X) es cóncava y g,(X)(f= 1,2, ,m) es una función lineal, demuestre que las 
condiciones KKT necesarias tambu.n son suficientes. ¿Es cierto este resultado si g,(X) es 
una función no lineal conveva para todas las ¿Por que''

5. Considere el problema

Maximizar /(X)

sujeto a

g,{X)a0,fi2(X)=0.g,{X)s0

Desarrolle las condiciones KKT y proporcione las estipulaciones conforme a las cuales 
las condiciones son suficientes.

698 Capítulo 20 Teoría de optimizacion clasica

BIBLIOGRAFÍA

Bazarra, M , H Sherali, y C Shetty, Nonlinear Prograinining Theory and Algoniluns 3a ed , 
Wiley, Nueva York, 2006

Beighller,C ,D Phillips,y D VTilde.roimdationsof Oplinuzation, 2a ed , Prentice Hall.NJ, 1979 
Fletcher, R, Praaical Methods of Opiinuzaiion, 2a ed , Wiley, Nueva York, 2000



CAPITULO 21

Algoritmos de programación no lineal

21.1 ALGORITMOS NO RESTRINGIDOS

Esta sección presenta dos tipos de algoritmos para el problema no restringido de bus- 
queda directa y del gradiente

21.1.1 Método de búsqueda directa

Los métodos de búsqueda directa se aplican sobre lodo a funciones de una sola vana 
ble estrictamente unimodalcs Aunque el caso parezca trivial, la sección 21 1 2 demues­
tra que la optimizacion de funciones de una sola variable es clave en el desarrollo del 
algoritmo general de multiples variables

La idea de los métodos de búsqueda directa es identificar el intervalo de incerti- 
dumbre que se sabe incluye el punto de solución óptima El procedimiento localiza el 
Optimo estrechando de manera interactiva el intervalo de incerlidumbre a un nivel de 
exactitud deseada

En esta sección se presentan dos algoritmos de búsqueda estrechamente relacio­
nados, el dícótomo y el de la sección dorada Ambos buscan la maximización de una 
función unimodaiy^x) a lo largo del intervalo a^x^b que incluye el punto Optimo 
X* Los dos métodos se inician con el intervalo inicial de incertidumbre 7o = {a,b)

Paso general i Sea 7,_i = (vz,, Xfí) el intervalo actual de incerlidumbre (en la iteración 
0, = rt y V/? = ¿) La siguiente tabla muestra como se determinan tj y X2

Miítodo dicolomo M(.todo d(. lu SLCCiun dorada

jii = !('«+'/“ ■i) X| = j:« - - *i)

t: = l(v« + W + •^2 - ~

La selección de \ | y V2 garantiza que \¿ < \ i < \2 <

699
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H-

(□) (b)

FIGURA 21 1

Ilustración dd paso general de los métodos de búsqueda dicotomo y de la sección dorada

El Siguiente intervalo de incertidumbre, /„ se determina de la siguiente manera

L S\f{\i) > y(x2), entonces x/, < r* < ^2 Sea xa = xiy establezca /, = (^¿42) [vea 
la figura 21 1(a)]

2. Siy(xi) </(x2), entonces \i <x* < xr Sea x¿ = vj y establezca I, = (x;, x^) [vea 
la figura 21 1(b)]

3. Si f{xi) = /(X2), entonces xi < x"*" < X2 Sea = atj y xr = V2, establezca I, =
(A1.V2)

La manera de determinar x\ y vt garantiza que /,+1 < /„ como se demostrará en breve 
El dlgonlmo termina en la iteración A si < A, donde A es un nivel de exactitud espe­
cificado por el usuario

En el método dicotomo, los valores x\ y t2 se sitúan simétricamente alrededor del 
punto medio del intervalo de mcertidumbre actual Esto significa que

/,^i = 5(/, + A)

La aplicación repetida del algoritmo garantiza que la longitud del intervalo de mcerti- 
dumbre se aproxime a la exactitud deseada, A

En el método de la sección dorada, la idea es más elaborada Observamos que cada 
intervalo del método dicótomo requiere calcular los dos valores/(xi) y/(^2). pero al final 
se descarta uno de ellos Lo que el método de la sección dorada propone es ahorrar 
cálculos al reutilizar el valor desechado en la iteración inmediatamente subsiguiente
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^2
tR - “(r„ - tt)l 
x¡. + a(x„ - r¿)J

0 < a < 1

Entonces el intervalo de incertidumbre /, en la iteración i es igual a o (v,, r«)
Considere el caso /, = (r¿, xj), lo que significa que xj esta incluida en /, En la iteración 
r + 1, seleccionamos X2 igual a xj en la iteración i, lo cual conduce a la siguiente ecuación

X2(iteración r + 1) = Xi(iteracion r)

La sustitución produce

Xi, + a[i2(iteracion l) - x¿] = Kj¡ - a(iR - r¿)

O

ir. + + a(l« - i¿) - xJ = x« - a(t„ - x¿)

la cual se simplifica como

+ a — 1 = 0

Esta ecuación da por resultado a - selecciona la raíz positiva

o = Rí 681 porque 0 < a < 1
El diseño de los cálculos de la sección dorada garantiza una reducción « en los in­

tervalos de mcerlidumbre sucesivos, es decir

A+i = «A

El método de la sección dorada converge con mas rapidez que el método dicolomo por 
que. en este, el eslrechamienlo del intervalo de incerlidumbre se desacelera apreciable 
mente a medida que /—>A Ademas,el método de la sección dorada requiere la mitad 
de los cálculos porque recicla un conjunto de cálculos de iteración inmediata anterior

Ejemplo 21.1-1

flr, 0 < \ < 2
M,mmu.ir/{x) = 2£ i si

El valor máximo de^v) ocurre en \ = 2 Lu tabla siguiente demuestra los cálculos para las 
Iteraciones 1 > 2 siguiendo los métodos dicotomo > de la sección dorada con A = 1 C ontmuando
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Método dicólomo Mctodo de la sección dorada

¡leracion I 
lo = (0.3) « (j:/.
ri = Ü + 5(3 - 0 - 1) ** 1 45,/(r|) = 4J5 
t2 = 0 + 5(3 - 0 + 1) = 1 55./(t:) = 465 
/(:c2) > /(r,) =» = 1 45. /, = (1 45.3)

Iteración 2 
h = (145.3) °

= 145 + 5(3 - 145 - 1) = 2 175./(V|) = 5 942 
= 2 275.y(t2) = 5 908

f{x^) > f{ t2) => = 2275. ¡2 = (1 45 2 275)

iurocion ¡

lo = (0 3) ° (t, r«)
X| = 3 - 618(3 - 0) = 1 146,/(t,) = 3438 
V: = Ü + 618(3 - 0) = 1 854./(rj) = 5^62 
/(tí) >/(v,)^ri = 1 146./, = (1 146.3)

Ittriiaun 2

/, = (1 146 3) - (XL Tfi)
t| = r: en Iteración 0 = 1 854 /(rj) = 5.562
r, = 1 146 + 618(3 - 1 146) = 2292 /(vj) = 5 903
/(t2) > /(t,)=> = 1 854 /, = (1 854,3)

de la misma manera, a fin de cuentas el intervalo de incertidumbre se estrechara a la tolerancia 
A deseada

Momento de Excel

La plantilla cxcclDiGold xls maneja ambos métodos ingresando la letra X en D5 (dicótomo) o 
F5 (sección dorada) Los datos de entrada incluyen/(t), o, 6 y A La función/(t) se ingresa en la 
celda E3 como

=1F(C3<=2,3*C3,(-C3+20)/3)

La celda C3 desempeña el papel de r en/(r)
La figura 21 2 compara los dos métodos. El método de la sección dorada requiere menos de la 

mitad de las iteraciones del método dicótomo, además la mitad de los cálculos en cada iteración

CONJUNTO DE PROBLEMAS 21.1A

1. Use la plantilla excelDiGold xls para resolver el ejemplo 211-1 suponiendo que A = 01 
Compare la cantidad de cálculos y la exactitud de los resultados con los de la figura 21 2

2. Determine el máximo de cada una de las siguientes funciones mediante la búsqueda 
dicótoma Suponga que A = 05

(a) m

(b) /(v) 
*(c) /(r)

(d) f(x)

1
l(t-3)Y 2^ X ^4

Arcos X, 0 £ r s 7T 

ATsen 1TX, 1 5 £ r £ 2 5 

-{x - 3)^ 2 £ A s 4

•(e) = 0 < r £ 2 
2 £ V £ 4
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6 x* = 2.04001 fx*1 = 5 97002
7 Clalculsúora: Pvrfonn ciicalation
H xL xR Xl x2 11x11 Rx2)
9 0 000000 3 000000 1.450000 1550000 4 350000 4 650000
10 1 450000 3 000000 2175000 '2275000 5 941667 5 908333

12
13

1 4bUUUU
1.B12500 
1 812500

2J75000
2.093750

1.993750
1.903125

2093750
2003125

5 437500
5 961250 
5.709375

5 737500
5 960750
5 998956

14 1 903125 2.093750 1948438 2048438 5 845313 5 983654
15 1 948438 2.0937SD 1.971034 2071094 5 913281 5 976302
16 1.971094 2093750 1.982422 2082422 5 947266 5 972526
17 1.982422 2093750 1.988086 2088086 5 964258 6 970630
1U 1.988086 2093750 1990918 2090918 5 972754 5 969694
19 1 988086 2090918 1989502 2089502 5 968506 5 970166

21 1 989502
2090918
2090210

1.990210
1989856

2090210
2083856

5 970630
5 969568

5 969930 
S970Ó48

22 1939856 2090210 1.990033 2090033 5.970099 5 969989
23 1989856 2090033 1 989944 2089944 5 969833 5 970019
24 1989944 2090033 1 989989 2089989 5 969966 5 970004
25 1 989989 2 090033 1990011 2090011 5 970033 5 969996
26 1.989989 2090011 1990000 2090000 5 969999 5.970000
27 1 990000 2090011 1990005 2090005 5 970016 5 969998
26 1 990000 2090005 1.990003 2090003 5 970008 5.969999
5 Solution: CnlwxtaMiiet» Dtcholoniour GoldonSection-1 X
6 x* = 200909 ffx*l = 5 99290
7 Clatcu lotions. Psifonn cakultUon
8 xL xR xl x2 «xll 0x2)
9 0 000000 3 OOODDO 1 145898 1854102 3 437694 5 562306
10
11

1 145898 3 OOOODÓ 1 854102 2291796 5 562306 5 902735
1854102 3 000000 2Í91796 2 562306 5 902735 5 012565

12 1854102 2562306 2124612 2.291796 5 95B463 5 902735
13 1854102 2291796 2021286 2124612 5 992905 5 956463
14 1854102 2124612 1957428 2021266 5 072283 5 992905
15 1957428 2124612 2 021286 2 060753 5 992905 5 979749
16 1957428 2 060753 1 996894 2 021266 5 990683 5 992905
17 1 996834 2060753 2021266 2036361 5 992905 5 987680

FIGURA 21.2

Resultados de los métodos dicúlomo y de la sección dorada aplicados al ejemplo 21 1-1 

obtenidos con Excel (archivo L\xcdDiGoltl.xls)

21.1.2 Método del gradiente

Esla sección desarrolla un método para optimizar dos veces funciones continuamcnlc 
diferenciables, llamado método del ascenso mus pronunciado (o de mayor pendiente). 
La idea es generar puntos sucesivos en la dirección del gradiente de la función.’ La ler-

•EI método de Newton-Raphson en la sección 20.1 2 también es un ntétodo de gradiente que loc.»li/j el óp­
timo de forma directa resolviendo las ecuaciones de condiciones necesarias.
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minación del método de gradiente se da en el punto donde el vector gradiente se vuel­
ve nulo. Ésta es la única condición necesaria para la optimahdad.

Suponga que/(X) se maximiza. Sea punto inicial desde donde se inicia el 
procedimiento, y defina como el gradiente de / en el punto X^.. La idea es de­
terminar una ruta particular p a lo largo de la cual ^ se maximice en un punto dado 
Este resultado se logra si se seleccionan los puntos sucesivos X^ y X¿+] de modo que

X,.,, = X, + r,V/{Xfc)

donde es el tamaño del paso óptimo en X^
El tamaño del paso se determina de modo que el siguiente punto X^+i conduzca al 

mejoramiento máximo de /. Esto equivale a determinar r = que maximiza la función

h{r) = /[X, + rV/(X,)]

Debido a que h{r) es una función de una sola vanable, se puede utilizar el método de 
búsqueda de la sección 21.1.1 para determinar el óptimo, siempre que h{r) sea ummodal 

El procedimiento propuesto termina cuando dos puntos de prueba sucesivos X/^ 
y son aproximadamente iguales Esto equivale a tener riyf{XiJ » 0, o de forma 
equivalente Vf{XfJ » 0.

Ejemplo 21.1-2
Considere el siguiente problema

Maximizar/(ri.A:2) = 4ri + 6x2 - 2rf - 2.r,jr2 - 2x^

El óptimo exacto ocurre en (t*, a:*) = (3.5)
El gradiente de/es

V/(X) = (4 - 4ati - 2.t2, 6 - 2x, - 4X2)

La naturaleza cuadrática de la función indica que los gradientes en dos puntos sucesivos son or­
togonales (perpendiculares entre sí)

Supongamos que comenzamos en el punto inicial Xq = (Ll)- La figura 21 3 muestra los 
puntos de solución sucesivos.

Iteración 1

V/(X„) = (-2.0)

El siguiente punto Xj se obtiene considerando

Por lo tanto,

X = (1,1) r(-2,0) = (1 - 2r,l)

/i(r) = /(I - 2r, 1) = -2(1 - 2r)^ + 2(1 - 2r) + 4

El tamaño óptimo del paso se obtiene aplicando las condiciones clásicas necesarias expuestas en 
el capítulo 20 (también se pueden utilizar los algoritmos de búsqueda dados en la sección 211 1 
para determinar el óptimo) El valor máximo de /i(r) es el cual da el siguiente punto de
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FIGURA 21.3

Maxjmizíición de /(X|. jc^) = 4x\ + 6xi - 2x\ - Irjxj - 2x2 ^1 mólodo del ascenso más pronunciado

Iteración 2

V/(X,) = (0.1)
X = (l,l)+/-(0,l) = (l,l + r)

/i(r) = -2(1 + rf + 5(1 + r) + ]

Por lo tanto, T2 = j yX2=(2M)- 

Iterodón 3
V/(X,) = (-1,0)

X = ()■!) + '■(-Z'O) =

h(r)=-'iO-rf+ i(l -r)+ f

Por consiguiente,r, = ( y X, = (¿,|),

Iteración 4
V/(X,) = (0,1)

X = (ii) + r(0,l) = (3.H")

il(r) = -J (5 + rf + Tí (5 + f) + i 

Porlolonto,r4 = j yX, = (s,tÍ).
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Keradón 5

v(x.) =
X = o) = (V.ri)

Kr)= -É(3-r)’-+ 55(3-'-)+ 1
Se obtiene rs = 5 y X5 =

Iteradón 6
V/(Xs) = (o, i)

El proceso se puede terminar en este punto porque V/^Xj)« 0 El punto aproximado máximo lo 
da X5 = (3438,1.3125) El óptimo exacto es X* = (3333,1 3333)

CONJUNTO DE PROBLEMAS 21.IB

*1. Demuestre que, por lo común, cuando se aplica el método de Ncwton-Raphson (sección 
20 1.2) a una función cuadrática eslnctamente cóncava convergerá en evactamente un 
paso Aplique el método a la maximización de

2. Realice cinco iteraciones para cada uno de los siguientes problemas con el método del 
descenso (ascenso) más pronunciado Suponga que X** = 0 en cada caso

(a) mín/(X) = mfn /(X) = (x, - x¡f + (1 - r,)
(b) máx /(X) = cX + X^AX

21.2 ALGORITMOS RESTRINGIDOS

El problema de programación no lineal general restringido se define como

/(X)=4t,+ 6r2-2r?-2r,t2-2r?

donde

c = (1.3,5)

(c) mín/(X) = xi - X2+ xr ~ titj

Maximizar (o minimizar) z = /(X)
sujeto a

g(X) < 0

Las condiciones de no negatividad X > 0, son parte de las restricciones Incluso, al 
menos una de las funciones /(X) y g(X) es no lineal, y todas las funciones son conti­
nuamente diferenciables
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El comportamiento errático de las funciones no lineales impide el desarrollo de 
un solo algonimo para el modelo no lineal general Quizas el resultado mas general 
aplicable al problema sean las condiciones KKT (sección 20 2 2) La tabla 20 2 muestra 
que las condiciones sólo son necesarias, a menos que f{X) y g(X) sean funciones de 
buen comportamiento

Esta sección presenta vanos algonlmos que se pueden clasificar en general como 
métodos indirectos y directos Los métodos indirectos resuelven el problema no lineal 
valiéndose de uno o mas programas lineales denvados del programa onginal Los me 
todos directos se valen del programa original

Los algontmos indirectos presentados en esta sección incluyen las programacio­
nes separable, cuadrática y eslocástica Los algoritmos directos incluyen el método de 
combinación lineal y un breve análisis del algontmo SUMT, la técnica de maximiza 
ción secuencia! sin restricciones. En la lista de referencias al final del capítulo se hallan 
otras importantes técnicas no lineales

21.2.1 Programación separable

Una función J{xi,X2, , v„) es separable si se puede expresar como la suma de n fun­
ciones de una sola variable/i(vi),/2(^2)« .//i(^n)i es decir,

/(jTi, t,, , r„) = /,(!,) + /.(atz) + +

Por ejemplo, cualquier función lineal es separable Por otra parte, la función 

>^2. V3) = -ti + sen (\, + tj) + rje'’

no es separable
Algunas funciones no lineales (convolucionadas) se pueden hacer separables 

mediante sustituciones apropiadas. Considere, por ejemplo, el caso de maximizar z = 
ri X2 Sea y = x\ V2. entonces In y = In x 1 + In 1:2, y el problema separable es

Maximizarz = y

sujeto a

In y = In i| + In t2

La sustitución asume que vj y j:2 son variables positivas porque la función logarítmica 
es indefinida con valores no positivos Podemos tener en cuenta el caso en que xi y t2 
pueden asumir valores cero por medio de las aproximaciones

iü[ = i| + 61 > 0 

IÜ2 = At + 62 > 0

Las constantes 5i y 62 son valores positivos muy pequeños
Esta sección muestra cómo se puede obtener una solución aproximada de cual 

qiner problema separable utilizando aproximación lineal y el método simplex de pro 
gramacion linea! La función de una sola variable puede ser representada por una fun­
ción lineal definida por intervalos por medio de programación entera combinada 
(capítulo 9) Suponga que/(\) se representa de forma aproximada en el intervalo [</,/>),



y se define k = 1,2,..., K, como el punto de ruptura A'-ésimo sobre el eje .t de modo 
que ai<a2< ... < ua- Los puntos a\ y coinciden con los puntos e.xtremos n y ¿ del 
intervalo designado. Por lo tanto,/(.r) se representa de forma aproximada como

/(■i) =

K
•í =

k = \

Los pesos no negativos deben satisfacer la condición
K
'^Wi, = l.iuj a 0,<r = 1,2...... K

A = I

La programación entera combinada (o mixta) garantiza la validez de la aproxi­
mación al imponer dos condiciones adicionales:

1. A lo sumo dos Wf^ son positivos.
2. Si wa es positivo, entonces sólo un o adyacente puede asumir un valor 

positivo.

Para demostrar cómo se satisfacen estas condiciones, considere el problema separable 

Maximizar (o minimizar) z =
;=i

sujeto a

ÍSij(Xj) s / = 1,2,..., nt
;=i

Este problema se puede representar de forma aproximada por medio de un programa 
entero combinado como sigue. Sean^

üjk - punto de ruptura k de la variable x¡ \
w,í = peso con punió de ruptura k de la variable J ^....... K,,j - 2........n

Entonces el problema combinado equivalente es

/. K,
Maximizar {o minimizar) z = 2

/=1A=1

sujeto a
n
E 'Zs,d‘¡,t]Wit s 6„ i = 1,2.......m
J=lk=l

0^ui„sy,¡, y = l,2,.,.,n
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^Es más preciso reemplazar d índice A con 1:^ dií modo que corresponda de forma única a la variable En 
osle instante vamos a renunciar a la precisión malemálica en favor de una nolación más simple
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4 = 2,3,

0 ^ ; = 1,2, , n
Ki-¡
S y¡k = 1.
A-l J = 1,2,

A-l 1 = 1,2,

y,k = (0,1), 4 = 1,2, II r

Las vanables en el problema de aproximación son Wji, y
La formulación muestra cómo se puede resolver cualquier problema separable, 

en principio, mediante programación entera combinada La dificultad es que las res­
tricciones se incrementan con rapidez con la cantidad de puntos de ruptura En par­
ticular, la factibilidad computacional del procedimiento es cuestionable porque no hay 
códigos de computadora consistentemente confiables para resolver grandes problemas 
de programación entera combinados

Otro método para resolver el modelo de aproximación es el método simplex 
regular (capitulo 3) utilizando una base restringida En este caso se eliminan las res­
tricciones adicionales que implican yjf^ La base restringida modifica la condición de 
optimalidad del método simplex al seleccionar la variable de entrada Wj con la mejor 
{Zjf, — CjfJ) que no viole el requisito de adyacencia de las vanables con valores positi­
vos El proceso se repite hasta que se satisfaga la condición de optimalidad o hasta que 
sea imposible satisfacer la condición de base restringida, lo que ocurra primero

El método de programación entera combinada da un óptimo global al problema 
aproximado, en tanto que el método de base restringida sólo puede garantizar un ópti­
mo local Además, en los dos métodos, la solución aproximada puede no ser factible 
para el problema original, en cuyo caso quizá sea necesario refinar la aproximación 
incrementando la cantidad de puntos de ruptura

Ejemplo 21.2-1

Considere el problema 

sujeto a
Maximizar z = tj + X2 

3r, +2x¡s9

Xi,X2 s 0

Ln solución óptima exacta de este problema, obtenida por AMPL o Solver, ts xi = 0. vj = 
2 1232, y z* = 20 25 Para demostrar cómo se utiliza el método de aproximación, considere las 
funciones separables

/i(fi) =
/!(<:,)= 4

Kl(>l) = 3'l 
glUl) =
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La variable x\ no es aproximada porque las funciones/i(ri) y gi(rj) ya son lineales. 
Considerando/2(v2) y g2(r2).suponemos cuatro puntos de ruptura flix = 0 1 2y 3para A. = 1 23 
y 4, respectivamente Dado que ti ^ 3. entonces

A «zi
10 0 0
2 11 2
3 2 16 8
4 3 81 18

Por lo tanto

/2(X2) *5 U>2i/2(fl2|) + íl>2l/2(«22) + ««ai/zíau) + nhJ‘zia2A)

« Ou^i + 1«*22 + 16u^ + 81tt>24 = + lÓKhj + 81iü24

Asimismo,

&(jf2) 2H)22 + 8w^ + 18u>24

El problema de aproximación es por lo tanto

Maximizar z — X\ + uhi + 161^23 + 8IUJ24

sujeto a
3Xi + 2tÜ22 + 8uh3 + I8IÜ24 s 9

Whi + tUii + tÜ23 + “ 1

Xi ^ 0, a 0.¿ = 1,2,3,4

Los valores de ií?2A,. ^ - 1.23.4. deben satisfacer la condición de base restringida
La tabla simplex inicial (con las columnas reacomodadas para proporcionar una solución 

inicial) se da como

Básica 11H2 U124 Si 1U21 Solución

Z -1 -1 -16 -81 0 0 0

Si 3 2 8 18 1 0 9
Uhi O I ‘ ' 0 ‘ l

Laxanablejj 0) es una holgura (El problema resultó tener una solución inicial obvia En ge 
neral se pueden utilizar venables artificiales,sección 3 4)

En la fila z, W24 es la variable de entrada Debido a que h^i en este momento es básico y 
positivo, la condición de base restringida dicta que debe salir antes de que IÜ24 pueda entrar a la 
solución Sin embargo de acuerdo con la condición de factibilidad, debe ser la vanable de salida, 
lo que significa que 14134 no puede entrar a la solución La siguiente mejor variable de entrada 
W23 requiere que ivii salga de la solución básica, una condición que da la casualidad de ser 
satisfecha por la condición de factibilidad La nueva tabla es por tanto

Diisica Xl UM HH3 »'J4 S\ UHj Solución

2 -l 15 0 -65 0 16 16

b 3 —6 U 10 l -8 1
U>13 0 1 l 1 0 1 1



Luego. IÜ24 es la vanablc de entrada, lo cual es admisible porque 1L23 es positivo El método 
simplex muestra que saldrá Entonces
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Básica í| W22 Mhj «■:4 í| tíhi Solución

z ? -24 0 0 '4 -36 225

IÍS4
13 0 1 13 "ÍD

1023 “■¡3
16
lü 1 0 ~h IH

l()

La tabla muestra que íü2i y W22 son candidatas para la vanable de entrada La variable jüii no 
está adyacente a la básica tU23 o W24, por consiguiente no puede volverse básica Asimismo. UI22 
no puede entrar porque W24 no puede salir En consecuencia, la ultima tabla es la solución de 
base mejor restringida para el problema aproximado 

La solución óptima al problema onginal es

r, =0

j:. = 2tti2j + 3lihj = 2(55) + 3(ií¡) = 2 1 

1 = 0 + 21^= 1945

El valor V2 = 2 1 es aproximadamente igual al valor óptimo verdadero (= 2 12132)

Programación scparoblc convexa. Un caso de programación separable ocurre 
cuando gy(«)) es convexa para todas las i ylo cual garantiza un espacio de soluciones 
convexo Ademas, si fj(\j) es convexa (minimización) o cóncava (maximizacion) para 
todas las y, entonces el problema tiene un oplimo global (vea la tabla 20 2, sección 
20 2 2) En tales condiciones, se puede utilizar la siguiente aproximación simplificada 

Considere un problema de mmimizacion y sea^(a^) como se muestra en la figura 214 
Los puntos de ruptura de la función son Xj = k = 0,\,. ,K¡ Si x¡f, define el incre­
mento de la vanable \yenelinlervalo(flyt-i,fl;^),A. = 1,2, , y si es el coeficiente de 
cambio correspondiente (pendiente del segmento de línea) en el mismo intervalo Entonces

0 s AT^JI < = 1.2, ,K,

«/II «/i

FIGURA21 4

Aproximación lineal por segmentos de un i 

función convexa

11^2 (i,\ t,
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El hecho de que^(.y,) sea convexa garantiza que r¡i < rp_... < r^A,. Esto significa que en el 
problema de minimización la variable x,p es más atractiva que con p < <7. En consecuen- 
cia,.ryp siempre alcanzará su límite máximo antes de que x¡q pueda asumir un valor positivo.

Las funciones de restricción convexas g,/.Vy) se representan de forma aproximada 
en esencia de la misma manera. Sea r^A la pendiente de! /c-ésimo segmento de línea co­
rrespondiente a gj{Xj). Se deduce que

fi,

A = t

El problema completo es por consiguiente

« /
Minimizar z = 2 E

sujeto a

E(E''v<.-V ==

0 £ Xji^ £ Ojf^ ~ fly A-b ^ ~ L 2,..., Kj, j 1,2,...,/!

donde

- //Ka-i)

0,k - «;,A-1

r„k =
/í -1)

«;A “ Q;.A-1

El problema de maximización se trata en esencia del mismo modo. En este caso, 
fji > rj2> :■> TyA'.lo que significa que, parap < <7, la variable siempre alcanzará su 
valor máximo antes de que x¡q asuma un valor positivo (vea el problema 7, conjunto 
21.2a, para la comprobación).

El nuevo problema se puede resolver con el método simplex con variables de 
cota superior (sección 7.3). El concepto de base restringida no se requiere porque la 
convexidad (concavidad) de las funciones garantiza la selección correcta de las varia­
bles básicas.

Ejemplo 21.2-2

Considere el problema

Maximizarz = .vi - .rj

3.rf + at2 :£ 243

.Vi + 2x\ £ 32

-V| a 2.1

.V2 a 3.5

sujeto a
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Las funciones separables de esle problema son

/l('l) = «1.
ffn(ci) = 34, suíti) = i,

S2i(j:i) = J:i. ¿'22(2^2) =

Estas funciones satisfacen la condición de convexidad requenda para los problemas de minimi 
zación Las funciones/i(xi),/2(A:2),gi2(A:2) y g2i(-*i)y^son lineales.

Los intervalos de las venables X\ y t2 (estimados con las restncaones) son aSti^SyOs 
V2 s 4 Sean K\=3y Kt = ^ Las pendientes correspondientes a las funciones separables se de­
terminan como sigue 

Para ; = 1,

^ “U Sll(‘’u) - Tiu T|l

0 0 0
1 1 3
2 2 48
3 3 243

Para j = 2.

^ (^21 “ ^21 ''m

0 0 o -
11 2 2 jji
2 2 8 6 x¡2
3 3 18 10 JTv,
4 4 32 14 X24

3 x„
45 Xi2

195 jTn

El problema completo se convierte entonces en

Maximi/ar z = - Xi

sujeto a

3ri| + 45vi2 + 195ri3 + X2 ^ 243 (1)

ti + 2t2i + 6x22 + lOtTj + 14V24 £ 32 (2)

r, ^21 (3)

Í2 s 3 “i (4)

'^ii + t]2 + tn - Vi =0 (3)

•V21 + X22 + X23 + V24 -*42 =0 (6)

0 £ JTu ^ 1. A. = 1.2, 3 (7)

0 £ X2* s 1, A. = 1,2.3.4 («)

I,, V, s o
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Las restncciones 5 y 6 son necesanas para mantenerla relación entre las\anables originales y las 
nuevas. La solución óptima es

z = - 52. tj = 2 98. X2 - 3 5. Xn = t,2 - 1. = 98, = xi^ = xy = 1 V:4 = 5

Momento de AMPL

El modelado con AMPL del problema no lineal original del ejemplo 21 2-2 es muy parecido al 
de los problemas lineales. La obtención de la solución es un asunto totalmente diferente debido 
al comportamiento “imprcdeciblc" de las funciones no lineales. El archivo amplEx212-2 l\í pro 
porciona el modelo El modelo se explica en el apóndice C en el sitio web (vea la figura C 17)

CONJUNTO DE PROBLEMAS 21.2A

1. Aproxime el siguiente problema como un programa combinado entero 

Maximizarz - c~'‘ + ti + (t2 + 1)^

sujeto a

tí + ar2 ^ 3

xi. t2 a 0

*2. Repita el problema 1 siguiendo el método de base restringida Luego determine la solu­
ción optima

3. Considere el problema

Maximuar z = X|t2X3

sujeto a

tí + t2 + t3 £ 4

ATi. X2, t3 a o
Aproxime el problema como un programa lineal para usarlo con el método de base res­
tringida

*4. Demuestre como se puede hacer separable el siguiente problema 

Maximi/ar z = tit2 + t3 + Xjt3

sujeto a

tiX2 + X2 + t,j:3 £ 10 

xu xjXi a 0

5. Demuestre como se puede hacer separable el siguiente problema 

Minimi/arz = + (vj — 2)‘
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sujeto a

tj + t2 + s 6

vj. tjvj > 0

6. Demuestre como se puede hacer separable el siguiente problema 

Maximizar z = ir*'** + rsr3 +

sujeto a

'^i s 10
V3 s 0

\j no restringida en cuanto a signo

7. Demuestre que en la programación convexa separable nunca es Optimo tener r/;, > 0 
cuando no se encuentra en su cota superior

8. Resuelva como un problema de programación convexa separable

Minimizar c = + V2 + r3

sujeto a

V? + t2 + ^ 4

|ri + xjI < 0

ti. \3 s 0

tT no restringida en cuanto a signo

9. Resuelva lo siguiente como un problema de programación convexa distinto 

Minimizar z = (V| - 2)“ + 4(t2 - 6)"

sujeto a

6ti + 3(\2 +1) ^12

M. tjaO

21.2.2 Programación cuadrática

Un modelo de programación cuadrática se define como
Maximizar z = CX t- X^DX

sujeto a
AX ^ b. X s U

donde
X = (xi, V2, , x„)^

C — (t|, ti* ' ^'i)

b =
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A =

dn
D =

>^/ll • ^/IH,

La función X^DX define una forma cuadrática (vea la sección D.3 en el sitio 
web). Se supone que la matriz D es simétrica y definida negativa, es decir que z es es­
trictamente cóncava. Las restricciones son lineales, lo que garantiza un espacio de so­
luciones convexo.

La solución de este problema se basa en las condiciones KKT necesarias Estas 
condiciones (como se muestra en la tabla 20.2, sección 20.2 2) también son suficientes 
porque z es cóncava y el espacio de soluciones es un conjunto convexo

El problema de programación cuadrática se tratará para el caso de maximiza- 
ción. La conversión a minimización es simple. El problema puede escribirse como

los multiplicadores de Lagrange correspondientes a las restricciones AX - b < 0 y -X 
< 0, respectivamente La aplicación de las condiciones KKT produce

Maximizar z = CX + X^DX

sujeto a

Sean

A — (Al, A2,..., A„,)^

A a 0, U a 0 

Vz - (A ^ U'')VG(X) = 0

IL,Xj = 0, ] = l,2,..,n

AX s b 

-X s 0

Ahora

Vz = C + 2X^D

VG(X)



Sean S = b — AX s 0 las variables de holgura de las restricciones Las condiciones se 
reducen a
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-2X^D + A^A - = C

AX + S = b

lx¡Xj = 0 = X,S, para todas las i y ; 

A.U X, S > 0

Debido a que = D, la transpuesta del primer conjunto de ecuaciones puede escn- 
birse como

-2DX + A^A - U =

Por consiguiente, las condiciones necesarias pueden combinarse como

/X\
f-2D
[ A :);=(?)Áí -I 0\ A 

0 0 ly U
\s/

= \,S„ para todas las i y y 

A , U, X, S 2: 0

Excepto para las condiciones fijXj = 0 = A,5j, las ecuaciones restantes son lineales en X, 
A, U y S Por lo tanto, el problema equivale a resolver un conjunto de ecuaciones li­
neales con las condiciones adicionales fijXj = 0 = Á¡S,

La solución del sistema se obtiene con la fase I del método de dos fases (sección 
3 4 2) con las restricciones agregadas A,5, = 0 y = 0 Esto significa que A, y s, no 
pueden ser positivas al mismo tiempo, ni tampoco y.¡ y x¡ Esta es la misma idea de base 
restringida que se utilizó en la sección 21 2 1

La fase I hace que todas las variables artifícialcs sean iguales a cero siempre que 
el problema tenga un espacio de soluciones factible

Ejemplo 21.2-3

Considere el problema

sujeto a

Maximizar z = 4t| + 6t2 - - 2Tit2 - 2r2

x^ + 2x2 ^ 2

Xi,X2 2 0

Este problema puede ponerse en la siguiente forma malriciat

Maximizarz =
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sujeto a
(u)(;;).2

t,. r, > 0

Las condiciones KKT se dan como

/4 2 1 -1
2 4 2 0

\1 2 0 0
' I

ñI 6 1,/ii.ti = ti2X2 = A,Si = o

La tabla inicial correspondiente a la fase 1 se obtiene introduciendo las vanables artificiales i?i y 
R2 y actualizando la fila objetivo

Básica •íi S2 A| Mi M2 «1 R2 Si Solución

r 6 6 3 -1 -1 0 0 0 10

4 2 I -1 0 1 0 0 4
ÍÍ2 2 4 2 0 -1 0 I 0 6

1 2 0 0 0 0 0 1 2

Iteración 1. La variable de entrada más promisoria tj puede hacerse básica porque fi\

Básica t| «2 A| Mi M2 «1 R2 Sí Solución

R 0 3 í
2 ! “1 ü 0 4

1 1 i -í 0 1 0 0 1
0 3 í -1 1 0 4

Si ü i -i í ü -1 0 1 1

Iteración 2. La variable de entrada más promisoria t2 puede hacerse básica porque /12

Básica J| r2 A) Mi M2 K, R2 Si Solución

r 0 0 2 ü -1 -I 0 -2 2

•«1 1 0 U
3 0 !

0 0 2 0 -1 0 1 -2 2
•*1 0 l 1 0 “i 0 2 1
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Iteración 3. El multiplicador Aj puede hacerse básico porque = 0

Básica 1^1 A| Mi M2 Ri S\ Soluciún

r 0 0 0 0 0 -1 -1 0 0

ti 1 0 0 _l 1 1 -i 0 1
■^1 0 0 1 0 _1 0 í -1 1

^2 0 1 0 i “6 : 1

La ultima tabla da la solución factible óptima (a:* = 3. = |) El valor óptimo asociado
de z = 4 16

Momento de Solver

La plantilla de Solver, excelQPxis, resuelve el ejemplo 21 2-3 Los datos se ingresan de una ma­
nera similar a la programación lineal (vea la sección 2 3 1) La diferencia pnncipal radica en la 
forma de ingresar las funciones no lineales. Específicamente, la función objetivo no lineal se in­
gresa en la celda destino D5 como

=4*B10+6*C10-2*B10''2-2*B10»C10-2*C10'‘2

Las celdas que cambian son BIO C10[ss (ri,Ar2)] Observe que las celdas B5 C5 no se utilizan para 
nada en el modelo Por legibilidad, ingresamos el símbolo NL para indicar que la restricción aso­
ciada es no lineal También podemos especificar la no negatividad de las variables o en el cuadro 
de diálogo Options o agregando restricciones explícitas de no ncgatividad

CONJUNTO DE PROBLEMAS 21.2B

*1. Considere el problema

Maximizar z = 6t, + 3t2 - 4r|t2 - 2v| - 3t2

sujeto a

t, + V2 s 1

2.r, -I- 3t2 4

x^,X2 a 0

Demuestre que z es estrictamente cóncava, y luego resuelva el problema utilizando el al­
goritmo de programación cuadrática 

*2. Considere el problema

Minimizar z = 2j:^+2r2 + 3c3 + 2viA2 + 2riA:3 + \| - 1t2 - 5vi
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sujeto a

Xj + V: + X3 s 1

3xi + 2xt + X3 s 6

X,. V2. V3 s 0

Demuestre que z es estrictamente convexa, y luego resuélvala con el algoritmo de progra­
mación cuadrática

21.2.3 Programación estocástíca

La programación estocástíca maneja situaciones en las que los parámetros de las res­
tricciones son variables aleatorias y las restricciones se llevan a cabo con una probabi­
lidad mínima. Matemáticamente, el problema se define como

Los parámetros a,j y b, son variables aleatonas, y la restricción i se lleva a cabo con una 
probabilidad mínima de 1 - a„0 < a, < 1.

Se consideran tres casos-

1. Sólo a,j es aleatoria para todas las i y ¡.
2. Sólo b¡ es aleatona para todas las /.
3. Tanto a¡j como b, son aleatorias para todas las i y j.

En los tres casos se supone que los parámetros están normalmente distribuidos con 
medias y varianzas conocidas.

Caso 1. Cada a,j está normalmente distribuida con media varianza var{a,y) y 
cov{ay,fl,y} de a,jya,y.

Maximizar z = ^c,Xj 
/“I

sujeto a

P a,jXj £ ^ 1 - O’,, I = 1,2,. ., m,.xy s 0, para todas las j

Considere

Defina
/I

i>i =

La variable aleatoria h, está normalmente distribuida con

y=i
var{/i,} = X^D,X
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donde

X = {x¡.......

D, = Matriz de covarianza i = ésüna

var{o,,} ... cov{a,,,a„}
;

cov{a„„ a,,}

Ahora

P{h, ^b,}=P
¡li,-E{hi} b,-E{h,}\ 
1 \/var{/i,} Vvar{/i,} J S 1 — or,

Si F es la FDA de la función de distribución normal estándar, se deduce que

Sea el valor normal estándar de modo que 

F{Kg) = l~ a,

Entonces el enunciado P[h, ^ 6,) > 1 - a, se cumple, si, y sólo si, 

b, - Ejlu] ' ,,

Vvar{/i,} '

Esta produce la siguiente restricción determinística no lineal:

+ K„Vx’‘D,X £ b,
l = \

Para el caso especia! en que los parámetros a,j son independientes, cov{<i,^, a,y\ 
= 0, y la última restricción se reduce a

J=l V;=l

Esta restricción puede ponerse en la forma de programación lineal separable (sección 
21.2.1) mediante la sustitución

y, = , / todas las i
V ,=i

Por lo tanto, la restricción original es equivalente a

'2,E{a„}xi + K„^y, s h,
1 = 1
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y
2var{rt„).v; - y? = 0 
í=i

Caso 2. Sólo bi es normal con media E{b,\ y varianza var{6,). 
Considere la restricción estocástica

Como en el caso 1.

b, - E{b,} ' 

Vvar|6,l
2 a,

Esto puede mantenerse cierto sólo si

/var|6,|

Por lo tanto, la restricción estocástica es equivalente a la restricción lineal determinística 

^ E{h,] + K„y\av{b,]
/ = !

Caso 3. Todas las a,j y b¡ son variables normales aleatorias.
Considere la restricción

^ b,
;=i

Ésta puede escribirse

'Z“iiXi - b,& o 
; = 1

Debido a que todas las a¡j y b¡ son normales, también es normal.
Esto demuestra que la estocástica se reduce a la situación del caso 1 y se trata de una 
manera similar.

Ejemplo 21.2-4

Considere el problema de estocástica

Maximizar z = 5.t] + 6.r2 + 3.V3
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sujeto a

+ (Ji2t2 + 013X3 s 8} a 95

P{5xi + X2 + 6x3 £ bi) ^ 10 

xi, X2, X3 a 0

Suponga que los parámetros = 1,2,3, son variables alealonas independientes y normalmen 
te distribuidas con las siguientes medias y vananzas

£{01,} = 1, £{012} = 3, £{013} = 9 

var{flii} = 25, var{oi2} = 16, var{oi3} = 4

El parametro 62 está normalmente distribuido con media 7 y vananza 9
De las tablas normales estándar en el apéndice B (o cxcelSíatTablcs.xls),

= £üs = 1 645, = £ lü « 1 285

Para la primera reslncción, la restricción detcrminística equivalente es

M + 3v2 + 9aj + 1 s 8

y para la segunda restricción

5\i + X2 + 6x3 £ 7 + 1 285(3) = 10 855

El problema resultante puede resolverse como un programa no lineal (utilizando AMPL o 
Solver), o convertirse en un programa separable como sigue*

r = 25 V? + I6x? + 4,5

El problema se vuelve

Maximizar z = 5\i + 6x2 + 3x3

sujeto a

Xi + 3x2 + 9x3 + 1 645y £ 8 

25xf + 16x1 + 4x1 - >’ = 0 

5xi + X2 + 6x3 < 1Ü855

M. X2. X3. V a 0

El problema puede resolverse mediante programación separable Incluso, puede utilizarse el 
archivo exccICCPxls para resolver el problema no lineal de forma directa

CONJUNTO DE PROBLEMAS 21.2C

*1. Convierta el siguiente problema estocastico en un modelo determinístico equivalente 

Maximi/arz = Xj + 2xi + 5xi
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sujeto a

/’{flix, + ^\2 + 0-^x3 ^ 10} s 09

+5x.+ >01

Xi, Vi, ti a 0

Suponga que a\ y 03 son vanabics aleatonas independientes y normalmente distn 
buidas con medias £|oi| = 2 y £(«3} = 5 y vananzas var(fli| = 9 y var{«3| = 16 y 63 esta 
normalmente distribuida con media 15 y vananza 25 

2. Considere el siguiente modelo de programación cstocáslica 

Mavimizar c = Xj + tj + \3

sujeto a

P{ti + ÍJ2X2 <13Vt3 s 10} a 09

xi. t2, T3 a 0

Los parámetros a? y 03 son vanables aleatonas independientes y normalmente distnbui- 
das con medias de 5 y 2, y vananza de 16 y 25, respectivamente Convierta el problema en 
una forma de programación de programación separable (determinística)

21 2.4 Método de combinaciones lineales

Este método tiene que ver con el siguiente problema en el cual todas las restricciones 
son lineales

Maximizarz = /(X)

sujeto a

AX < b,X ^ 0

El procedimiento se basa en el método del ascenso mas pronunciado (gradiente) (sec­
ción 211 2) Sin embargo, la dirección especificada por el vector gradiente puede no dar 
una solución factible para el problema restringido Además, el vector gradiente no ne­
cesariamente sera nulo en el punto óptimo (restringido) Por tanto el método del ascen­
so mas pronunciado debe modificarse para manejar el caso restringido

Sea X¿ el punto de prueba factible en la iteración k La función objetivo /(X) 
puede ampliarse en la proximidad de X^, mediante la sene de Taylor Esto da

/(X) « /(X*) + V/(XO(X - XO = (/(X,) - V/(X,)XO + V/(X,)X

El procedimiento requiere determinar un punto factible X = X* de modo quey(X) se ma- 
ximice sujeta a la restricciones (lineales) del problema Debido a quey(Xi) - V/(X^)X/^ es 
una constante, el problema X* se reduce a resolver el siguiente programa lineal

Maximizartü*(X) = V/(X;^)X

sujeto a

AX < b, X > 0
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Dado que se construye a partir del gradiente de J{X) en X^, se puede tener 
una mejor solución si y solo si u?;^(X*) > De acuerdo con la expansión de
Taylor, la condición no garantiza qucf{X*) > f{X^) a menos que X* se encuentre veci­
na a Xa Sin embargo, dado que íf/t(X*) > iüa(Xa), debe existir un punto X^+i en el 
segmento de línea (X^, X*) de modo que /(Xa+j) > /(Xa) El objetivo es determinar 
Xa+1 Defina

Xa+1 = (1 - t)Xa + rX* = X'- + r(X* - Xa),0 < r < 1

Esto significa que Xa+i es una combinación lineal de Xa y X* Debido que Xa y X* son 
dos puntos factibles en un espacio de soluciones convexo, Xa+i también es factible En 
términos del método del ascenso mas pronunciado (sección 211 2), el parámetro r re­
presenta el tamaño del paso

El punto Xa+] se determina de modo que/(X) se maximice Debido a que Xa+i 
es una función sólo de t,Xa+i se determina maximizando

h(r) = /(Xa + r{X* - Xa))

El procedimiento se repite hasta que. en la iteración A-ósima, se tenga iVf,{X*) £ 
iüa(Xa) En este punto ya son posibles más mejoras y el proceso termina con Xa como 
el mejor punto de solución

Los problemas de programación lineal generados en las iteraciones sucesivas di­
fieren solo en los coeficientes de la función objetivo Por tanto los procedimientos de 
análisis postóplimo presentados en la sección 4 5 pueden utilizarse para realizar cálcu­
los de forma eficiente

Ejemplo 21.2-5
Considere la programación cuadrática del ejemplo 2l 2 3

Maximizar/(X) = 4\, + óvj - 2r^ - 2\|r2 - 2ri

sujeto a

V, +2x2^2 

Vj. l2 ^ 0

Sea Xü = (i. i), el punto inicial, el cual es factible Ahora

V/(X) = (4 - 4x, - 2X2,6 - 2x, - 4i,)

Kcraciun 1

V/(Xü) = (1.3)

El programa lineal asociado maximi/a ii', = tj + 3t2 sujeta a las restricciones dd problema on 
gmal Esto da la solución optima X* = (0,1) Los valores de «>| en Xo y X* son iguales a 2 v 3. res 
peclivamenie Por consiguiente un nuevo punto de prueba se determim como

X, = o-(!.!)! = (4'■' !')
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La moximización de

=/(4-'.4-=)

producer! ” ^ PorlotanloXi = (0,l)conXXi) = 4 

Iteración 2

V/(X,) = (2,2)

La función objetivo correspondiente es wi = 2x\ + 2x2 La solución óptima de este problema 
produce X* = (2,0) Debido a que los valores de vh en X¡ y X* son 2 y 4, respectivamente, se 
puede determinar un nuevo punto de prueba Entonces

X. = (0,1) + r[(2,0) - (0.1)1 = (2r. 1 - r)

La maximización de

/i(r)=/(2r,l-r) 

produce T2 = g. Por lo tanto Xi = (5, |) con /(X2) *=416 

Iteración 3

V/(X2) = {1,2)

La función objetivo correspondiente es 1U3 = ri + 2.X2 La solución óptima de este problema pro­
duce las soluciones altemalivas X* = (0,1) y X* = (2,0) El valor de 103 para ambos puntos es
Igual a su valor en X2 En consecuencia no son posibles mds mejoras. La solución óptima aproxi­
mada es X2 = (5. i) con7^X2) *= 4 16 Da la casualidad de que ésta es la solución óptima exacta

CONJUNTO DE PROBLEMAS 21.2D

1. Resuelva el siguiente problema mediante el método de combinaciones lineales 

Minimizar/(X) = Jr? + ri ~ 3-*^i-*^2

sujeto a

3v] + C2 ^ 3 

5xi - 3t2 s 5 

j:i,a:2 2: 0

21.2.5 Algoritmo SUMT

En esta sección se presenta un método de gradiente mas general Se supone que la fun­
ción objetivo y^X) es cóncava y cada función de restricción g,(X) es convexa Más aún, 
el espacio de soluciones debe tener un interior Esto descarta el uso tanto implícito 
como explícito de las restricciones de igualdad
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El algoritmo SUMT (Técnica de Maximizacion Secuencial No restringida, por 
sus siglas en inglés) se basa en la transformación del problema restnngido a un proble­
ma no restringido equivalente El procedimiento es mas o menos semejante al método 
de multiplicadores de Lagrange El problema transformado se puede resolver entonces 
siguiendo el método del ascenso mas pronunciado (sección 211 2)

Para aclarar este concepto consideremos la nueva funaon

donde t es un parámetro no negativo El segundo signo de suma tiene en cuenta las res­
tricciones de no negatividad, las cuales deben ponerse en la forma - x¡^0 para que 
sean consistentes con las reslncciones originales Debido a que g,(X) es convexa, 
es cóncava Esto significa que p(X, /) es cóncava en X Por consiguiente, p(X,0 posee 
un máximo único La optimización del problema restringido original es equivalente a 
la optimización de p{X,t)

El algoritmo se inicia seleccionando arbitrariamente un valor no negaiivo inicial 
para t Se selecciona un punto inicial Xo como la primera solución de prueba Este 
punto debe ser un punto intenor, es decir, no debe quedar en los límites del espacio de 
soluciones Dado el valor de /, se utiliza el método del ascenso mas pronunciado para 
determinar la solución optima correspondiente (máxima) de p(X,t)

El nuevo punto de solución siempre será un punto interior, porque si el punto de 
solución está cerca de los límites, al menos una de las funciones o “"í; adquirirá 
un valor negativo muy grande Debido a que el objetivo es maximizar p(X,t), tales pun­
tos de solución se descartan de forma automática El resultado pnncipal es que los puntos 
de solución sucesivos siempre serán puntos interiores. Por consiguiente, el problema 
siempre puede tratarse como un caso no restringido

Una vez que se obtiene la solución optima correspondiente a un valor dado de t, 
se genera un nuevo valor de /, y el proceso de optimización (con el método del ascenso 
mas pronunciado) se repite Si /' es el valor actual de t,el siguiente valor, í", debe selec­
cionarse de modo que 0 < t" < í'

El algoritmo SUMT termina cuando, con dos valores sucesivos de /, los valores 
optíinos correspondientes de X obtenidos maximi/ando p(X,í) son aproximadamente 
los mismos En este punto, más pruebas producirán poca mejora

La implementación real de SUMT implica más detalles de los que aquí se pre 
sentaron Específicamente, la selección de un valor inicial de / es un factor importante 
que puede afectar la velocidad de convergencia Ademas, la determinación de un 
punto interior inicial puede requerir técnicas especiales Estos detalles se hallan en 
Placeo y McCormick (1968)
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APENDICE A 

Tablas estadísticas^

TABLA A 1 Función de distnbución normal

ru)=

000 001 002 003 004 0 05 006 0 07 008 009

00 0 5000 0 5040 05080 0 5120 0Í160 05199 0 5239 0 5279 05319 0 5359
0 I 0 5398 0 5438 0 5478 0 5517 05557 0 5596 0 5636 05675 05714 0 5753

02 05793 05832 0 5871 0 5910 05948 0 5987 0 6026 0 6064 06103 06141

03 0 6179 06217 0 6255 0 6293 06331 06368 0 6406 0 6443 06480 0 6517

04 0 6554 0 6591 0 6628 0 6664 06700 06736 0 6772 0 6808 06841 0 6879

05 0 6915 0 6950 0 6985 0 7019 0 7054 07088 0 7123 0 7157 07190 0 7224

06 07257 0 7291 07324 07357 0 7389 07422 0 7454 0 7486 07517 0 7549

07 0 7580 07611 0 7642 07673 0 7704 0 7734 0 7764 0 7794 07823 07852

08 0 7881 07910 0 7939 0 7967 0 7995 08023 0 8051 0 8078 OHlOó 08133

09 0 8159 08186 0 8212 0 8238 0 8264 08289 08315 0 8340 0 8365 08389

10 0 8413 0 8438 08461 0 8485 0 8508 0 8531 0 8554 0 8577 0 8599 08621

1 1 0 8643 0 8665 0 8686 0 8708 0 8729 0 8749 0 8770 0 8790 0 8810 08830

1 2 08849 0 8869 0 8888 0 8907 0 8925 0 8944 0 8962 0 8980 0 8997 09015

1 3 0 9032 0 9049 0 9066 0 9082 09099 0 9115 0 9131 0 9147 0 9162 0 9177

1 4 0 9192 0 9207 09222 0 9236 09251 0 9265 0 9279 0 9292 0 9306 09319

15 0 9332 0 9345 0 9357 0 9370 09382 0 9 394 0 9406 0 9418 0 9429 0‘W41

1 6 0 9452 0 9463 0 9474 1)9484 0 9495 0 9505 0 9515 09525 0 9535 0 9545

0 9554 0 9564 0 9573 0 9582 0 9591 0 9599 0 9608 0 9616 0 9625 0 9633

0 9641 0 9649 0 9656 0 9664 0 9671 0 9678 0 9686 0 9693 0 9699 0 9706

1 9 0 9713 0 9719 0 9726 0 9732 0 9738 0 9744 0 9750 0 9756 0 9761 0 9767

'Li hoja dt edículo i \iilSuuTiibk \h rccmpla/a a las labias csladíslitas (impresas) de 12 distribuuones co­

munes, incluidas las presentadas en este apéndice
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TABLA A 1 Contmuaaón

C 000 0 01 002 00^ 004 0 05 0 06 007 008 0 09

20 09772 09778 09783 0 9788
21 0 9821 0 9826 09830 0 9834
22 0 9861 09864 0 9868 09871

23 09893 09896 0 9898 09901
24 09918 0 9920 09922 09925

23 0 9938 0 9940 09941 09943
26 09953 09955 09956 09957
27 09965 09966 0 9967 09968
28 09974 09975 09976 09977
29 09981 09982 09982 09983

30 09987 0 9987 09987 09988
31 09990 0 9991 0 9991 0 9991
32 0 9993 0 9993 0 9994 0 9994
33 0 9995 0 9995 0 9995 0 9996
34 0 9997 0 9997 0 9997 0 9997

35 09998
40 0 99997
50 0 9999997
60 0999999999

0 9793 0 9798 0 9803 0 9S08 09812 0 9817

0 9838 09842 0 9846 0 9850 0 9854 0 9857
09875 0 9878 09881 0 9884 0 9887 0 9890
0 9904 0 9906 09909 0 9911 0 9913 0 9916
0 9927 0 9929 09931 0 9932 0 9934 0 9936

0 9945 0 9946 09948 0 9949 0 9951 0 9952
09959 09960 09961 09962 09963 0 9964
09969 09970 09971 09972 09973 09974
09977 09978 0 9979 09979 09980 09981
09984 09984 09985 09985 09986 09986

09988 0 9989 0 9989 0 9989 0 9990 0 9990
0 9992 0 9992 0 9992 0 9992 0 9993 0 9993
0 9994 0 9994 0 9994 0 9995 0 9995 0 9995
0 9996 0 9996 0 9996 0 9996 0 9996 0 9997
0 9997 0 9997 0 9997 0 9997 0 9997 0 9998

Fuente Nfillcr, I .> J Fteunú.Probabihn aiuiSiauslics for Engineers,PtcMicc Hall Upper Saddle River,NJ 198S

TABLA A 2 Valores de /„, (r csludinniil)

V Q = 0 10 a = 005 a = 0025 a = 001 « = 0 005 «

1 3 078 6 314 12 706 31 821 63 657 1
2 1 886 2 920 4 303 6 965 9 925 2
3 1638 2 353 3 182 4 541 5 841 3
4 1333 2132 2 776 3 747 4 604 4

5 1 476 2 015 2571 3 365 4 032 5
6 1 440 1943 2447 3143 3 707 6
7 1415 1895 2365 2 998 3 499 7
8 1397 1 860 2306 2 896 3 355 8
9 1 383 1 833 2 262 2 821 3 250 9

10 1 372 1 812 2 228 2 764 3 169 10

11 1 363 1 796 2 201 2718 3 106 11
12 1 356 1 782 2 179 2 681 3 055 12
13 1 350 1 771 2 160 2 650 3012 13
14 1345 1 761 2 145 2 624 2 977 14
15 1 341 1 753 2 131 2 602 2 947 15

16 1 337 1746 2 120 2 583 2 921 16
17 1333 1740 2 lio 2 567 2 898 17
i8 U30 1.734 2 101 2 552 2 878 18
19 1 328 1 729 2093 2539 2 861 19
20 1 325 1 725 2 086 2 528 2 845 20
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TABLA A 2 Continuación

V a = 010 a = 005 a = 0025 a = 001 a = 0005 V

21 1323 1721 2 080 2J18 2831 21
22 1321 1717 2 074 2 508 2819 22
23 1319 1714 2069 2.500 2 807 23
24 1318 1711 2 064 2 492 2 797 24
25 1316 1708 2 060 2 485 2 787 25

26 1315 1706 2 056 2 479 2 779 26
27 1314 1 703 2 052 2473 2 771 27
28 1313 1701 2 048 2 467 2763 28
29 1311 1699 2 045 2 462 2 756 29
Inf 1282 1645 1 960 2 326 2 576 int

Fucnie Compendiada con el permiso de Macmillan Publishing Co Inc. de Siausiical Methods for 
RescarchWorkers 14i cd dcRA Hslier Derechos reservados O 1970 Universidad dc Adelaida

TABLA A 3 Valores dc xl u (Valores de ji cuadrada)

V a = 0995 a = 099 a = 0975 a = 095 a = 005 a = 0025 a = 001 a = 0005

1 0 0000393 0 000157 0 000982 0 00393 3 841 5 024 6 635 7 879
2 00100 00201 00506 0103 5 991 7 378 9 210 10.597
3 0 0717 0115 0216 0 352 7 815 9 348 11 345 12 838
4 0 207 0 297 0 484 0711 9 488 11 143 13 277 14 860
5 0412 0 554 0 831 1 145 11070 12 832 15 056 16 750
6 0 676 0 872 1237 1635 12 592 14 449 16812 18 548
7 0 989 1 239 1 690 2167 14 067 16013 18 475 20278
8 1344 I 646 2180 2 733 15 507 17 535 20 090 21955
9 1 735 2 088 2 700 3 325 16919 19023 21 666 23 589

10 2 156 2.558 3 247 3 940 18 307 20 483 23 209 25 188
11 2 603 3053 3 816 4 575 19 675 21920 24 725 26757
12 3 074 3 571 4 404 5 226 21026 23 337 26 217 28 300
13 3 565 4 107 5 009 5 892 22 362 24 736 27 688 29 819
14 4 075 4 660 5 629 6571 23 685 26119 29 141 31319
15 4 601 5 229 6 262 7 261 24 996 27 488 30 578 32 801
16 5142 5 812 6 908 7 962 26 296 28 845 32 000 34 267
17 5 697 6 408 7 564 8 672 27 587 30 191 33 409 35 718
IS 6 265 7015 8 231 9 390 28 869 31 526 34 805 37 156
19 6 844 7 633 8 907 10117 30144 32 852 36 191 38 582
20 7434 8 260 9 591 10 851 31410 34 170 37 566 39 997
21 8 034 8 897 10 283 11591 32 671 35 479 38 932 41401
22 8 643 9 542 10 982 12 338 33 924 36 781 40289 42 796
23 9 260 10196 11689 13 091 35 172 38076 41638 44 181
24 9 886 10 856 12 401 13 484 36 415 39 364 42 980 45 558
25 10 520 11524 13 120 14611 37 652 40 646 44 314 46 928
26 11 160 12 198 13 844 15 379 38 885 41 923 45 642 48 290
27 11 808 12 879 14 573 16 151 40 113 43 194 46 963 49 645
28 12 461 13 565 15 308 16 928 41 337 44 461 48 278 50 993
29 13 121 14 256 16 047 17 708 42 557 45 772 49 588 52 336
30 13 787 14 953 16 791 18 493 43 773 46 979 50 892 53 672

u

1
2
3

4
5

6
7

8
9

10
II
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30

I'uaiie La lohincsiá bosadnen la labia 8 de Biomcinka Tables for Siatuficiatu,\ol 1 con permiso dc los flducianusde Biuineinka



APÉNDICE B

Respuestas pardales 
a problemas seleccionados^

CAPÍTULO 1 

Conjunto 1.2a

4. (c) 17 minutos
5. (a) Alternativas de Jim: Lanzar una curva o una bola rápida.

Alternativas de Joe; Prepararse para lanzar una curva o una bola rápida,
(b) Joe desea incrementar su promedio de bateo.

Jim desea reducir el promedio de bateo de Joe.

CAPITULO 2

Conjunto 2.1a

1. (a) -xi + .v'2 s 1
(c) xi - xj^O 
(e) .5.Vi - .5.Y2 a 0

3. A/1 no utilizada = 4 toneladas/día

Conjunto 2.2a

1. (a y e) Vea la figura Bl.
2. (a y d) Vea la figura B2.

'Los problemas resueltos en este apéndice aparecen en el texto marcados con un asterisco (•)
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FIGURA B 1 FIGURA B 2

S. Sean

ti = Cantidad de unidades de A 

X2 = Cantidad de unidades de B 

Maximizar z = 20ti + 5dt2 sujeto a M

— 2ti + 8t2 — 0,2xi + 4t2 — 240

ti £ 100, X], t2 s 0

Óptima (xi,at2) = (80.20),z = $2,600 
7. Sean

ti = Dólares invertidos en A 

t2 = Dólares invertidos en B 

Maximizarz= 05tj + 08.t2 sujeto a

Óptima (A:i„t2) = (2500,2500) z = $325 
14. Sean

X] = Toneladas de C1 por hora 

t2 = Toneladas de C2 por hora 

Maximizar z ~ 12000ti + 9000t2 sujeto a

-200ti + 100t2 s 0,21 ti + 9x2^ 20, ti,;c2 ^ 0 

óptima (a:i V2) = (5 13,10 26), z = 153 846 Ib

(a) Relación óptima de C1 C2 = 5
(b) La relación óptima es la misma, pero la generación de vapor se incrementara 

en 7692 Ib/h

75 ti - 25t2 s 0, .5xi - 5at2 s 0,

Xi - 5X2 ^ 0, ti + t2 ^ 5000, ti, t2 a 0
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18. Sean

.Vi = Cantidad de unidades de HiFil 

X2 - Cantidad de unidades de HiFi2 

Minimizara = 1267.2 - (15.vi + 15v2) sujeto a

6vi + 4.V2 s 432, Sat; 4- 5v2 £ 412.8 

4,Vi + 6j:2 ^ 422 4, X], X2 ^ 0 

Óptima (vi,X2) = (50.88,31.68), z = 28 8 min ociosos

Conjunto 2.2b

1. (a) Vea la ñgura B 3 
5. Sean

x\ = Miles de barnles/día de Irán 

X2 = Miles de bamies/día de Dubai 

Minimizar z = xi + X2 sujeto a

-.6x1 + .4x2 — 0,-2x1 + .1x2 — 14 

•25xi 4- .6.V2 s 30, .Ixi + .15x2 — 10 

.15xi 4- .1x2 — 8, Xi, X2 ^ 0 

Óptima. Vi = 55,.V2 = 30, z = 85
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7. Sean

xi = Relación de la aleación A de desecho 

X2 = Relación de la aleación B de desecho 

Minimizar z = lOOxi + 80v2 sujeto a
03 £ 06xi + 03t2 ^ 06. 03 < 03v, + 06\2 ^ 05 

03 £ 04vi + 03v2 ^ 07, Xi + X2 = 1, Vj. X2 ^ 0 

Óptima x\ = 33, X2 = 67, z = $86 667

Conjunto 2 4a

2. Sean

X, - Dolares invertidos en el proyecto i, / = 1,2,3,4 

yj = Dolares invertidos en el banco en el año j,j ~ l, 2,3,4 

Maximizar z-y¡ sujeto a

Vj + Í2 + ^4 + >'i — 10,000 

5xi + 6x2 “ t3 + 4^4 + 1 065>'i - >Í2 = 0 
3xi + 2x2 8x3 + 6x4 + 1 065— >>3 = 0

1 8x1 + 1 5x2 + 1 9^:3 + 1 8x4 + 1 065}^ “>'4 = 0

1 2 Xi + 1 3 X2 + 8 X3 + 95 X4 + 1 065^4 ->’5 = 0 

ti. t2, X3. X4, y,, >s. ^3, >-4, >-5 > 0

Solución optima

Xi = 0, X2 = $10,000. X3 = $6000, X4 = 0

y, = 0 ^ = 0, y, = $6800, y4 = $33,642 

z = $53,628 73 al inicio del año 5 

5. Sean x,^ = cantidad invertida en el año i con el plan A, / = 1,2,3 
x,fi — cantidad invertida en el año 1 con el plan fi, / = 1,2,3

Maximizar z - 3x2^ + 17x3^ sujeto a

ti/t + tjfl s 100 (al inicio del año 1)

- 1 7xi^ + X2,i + Xifl = 0 (al inicio del año 2)

- 3X|¿, - 1 7x2/1 + t3,i = 0 (al inicio del año 3) 

t(/ii t,/3 s 0, / = 1,2,3

Solución Optima Invertir $100,000 en el plan Á en el año 1 y $170,000 en el plan 
B en el año 2 El problema tiene dos soluciones óptimas alternativas
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Conjunto 2.4b

3. Sea X, = cantidad de unidades del producto = 1,2,3 

Maximizar z = 30xi + 20x2 + 50x3 sujeto a

2xi + 3x2 + 5x3 ^ 4000

4xi + 2x2 + ^ 6000

Xi + .5x2 + -33x3 — 1500 

2xj — 3x2 = 0 

5x2 — 2x3 " 0

X, ^ 200, X2 s 200, X3 > 150 

•Vi, X2, X3 > 0

Solución óptitna:xi = 324.32,X2 = 216.22,X3 = 540.54, z = $41,081.08 

7. Sean x,j = Cantidad producida por la operación i en el mes j, i = 1,2,/ = 1,2,3 
/y = Inventario de entrada de la operación / en el mes j\i — 1,2,/ = 1,2,3 

3
Minimizar z = ^(cj^xi^ + Ci¡X2¡ + + .4/2^) sujeto a

;=i

.6x11 800, .6x12 ^ 700, .6x13 ^ 550

.8x21 — 1000, -8.t22 — 850, .8x23 ^ 700 

■^1; A,;-l “ ^2¡ 4" í\¡tX2¡ 4- 72./-1 ~ ríy + l2¡, j ~~ 1)2,3

A.o = ^2.0 == Oí todas las variables ^ 0 

dj = 500,450,600 para / = 1,2,3 

c^j = 10,12,11 para / = 1,2,3 

C2, = 15,18,16 para / = 1,2,3

Óptima;xii = 1333.33 unidades,xi3 = 216.67,X21 = 1250 unidades,.x'23 = 300 uni­
dades, z - $39.720.

Conjunto 2.4c

1. Sea .VjO»,) = Cantidad de autobuses en turnos de 8 horas (12 horas) que inician en 
el periodo /.

6 6
Minimizar z = 2'2^x¡ + 3.5sujeto a

i=i í=i
•V, + .Ve + y, + J’s + y¿ a 4, v, + .v, + >'i + js + a 8,

,V2 + .V3 + )>] + + » Sí 10, .v, + .V4 + + >3 + y,i a 7,

-v, + .15 + X3 + >.4 + >>5 a 12, .V, + .Ve + >'4 + y¡ + >'e ^ 4

Todas las variables son no negativas
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Solución = 4, t2 = 4, V4 = 2, V5 — 4, v’i — 6, lodas las demás — 0 
z = 49 Tolal de autobuses = 20 En el caso del turno de 8 horas cantidad 
de autobuses = 26 y comparable z = 2 X 26 = 52 Por lo tanto el turno de 
(8 horas + 12 horas) es mejor

5. Seaar/ = Cantidad de estudiantes que inician en el periodo 1 (1 = 1 a las 8 01 a m

1 = 9 a las4 01 PM )
Minimizar z = ti 4- t2 + V3 + r4 + \6 + X7 + + ty sujeto a

ti > 2, ti + JT2 ^ 2, t) + t2 + t3 s 3,
t2 + t3 + V4 s 4, t3 + \4 > 4, X4 + Xfi s 3,
Xfi + t7 s 3, X6 + V7 + t8 ^ 3, t7 + Vg + Xg > 3

t5 = o todas las demas variables son no negativas

Solución Contratar 2 para la 8 01,1 para las 10 01,3 para las 11 01, y 3 para las
2 01 Total = 9 estudiantes

Conjunto 2.4d
3. Sean

x,¡ = Parte del proyecto t que se completa en el año j 
Maximizarz = 05(4-tn + 3x¡2 + 2ti3) + 07(3x22 + 2t23 + t24)

+ 15(4t3i + 3t32 + 2t33 4- V34) 4- 02(2t43 4- X44)
sujeto a

Vil + 1^12 + -^13 = U t43 4- t44 4- X25 = 1
25 ^ t22 4- Y23 4- t24 ^ 1

25 < t3, 4- V3-, 4- V33 4- a;34 4- V35 1

5tii 4- 15t3i ^ 3, 5xi2 4- 8X22 4* 15t32 £ 6

5Vi3 4- 8t23 4- 15v33 4- 1 2V43 < 7

8t24 + 15V34 4- 1 2x44 £ 7,8X25 + 15X35 ^ ?

toda x,¡ s o

óptima til = 6, ti2 = 4, V24 = 255, t2s = 025, V32 = 267,

Í33 = 387, t34 = 346, V43 = 1, z = $523,750

Conjunto 2 4e

2. Sea tj = Ib de tornillos/paquele, = libras de pernos/paqucle, v„ = Ib de tuer­
cas/paquete, t,ü = Ib de rondanas/paquete 
Minimizarz = 1 Ix, 4- 1 5t,, 4- (|)t„ 4- (|)x„ sujetoa 

y = V, 4- t,, 4- 4- v„

y ^ 1. tj ^ ly,x¡, ^ 25y, t„ < v„ s ly
(sii)'-/» ^ t,„
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Todas las variables son no negativas 
Solución z = $1.12,y = l,.v, = .5,xy = 2S,x„ = .15, = .1.

5. Sea x,\ = A barriles de crudo/día,= B barriles de crudo/día,.Vr = barriles de ga­
solina regular/día, ,Vp = barriles de gasolina premium/día,^:^ = barriles de gaso­
lina para avión/día.
Maximizar z = 50(.Vr - s^) + 70(.Vp — Sp) + 120(.Vj —

- (lOsT + 15s^ + 20^7 + 2í7 + + 4s¡)

- (30a:^ + 40.Vfl) sujeto a

.V,, ^ 2500, JCfl < 3000, Xr = .2.v^ + .ISxg, Xp = Áx^x + 2xb, x¡ = .25.v^ + .1j:b 

Xr + sj - = 500, Xp + s~ - Sp = 700, x¡ + sj - s* = 400, Todas las variables s 0

Soluciómz = $21,852.94, = 1176.47 barriles/día, .Vb = 1058.82, = 500 barriles/día

Xp = 435.29 bairiles/día, x¡ = 400 barriles/día, Sp = 264.71

Conjunto 2.4f

1----------------g\---------
1

—1^,1— 
1

------------n—
IvJ

—1
1

1 -------------ri— ------------ 1—---------S3-----
—lysi

-2.2 minutos------------------------- 1

Sean g„y, y r, las duraciones de las luces verde, amarilla y roja para los autos que 
se salen de la carretera /. Todas las unidades están en segundos. Los autos no 
avanzan con la luz amarilla.

maximizar z = 3(500/3600)gi + 4(600/3600)g2 + 5(400/3600)g3 sujeto a

(500/3600)g, + (600/3600)52 + (400/3600)g3 < (510/3600)(2.2 X 60 - 3 X 10)

fii + g2 + & + 3 X 10 < 2.2 X 60, g, > 25, g2 ^ 25, ga > 25

Solución: gj = 25 seg, g2 = 43.6 seg, 53 = 33.4 seg. Ingreso de la caseta de cobro 
= $58.04/hr

CAPÍTULO 3 

Conjunto 3.1a

1. 2 toneladas/día y 1 tonelada/día de las materias primas A/1 y A/2, respectivamente.
4. Sea.Vy = unidades del producto i producido en la máquina ;.

Maximizar z = 10(.V| + .V12) + 15(.V2i + .V22) sujeto a

xi, + X21 " X12 - .V22 + = 5

-Xii - .V21 + X12 + .V22 + Í2 = 5 

Xii + .V21 + Í3 = 200

-’^12 + -V22 + 54 = 250 

5„ x,^ > 0, con todas las / y j
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Conjunto 3.1b

3. Sea Xj = unidades de producto ;,y = 1,2,3
Maximizar z = 2xi + 5x2 + 3^3 “ ISiJ - 10 ts 

sujeto a

2^1 + X2 + 2t3 + rj — atJ = 80 

Vi + X2 + 2v3 + rj - V5 = 65 

Xi, Xi, X3, xJ, xJ, xJ, X5 a o
Solución óptima xi = 65 unidades, = 15 unidades, todas las demas = 0, z = $325

Conjunto 3.2a

1. (c) X, = f , X2 = f • ^ = f

(e) Los puntos de esquina (ri = 0, t2 = 3) y (atj = 6 y X2 = 0) son no factibles
3. Las soluciones básicas no factibles son como sigue

= (f. -^),(x„X3) = {8.-2)

(xj, X4) = (6, -4), (X2, X3) = (16, -26)

(X2, Xj) = (3, -13), (X3, X4) = (6, -16)

Conjunto 3.3a

3. (a) Sólo {A, B) representan iteraciones simplex sucesivas porque los puntos de 
esquina A y B son adyacentes En todos los demás pares, los puntos de esquina 
asociados son no adyacentes.
(b) (1) Sí, (11) No, C e / son no adyacentes, (m) No, la ruta regresa al punto de es­
quina anterior,/!

5. (a) X3 entra con el valor 1, z = 3 en el punto de esquina D

Conjunto 3.3b 

3.

Nueva variable básica •*1 X2 X2 •^4

Valor 15 1 0 8
Vanablc de salida Xi X-t •^8 Xi

6. (b) A:2,j:5y^6 pueden incrementar el valor de z Si V2entra,A:8saley Az = 5X4 = 
20 Si xs entra, Xi sale y Az = 0 porque ats es igual a 0 en la nueva solución. Si X(¡ 
entra, ninguna variable sale porque todos los coeficientes de restricción de X(, son 
menores que o iguales a cero, Az = 00 porque Xf¡ puede incrementarse a un valor 
infinito sin provocar no factibilidad

9. El segundo mejor valor de z = 20 ocurre cuando ^2 se hace básica
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Conjunto 3 4a

3. (a) Minimizar z = (8M — 4)xi + (6AÍ - 1)^2 - Ms2 — = lOM
(b) Minimizar z = (3A/ — 4)xi + {M — l)x2 = 3AÍ

6. La tabla de inicio es

Básica x\ Xz Xi Xa Soluaón

z -1 -12 0 0 —8

Xi 1 1 1 0 4
X* 1 4 0 1 8

Conjunto 3.4b

1. Siempre minimice la suma de las vanables artificiales porque la suma representa 
la cantidad no factible en el problema

7. Cualquier vanable no basica con coeficientes objetivo no cero al final de la Fase I 
no puede hacerse positiva en la Fase II porque ello significará que el valor objeti­
vo óptimo en la Fase I será positivo, es decir, una solución no factible en la fase I.

Conjunto 3.5a

1. (a)
(b) 1 en /i, 1 en C2 = 6 en C, y 1 en D

Conjunto 3.5b

1. Solución óptima básica alternativa (0,0, y), (0, 5, 0), (l, 4,3). Solución óptima 
alternativa no básica
(«3,502 + 4o3, y «1 + 3a3),«i + üf2 + £*3 = 1,0 ^ «i 1,1 = 1,2,3.

Conjunto 3.5c

2. (a) El espacio de soluciones no está acotado en la dirección de xi
(b) El valor objetivo no está acotado porque cada unidad de incremento en xi 

incrementa z en 10

Conjunto 3.5d

1. Lo máximo que se puede producir son 275 unidades

Conjunto 3.6a

2. Sean
A-i = Cantidad de sombreros tipo 1 por día 
1:2 = Cantidad de sombreros tipo 2 por día
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FIGURA B.4

A = (0.200)
D = (100,200) óptima 
C= (150.200)
D = (150,100) 
£=(150,0)
£=(0. -100)

Maximizar z = 8.vi + 5x2 sujeto a

2.tj + X2 ^ 400 

•tj ^ 150, .t2 ^ 200

Xi, X2^0

(a) Vea la figura B.4: xj = 100, X2 = 200, z = $1800 en el punto B.
(b) $4 por sombrero tipo 2 en el intervalo (200,500).
(c) Ningún cambio porque el precio dual es de $0 por unidad en el intervalo (100, co).
(d) $1 por unidad en el intervalo (100,400). Incremento máximo = 200 de tipo 2.

Conjunto 3.6b

3. (a) 0 ^ ¿ ^ 2.
(b) Nueva ^ = 1. La solución no cambia.

Conjunto 3.6c

2. (a) Sí, porque el ingreso adicional por min = SI (hasta por 10 minutos de tiempo 
extra) excede el costo adicional de $.83/min.

(b) El ingreso adicional es de $2/min (por hasta 400 min de tiempo extra) = $240 
por 2 horas. Costo adicional por 2 horas = $110. Ingreso neto = $130.

(c) No, su precio dual es cero porque el recurso ya es abundante.
(d) Di = 10 min. Precio dual = $l/min paraDj < 10,j:i = 0,^:2 = 105, .V3 = 230, 

ingreso neto = ($1350 + $1 X 10 min) - (^ X 10 min) = $1353.33.
(e) D2 = “15. Precio dual = $2/min con D2 S —20. Reducción del ingreso = 

$30. Reducción del costo = $7.50. No se recomienda.

6. Sean
xi = minutos de radio, X2 = minutos deTV,.V3 = anuncios en el periódico
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Maximizar z = X\ + 50v2 + IOV3 sujeto a

15vi + 300t2 + 5OV3 + si = 10,000, V3 - ^2 = 5,

Vi + Í3 = 400, - Vi + 2xj + í4 = 0, Vi, V2, V3 s 0,

■Si» S2, J3, Í4 s 0

(a) v¡ = 59 09 mm,A:2 = 29 55 min,-V3 = 5 anuncios en penódico, z = 1561 36
(b) Con TORA, z = + 158íi + 2 87952 + OÍ3 + 1 364^4 = 156 364 Los precios 

duales de las restricciones respectivas son 158, — 2 879,0 y 1 36 El límite in­
ferior impuesto a los anuncios en periódicos puede reducirse porque su pre­
cio dual es negativo (- - 2 879) No hay ninguna ventaja al incrementar el 
limite supenor de los minutos de radio porque su precio dual es cero (el lí­
mite actual ya es abundante)

(c) Con TORA, vi = 59 9091 + OO6O6D1 > 0, V3 = 5,53 = 340 90909 + OO6O6D1 
> 0, at2 = 29 54545 -1- 00303Dj s = Por lo tanto, el precio dual = 158 en el 
intervalo - 97 50 S :£ 56,250 Se recomienda un incremento de 50% en 
el presupuesto (Di = $5000) porque el precio dual es positivo

11. (a) Escaso Recurso del resistor y capacitor, abundante recurso del chip
(b) Los valores por unidad de resistor, capacitor y chips son $1 25, $ 25 y $0
(e) Cambiar D3 = 350 - 800 = - 450 queda afuera del intervalo de factibilidad 

D3 S — 400 Por consiguiente el problema debe ser resuelto de nuevo 

13. (b) Solución = \2 = 2 + y es factible para todas las A > 0 Para 0 < A ^ 3, 
Ti + T2 =y :£ 1 => factibilidad confirmada Para3 ^ A < órj + t2 = y > 1 ^ 
factibilidad no confirmada Para A > 6, el cambio queda afuera de los intervalos 
de D( y D2

Conjunto 3.6d

2. (a) Xi = latas de A1,a:2 = latas de A2, X3 = latas de BK 
Maximizar z = 80vj + 70x2 + 60^:3 sujeto a

Vi + X2 + J3 s 500,Xj > 100,4vi — 2x2 “ 2x3 ^ 0 
Óptima X, = 166 67, X2 = 333 33, X3 = 0, z = 36666 67

(b) Con TORA, el costo reducido por lata de BK = 10 El precio debe incre­
mentarse más de 10 centavos

(c) d\ = (¡2 = = —5 centavos. Con TORA, los costos reducidos de las varia­
bles no basteas son

X3 10 + ^2 - ÍÍ3 ^ 0, satisfecha

6\ 73 33 + 67í/2 + 33di & 0, satisfecha

Í3 1 67 — 17^2 + 17í/j ^ 0, satisfecha

La solución no cambia



S. (a) AT, = unidades de motor i, / = 1,2,3,4
Maximizar z = 60vi + 40x2 + 25vj + 30r4, sujeto a

8vi + 5x2 + 4x3 + 6x4 ^ 8000, ti ^ 500, ^ 500,
t3 ^ 800. X4 £ 750, xi, \2, t3, X4 ^ 0 

Óptima xi — 500, Xi = 500, X3 = 375, t4 = 0, z = $59,375
(b) Con TORA, 8 75 + í/2 s 0 El precio del motor tipo 2 se puede reducir hasta 

en $8 75
(c) di = -$15,£Í2 = -$10,í/3 = -$6 25,^4 = -$7 50 Con TORA,

t4 7 5 + 1 Sd^ -(¿4^0, satisfecha 

íi 6 25 + 25d2 ^ 0, satisfecha

52 10 - 2^3 + r/j ^ 0, satisfecha

53 8 75 - 1 25^3 + r/2 — 0. satisfecha 

La solución no cambia, pero z se reducirá en 25%
(d) Costo reducido de t4 = 7 5 El precio aumenta más de $7 50

Conjunto 3.6e

5. El precio dual para la restricción de inversión x\^ + ti^ ^ 100 es de $5 10 por 
dolar invertido para cualquier cantidad de inversión 

9. (a) El precio dual de la materia pnma A es de $10 27 El costo de $12 00 por Ib 
excede el ingreso esperado Por consiguiente, no se recomienda la compra de 
materia pnma adicional

(b) El precio dual de la materia pnma B es de $0 El recurso ya es abundante y 
no se justifica nmguna compra adicional

CAPÍTULO 4 

Conjunto 4.1a

2. Sean yi, y >*3 las variables duales 
Maximizar w = 3y\ + 5y2 + 4y3 sujeto a

yi + 2^2 + 3yj < 15, 2yi - 4y¿ + y¡ ^ 12 

>"1 — 0. ^2 — 0, y3 irrestrictas

4. (c) Sean yi y y2 Iss variables duales
Minimizar z = 5yi + 6^2 sujeto a

= 1, y, - >■, = 1 

yi, y2 irrestnctas

5. La restricción dual asociada con las variables artificiales es y2 — Matemáti­
camente, M~*co^y s —co, lo cual equivale a quey2 no este restringida

Conjunto 4.2a

1. (a) AVj no está definida
(e) V2A = (-14 -32)

744 Apéndice B Respuestas parciales a problemas seleccionados
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Conjunto 4.2b

1. (a) Inversa
-I ! 

i -I
-i

0 o\
0 o
1 o

Conjunto 4.2c

3. Sean yi y yi las variables duales.
Minimizar lu = 30yi + 40y2 sujeto a

y[ + yi^ 5,5yi - 5^2 > 2,2yi - 6>«2 ^ 3 

> -A/(=>yi irrestricta), y2 ^ 0

Solución: y I = 5,y2 = 0»'“^ = 130

6. Sean y\ y y2 l^s variables duales.
Minimizar w = 2>y\ + Ay2 sujeto a

yi + 2^2 > 1,2yj - > 5, yi > 3

>>2 irrestricta

Soluciónyi 3,^2 ~ = 5
8. (a) (j:i,.V2) = (3,0), z = 15; (yij'2) = (3,1), w = 14. Intervalo (14,15)
9. (a) La solución dual no es factible; de ahí que no puede ser óptima aun cuando

z~ 10 = 17.

Conjunto 4.2d

2. (a) Factibilidad:; (x2, jí4) = (3,15) => factible.
Oplimalidad: Costos reducidos de (jci,.\:3) = (0,2) óptima.

4.

Básica X\ •^3 Xa •>^5 Solución

z 0 0 _i 0 y

1 0 i 0 3
0 1 0
0 0 -1 l 1 0

La solución es óptima y factible.
7. Valor objetivo: A partir de la primal, z = Ci-Vj + C2X2 y desde la dual w - b2y\ + 

¿2V2 + ¿1 = 4,62 == 8, ci = 2, C2 = 5 => z = w = 34.
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Conjunto 4 3a
2. (a) Sean (jti,V2,V3,X4) = unidades dianas STO0.SC325 SC340ySC370 

Maximizar ^ = 9 4\i + 10 &.t2 + 8 75x3 + 7 8.X4 sujeto a 
10 5xi+ 9 3x2+116x3+ 8 2x4^ 4800 

204xi + 24 6v2 + 17 7x, + 26 5x4 ^ 9600 

3 2v, + 2 5vo+ 3 6x3+ 5 5x4^ 4700 

5vi + 5v2 + 5x3 + 5x4 s 4500

Y, 5: 100. X2 ^ 100 X3 ^ 100, V4 s 100
(b) Sólo se puede incrementar la capacidad del estañado porque su precio dual 

es positivo (= 4944)
(c) Los precios duales correspondientes a las colas infenores son ^ 0 (— 6847, 

— 1 361,0 y “5 3003), lo que significa que las cotas tienen un efecto adverso 
en la rentabilidad

(d) El precio dual del estañado es de $ 4944/min valido en el intervalo (8920, 
10201 72), el cual corresponde a un incremento máximo de la capacidad de 
sólo 6 26%

Conjunto 4 3b

2. El nuevo camión de bomberos es rentable debido a su costo reducido = -2
3. Las piezas PP3 y PP4 no forman parte de la solución optima Los costos reduci­

dos actuales son 1429 y 1 1429 Por consiguiente, la tasa de deterioro del ingreso 
por unidad es de $ 1429 para PP3 y de $1 1429 para PP4

Conjunto 4 4a

1. (b) No, porque el punto C es factible, y el simplex dual debe permanecer no fac­
tible hasta que se alcance el Optimo

4. (c) Agregue la restricción artificial vj < Ai El problema no tiene una solución
factible

Conjunto 4 5a

4. Sea Q la cantidad de alimento semanal en Ib (= 5200,9600,15000,20000,26000, 
32000,38000,42000, correspondientes a las semanas 1,2, , y 8) Solución optima 
Piedra caliza (calcio) = 028Q,maiz= 649Qysoya 323Q Costo = 81221Q

Conjunto 4.5b

1, (a) La restricción adicional es redundante 

Conjunto 4.5c

2. (a) Nuevos valores duales = (J, 0,0,0) La soluc,on actual permanece optima
(c) Nuevos valores duales = (-¡,U „ q) ^ ^75^2 = 13 5 Nueva

solución t| = 2, i2 = 2, i, = 4, r = 14
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Conjunto 4.5d

1* 4 (yi + + >íj) - 3 s 0 Para>>i = 1,^2 = 2, y ^3 = 0,p > 42 86%
3. (a) Costo reducido de los camiones de bomberos = 3yi + 2^2 + - 5 = 2 > 0

Los camiones de bomberos no son rentables

CAPÍTULO 5 

Conjunto 5.1a

4. Asigne un costo muy alto, M, a la ruta de Detroit al destino ficticio
6. (a y b) Use M = 10,000 La solución se muestra en negritas Costo total = $49,710

Planta 1

Planta 2

Planta 3

Excedente 
en planta 4

Demanda

1 2 3 Oferta

25

40

30

13

36 42 30

600 700 400

25
320 300 350

23 17
500 480 450

25 5
1000 1000 A/

13

(c) Costo excedente en la ciudad 1 = $13,000 
9. La solución (en millones de galones) se muestra en negritas En el área 2 habrá 

un fallante de 2 millones de galones Costo total = $304,000

Demanda 4 8 7
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Conjunto 5.2a

2. Costo total = $804. El problema tiene soluciones óptimas alternativas

Día Nuei as

Servicio de afilado

Durante la noche a 2 días a 3 días Desechadas

lunes 24 0 6 18 0

martes 12 12 0 0 0

miércoles 2 14 0 0 0

jueves 0 0 20 0 0

viernes 0 14 0 0 4
sábado 0 2 0 0 12

domingo 0 0 0 0 22

5. Costo total = $190,040. El problema tiene soluciones óptimas alternativas

Penodo Capacidad Cualidad producida Entrega

1 500 500 400 para el (penodo) 1 y 100 para el 2
2 600 600 200 para el 2.220 en cl 3 y 180 para el 4
3 200 200 200 para el 3
4 300 200 200 pura cl 4

Conjunto 5.3a

1. (a) Noroeste: costo = $42 Costo mínimo = $37 Vogel, costo = $37.

Conjunto 5.3b

5. (a) Costo = $1475 (b) ^ 3, C]3 > 8, C23 s 13, C31 > 7.

Conjunto 5.4a

5. Use el código (ciudad, fecha) para definir las filas y columnas del problema de 
asignación. Ejemplo. La asignación (D 3)-(A.7) significa salir de Dallas el 3 de enero 
y regresar de Atlanta el 7 de jumo a un costo de $400 La solución se muestra en 
negritas Costo = $1180 El problema tiene soluciones óptimas alternativas

(A. 7) (A. 12) (A.21) (A. 28)

(D.3) 400 300 300 280

(D. 10) 3UÜ 400 300 300

(D.I7) 300 300 400 3íK)

(D.25) 3(K) 3(K) 300 40í)

6. Asignación óptima: I-J, II-c, III-a, IV-6
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CAPITULO 6

Conjunto 6.1a

1. Para la red (i) (a) 1-3-4-2 (b) 1-5-4-3-1 (c y d) Vea la figura B 5
5. Nombre los cuadrados en secuencia como A, B, , H comenzando en el cuadrado 

superior izquierdo en la pnmera fila Cada cuadrado es un nodo con los cuadra­
dos adyacentes conectados por arcos Cada uno de los nodos D y E tiene el máxi­
mo de arcos que emanan y por consiguiente deben ser reemplazados con los dos 
números que tienen mas números no adyacentes, sea saber, los números 1 y 8. 
Este problema tiene más de una solución Vea la figura B6

Conjunto 6.2a

2. (a) l-2,2-5,5-6,6-4,4-3 Longitud total = 12 millas
5. Alta presión-1-2-3-4-6 Baja presión 1-5-7 y 5-9-8

Conjunto 6.3a

1. Compre un auto nuevo en los años 1 y 4. Costo total = $8900 Vea la figura B 7
4. Para el arco (i,v,) - (i -l- 1, ü,+i), defina p{q) ~ valor (numero del artículo /). So­

lución Seleccione una unidad de cada uno de los artículos 1 y 2. Valor total = 
$80. Vea la figura B 8

FIGURA B 5

[T i 8 T]

4 6

3 5
FIGURAS 6

Árbol Árbol de expansión

4100 FIGURAS 7

FIGURAS 8
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Conjunto 6.3b

1. (c) Elimine todos los nodos excepto 4,5,6,7 y 8 Distancia más corta = 8 aso­
ciada con las rutas 4-5-6-S y 4-6-8

Conjunto 6.3c

1. (a) 5-4-2-1, distancia = 12
4. La figura B 9 resume la solución Cada arco tiene longitud unitaria Las flechas 

indican las rutas en una dirección Solución del ejemplo Bob a Joe Bob-Kay 
Rae-Kim-Joe Máximo de contactos = 4

Conjunto 6.3d

1. (a) El lado derecho de las ecuaciones correspondientes a los nodos 1 y 5 son 1 y 
-1, respectivamente, todos los demás == 0 Solución optima 1-3-5 o 1-3 4-5, 
distancia = 90

Conjunto 6.4a

1. Corte 1 1-2,1 4,3-4,3-5, capacidad = 60

Conjunto 6.4b

1. (a) Capacidades excedentes- arco (2-3) = 40, arco (2-5) = 10, arco (4-3) = 5
(b) Nodo 2 20 unidades, nodo 3 30 unidades, nodo 4 20 unidades
(c) No, porque no hay capacidad excedente en el nodo 1

7. El máximo de tareas es 4 Rif-3, Mai-1, Ben 2, Kim-5 Ken no tiene tarea alguna

Conjunto 6.5a

3. Vea la figura B10

Conjunto 6.5b

1. Ruta crítica 1-3-4-5-6-7. Duración = 19
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FIGURA B 10

Conjunto 6.5c

3. (a) 10.(b)5.(c)0.
5. (a) Ruta crítica' 1-3-6, duración = 45 días.

(b) A, D y E.
(c) Cada una de las actividades C, D y G se demorarán 5 días. E no se verá afectada.
(d) Equipo mínimo = 2 unidades.

CAPÍTULO 7 

Conjunto 7.1a

2, Los puntos (1,0) y (0,2) están en Q, pero A(1,0) + (1 — A)(0,2) = (A, 2 — 2A) no 
quedan en Q para 0 < A < 1.

Conjunto 7.1b

2. (b) Solución única con.> 1 y 0 <.C2 < 1. Vea la figura B 11.
(d) Una infinitud de soluciones.
(f) Ninguna solución.

3. (a) Base porque del B = -4.
(d) No es una base porque una base debe incluir exactamente 3 vectores inde­

pendientes
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Conjunto 7.1c

Básica Xl X2 •T3 Solución

z 15 0 0 215

^3 0 5 1 0 2
Xi 5 0 0 1 15

La solución es factible pero no óptima
4. Óptima z = 34

Maximizar z = Zti + 5t2 sujeto a xj < 4, < 6, vi + r2 8, xi, í2 ^ 0

Conjunto 7.2a

1. (a) Pi debe salir
(b) B = (P2, P4) es una base factible

2. Para el vector básico X^, tenemos

|z, - c,| = - c„ = Cfil - Cfl = Cfl - Cfl = 0

7. El numero de puntos extremos adyacentes es n — m, suponiendo que no hay 
degeneración

10. En el caso de degeneración, la cantidad de puntos extremos es menor que la de 
soluciones básicas, de lo contrano son iguales

11. (a) nueva ¿ vieja x,

(b) nueva x, = ^ vieja x¡

Conjunto 7.2b

2. (b) (x,, X2, X3) = (1 5,2,0), z = 5

Conjunto 7.3a

2. (Xi, X2. X3, X4, X5, X6> = (0,1. 75,1,0,1), Z = 22 

Conjunto 7.4a

2. Maximizar tu = Yb sujeto aYA £ c, Y s 0

Conjunto 7 4b

5. Método 1 (¿I, ¿2. h) = (4,6,8) => valor objetivo dual = 34 
Método 2 (cj, C2) = (2,5) => valor objetivo primal = 34

6. Minimizar -it; = Yb sujeto a YA = C, Y no restringida
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Conjunto 7.5a

1. < í < 1
2. (a)

Solución básica Intervalo aplicable de /

(t2, x:¡.xe) = (5.30.10) 0 S f s j

(AT.,.:3,x,) = (¥.f.5)

{Ji2.j:4.j^i) = (^ 15,20) 1 s f á 00

5. [Zj - C;)/=1,4.5 = (4 - I - ^ , 1 - 2 - 5 + f). La base permanece ópti­
ma en el intervalo 0 ^ í ^ 1.

Conjunto 7.5b

1. (a) /, = 10,B, = (P2.P3,P4)
2. En / = 0 (a:i^2A^3) (0 4,1.8,1). Permanece básica en el intervalo 0 ^ í £ 1.5.

Ninguna solución factible con t > 1.5.

CAPÍTULO 8 

Conjunto 8.1a

1. G5:Minimizar ^5,55Ap + 3.5:r^ + 5.5Xj - .OóVS.Vg + sj — J5 = 0.
3. Sea xi = Cantidad de estudiantes del primer año en el estado, X2 = estudiantes de 

primer año de fuera del estado,A:3 = estudiantes de primer año internacionales.

G,' Minimizar s“ i = 1,2,..., 5, sujeto üXi + .í:2 + -<3 + “ '2fí = 1200,

2xy + X2 - 2^3 + sj - 52 = 0, - LTi - .I.V2 + .9jV3 + 5j “ 53 = 0,

.125xi - .O5.C2 - .556x3 -t- Í4 - Í4 = 0, - .2xi + .8x2 - .2x3 + 55 - 55 = 0

Todas las variables son no negativas.
5. Sea.r^ = Cantidad de corridas de producción en el turno y,; = 1,2,3.

Minimizare = 5^" + 5Í’, sujeto a -lOOxi + 40x2 “ 80.í3 + 57 - = 0,

4 < xi < 5,10 < X2 < 20,3 < X3 < 20

Conjunto 8.2a

1. Función objetivo. Minimizar e = 57 + íJ + 5j + 54 + 55

Solución: = .0201, =. 0457,Xj = .0582,Xg ~ 2 centavos, = 1.45
El impuesto sobre la gasolina se queda a $1.45 millones del objetivo.

4. Vi = Ib de piedra caliza/día,.V2 = libra de maíz/día,.V3 = Ib de soya/día.
Función objetivo: Minimizar e = 57 + 53 + íJ + sj + 55



Solución JTi == 166 08 Ib, vz = 2778 56 Ib, = 3055 36 Ib. z = 0 El problema tiene 
soluciones óptimas alternativas. Todos los objetivos se satisfacen, pero los objeti 
vos 3 y 4 se sobresatisfacen

7. Xj = Cantidad de unidades del producto;,; = 1,2
Asigne un peso relativamente alto a las restncciones de cuota 
Función objetivo Minimizar z = 100s7 + lOOsz + Í3 +
Solución Vi = 80. ^2 = 60. sj = 100 minutos 4 = 120 minutos
Las cuotas de producción se pueden satisfacer con 100 minutos de tiempo extra
para la máquina 1 y 120 minutos de tiempo extra para la maquina 2

Conjunto 8.2b

2. Solución de Gi = 01745. v^= 0457. v,= 0582, = 21 33.
4 = 19 33, todas las demas = 0 Los objetivos Gi. Gt y G3 satisfacen, G4 no 
Problema G4 Las mismas restncciones que Gj mas s\ = 0, = 0.= 0
Solución de G4 v^ = 0201, Xf = 0457, v^ = 0582, \g = 2,55 = 1 45 Todas las 
demás variables = 0 El objetivo de G5 no se satisface 
Problema G5 Igual que G4 mas 54 = 0
Solución de G5 Igual que G4, lo que significa que el objetivo 5 no se puede satis 
facer(^5 = 1 45)
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CAPÍTULO 9 

Conjunto 9.1a

3. x,j = Cantidad de botellas de tipo i asignadas al individuo;. donde i = 1 (llena), 2 
(medio llena), 3 (vacia)
Restricciones

Xu + X12 + Vi3 = 7, X2i + V22 + -^23 = 7, X31 + a:32 + V33 = 7

Vil + 5X21 =3 5, V12 + 5v22 = 3 5, X|3 + 5vz3 = 35

Vil + -V21 + V31 = 7, V12 + X22 + V32 = 7, Vi3 + V23 + \33 = 7

Todas las x,j son enteros no negativos
Solución Use una función objetivo ficticia

Eslado

Cantidad de botellas asignadas al individuo

I 2 3

Llena 1 3 3
Medio llena 5 1 l
Vacía 1 3 3

6. y = Suma original de dinero, v^ = Cantidad tomada en la noche ;,; = 1,2,3 
V4 = Cantidad entregada a cada marinero por el primer oficial
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Minimizar z = y sujeto a 3ti - y = 2,X\ + 3x2 ~ y — 2,x\ + Xi + 2>xj — y - 2,y 
- vj - X2 - V3 - 3v4 = 1 Todas las variables son enteros no negativos 
Solución y = 79 + 8I/1, n = 0,1,2, y mínima = 79 

10. Ladol 5,6 y 8 (27 minutos) Lado 2 1,2,3,4 y 7 (28 minutos) El problema tiene 
soluciones óptimas alternativas

12. x„ = 1 SI el estudiante i selecciona el curso;,y cero de lo contrano, Cy = calificación de

preferenaa asociada, C, = capacidad del curso j Maximizar z = 2 sujeto a
1-1/-I

2v„ = 2,, = 1,2, ,10, 2*.; ^ C,,; = 1,2, ,6

Solución Curso 1 estudiantes (2,4,9), 2 (2,8), 3 (5,6,7,9), 4 (4,5,7,10), 5 (1,3, 
8,10), 6 (1,3) Calificación total = 1775

Conjunto 9 1b

1. Sea x^ = 1 SI se selecciona la ruta ; y 0 si no es asi Distancia total de la ruta ABC, 
1,2,3,4 ABC) = 10 + 32 + 4 + 15 + 9 = 80 millas
Minimizar z = 80xi + 50v2 + 70x3 + 51x4 + 6OX5 + 44x¿ sujeto a

Al + X3 + V5 + '6 — 1? '•l '•3 '•4 "I" -^5 — 1, Aj + X2 + X4 + A(j 2: 1,

Vi + X2 + X5 ^ 1, V2 + X3 + X4 + Vé ^ 1, Xj = (0,1), para todas las j 
Solución Seleccione las rutas (1,4,2) y (l,3,5),z = 104 El cliente 1 debe ser sal­
tado en una de las dos rutas

2. Solución el comité de 3 miembros se forma con los individuos a,d y f El pro 
blema tiene soluciones óptimas alternativas

7. X, = 1 si se selecciona el transmisor í, 0 si no es asi, Xj. = 1 si se sirve a la comuni­
dad c, 0 si no es asi, c, = costo del transmisor t Se = conjunto de transmisores que 
sirven a la comunidad c, P) = población de la comunidad j

15
Maximizarz = sujeto a

c-l

7
2 '1 -te, C = 1,2, , 15, '2,c,x, s 15
íe5 f-1

Solución Construir los transmisores 2,4,5,6 y 7 Se sirve a todas las comunidades 
excepto a la 1

Conjunto 9 1c

2. Sea x^ = cantidad de artefactos producidos en la maquina j,j = 1,2,3 y^ = 1 si se 
utiliza la maquina y y 0 si no es asi Minimizar z = Zvi + lOv^ + 6x3 + 30üvi + 
lOOys + 200y3sujeto 3Ai + \2+ \3S2OOO. Vi - ófiOy, < 0, X2-8Ü()>2 ^ 0,A3 - 
1200y3 < 0,Ai, X2, X3 > 5Ü0 y enteros,yi,y2,13 = (0,1)
Solución X, = 600, X2 = 500,A3 = 900,z = $11,300



3. Solución El sitio 1 se asigna a los destinos 1 y 2, y el sitio 2 se asigna a los destinos 
3y4,z = 18

10. Xg = cantidad de boletos (sencillos) de Eastern x„ = cantidad de boletos de US 
Air, Xg = cantidad de boletos de Continental e\ y ei son variables binarias uy c 
son enteros no negativos. Maximizar z = 1000(1^ + 1 5r„ + 1 8.Vc + Scj + Sej + 
lOn + 7c) sujeto a ci s Xgl2, €2 ^ Vp/ó, u ^ \ J6 y c £ X(J5, = 12

Solución Compre 2 boletos en Eastern y 10 boletos en Continental Bonificación 
— 39,000 millas
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Conj'unto 9.1d

1. Sea x,j = Cantidad entera asignada al cuadrado (ij) Use una función objetivo fie 
ticia con todos los coeficientes cero

Restncciones
3 3

= 15.1 = 1,2,3, = 15,; = 1,2,3,
j=l 1=1

t„ + Ij, + V33 = 15, X3, + V22 + ATij = 15,

(•til a r,2 -I- 1 o 1,1 s 1,2 - 1), (j:,i a 1,3 + 1 o v,i s 1,3 - 1),

(•tl2 a t|3 -f 1 o 1,2 S 1,3 - 1), (t„ a i2i + 1 o v„ a V2, - 1),

(•til a xj, -i- 1 o V,, a x,¡ - 1), (v,, a 13, 3- 1 o 121 s 13, - 1),

Vy = 1,2, , 9, para todas las 1 y 7

Solución
2 9 4 
7 5 3 
6 1 8

Soluciones alternativas Intercambie las filas 1 y 3 o las columnas 1 y 3

3. Xj = Cantidad de unidades dianas del producto;

Maximizar z = 25ri + 30x2 ■** 22x3 sujeto a

pv, + 4r, + 5v3 a 100\ / 3vi -1 4t2 + 5i3 s 90 \
V4vi + 3v2 + 613 a looj° l,4i, -f 3ij + g i2oj

ti, t2, t3 a 0 y entero

Solución Producir 26 unidades del producto 1,3 del producto 2, ninguna del pro- 
ducto 3, y utilizar la ubicación 2

12. Defina v = zw, v s z, v s lo, v z + w ~ l {) s v s l,z y w binarias
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Conjunto 9 2a^

2. (a) z = 6, Xi = 2, V2 = 0 
(b) z = 12,Xi = 0, V2 = 3

3. (a) z = 125,xi = 175.X2 = 1
(d) z = 10 5, = 5, X2 = 2

9. PLE equivalente 0-1

Maximizar z = IS}*!! + 36yi2 + 14}>2i + 28^22 + + 32>^3
sujeto a 15yn + 30>’i2 + 12>^i + 24>^ + 7y3i + 14>>32 + 28>^3 43
Todas las variables son binarias
Solución z = 50,>»32 = l.yzi = todas las demás = 0 De forma equivalente, 
ri = 2, \2 = 1 La version 0 1 requirió 41 nodos La original requiere 29

Conjunto 9 2b

1. (a) Corte legitimo porque pasa por un punto entero y no elimina a ningún punto
entero factible Puede verificar este resultado trazando el corte en el espacio 
de soluciones de programación lineal

2. (a) Solución entera óptima {x\, xi, x^) = (2,1,6), z = 26
Solución redondeada 13) = (3,1,6) — no factible

CAPÍTULO 10 

Conjunto 10 2A

6. Maximizar z = 15(//I00) (53 ~ 100(r/100)), 10 < f < 60
La demanda sera cero en r = 53 Por lo tanto, la búsqueda se puede limitar al in­
tervalo (10 53) Inicie la búsqueda en t = 10%

Conjunto 10 3C

4. Represente un cromosoma con una cadena de diez elementos binarios generados 
al azar de modo que la carta / = 0(1) signifique que pertenece a la pila 1 (2) 

Aptitud = 136 — suma de cartas en la pila 1] + |36 — producto de cartas en la pila 2| 
Iteración 0:

P1 1011011010,Pile 1 (2,5,8,10),Pile 2 (1,3,4,6,7.9), 
z = |36 - 25| + |36 - 45361 = U + 4500 = 4511 

P2 0011011111 P3 0100110101,P4 UÜOllüllll

UsL lI niDÜulo di. pro^r iimcinn enter 1 de 1 ORA p ir 1 ^ener ir el irbol de r imific leion v leol imiento
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CAPÍTULO 11 

Conjunto 11.1a

3. Cada sitio (más el hotel) representa una ciudad. La tarifa del taxi entre ubicacio­
nes representa la distancia.

Conjunto 11.2a

1. (a) PL para cota infenor.
Minimizar z = 2r\ + 2ri + 2r3 4- 2r4 + 2 

sujeto a
rj -I- T2 ^ 120, Ti + T3 s 220, rj + £ 150, rj + rs £ 210
T2 + T3 s 80, Tt + T4 £ lio, f2 + T5 £ 130
T3 + T4 £ 160, T3 + rs £ 185
r4 + rj £ 190
todas las f| no negativas

(b) Tanto amplAssign.txt como amplLPjxt dan una cota infenor de 695 millas 
La solución del modelo de asignación incluye subrecorndos (1-4-1,2-S-3-2), 
por lo que no es óptima

6. (a) Cada proyecto representa una ciudad. La tabla siguiente da el número de 
distintos empleados que entran a y salen de la oficina del gerente cuando se 
cambia del proyecto i al proyecto y (es decir la cantidad de “x” que no empa­
rejan entre la columna i y la columna y). El objetivo es encontrar un “recorri­
do” a través de todos los proyectos que minimice el tráfico total.

1
2
3
4
5
6

1 2 3 4 5 6
4 4 6 6 5

4 6 4 6 3
4 6 4 8 7
6 4 4 6 5
6 6 8 6 5
5 3 7 5 5

(b) Cota inferior obtenida con soluüonAsstgn txi es 26. Aun cuando la cota infe­
rior resultó ser exactamente igual al recorrido mínimo verdadero, la solución 
de asignación asociada incluye subrecorndos; es decir, 1-3-1,2-4-5-6-2. El re­
corrido óptimo obtenido con amplCut rxí es 1-2-6-5-4-3-1.

Conjunto 11.3a

3. Vea la figura B 12.
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FIGURA B 12 

CAPÍTULO 12 

Conjunto 12.1a

1. Solución Distancia mas corta = 21 millas Rutal-3-5-7 

Conjunto 12 2a

3. Solución Distancia mas corta = 17 Ruta 1-2-3-5-7 

Conjunto 12.3a

2. (a) Solución Valor = 120 = (0,0,3). (0.4,1),(0,2,2) o (0,6,0)
5. Solución Puntos totales = 250 Seleccione 2 cursos a partir de 1,3 de II, 4 a partir 

de III y 1 de IV
7. Sea Xj = i s\ se acepta la solicitud y, y 0 si no El modelo de la mochila equivalente es 

Maximizar z = 78.ri + 64\2 + 68Y3 + 61\4 + 85\5 sujeto a
7vi + 4y2 + 6y3 + 5í4 + 84:5 < 23. = (0, l),y = 1,2, ,5

Solución Aceptar todas excepto la primera solicitud Valor = 279

Conjunto 12.3b

1. (a) Solución Contratar 6 para la semana 1, contratar i para la semana 2, despedir 
2 para la semana 3, contratar 3 para la semana 4 y contratar 2 para la semana 5



3. Solución Rentar 7 autos en la semana 1, devolver 3 por la semana 2. rentar 4 para 
la semana 3, y ninguna acción durante la semana 4

Conjunto 12.3c
2. Decisiones para los siguientes 4 años Conservar, conservar, reemplazar, conser­

var Costo total = $458

Conjunto 12.3d

3. (a) Sean x, y y, la cantidad de ovejas conservadas y vendidas al final del periodo
/, y defina z, = x, + y,

fnU„) = máx{p„y„}

f,Ui) = max{p,y, + /,+i(2z, - 2y,)}, / = 1,2, , ii - 1
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CAPÍTULO 13 

Conjunto 13.3a
2. (a) Costo total por semana = $51 50

(b) Costo total por semana = $50 20, y* = 239 05 Ib

4. (a) Seleccionar la política 1 porque su costo por día es de $2 17 en contraste con 
$2 50 para la política 2

(b) Política optima Pedir 100 unidades siempre que el nivel del inventario se re­
duzca a 10 unidades

Conjunto 13.3b

2. Política óptima Pedir 500 unidades siempre que el nivel del inventario se reduz­
ca a 130 unidades. Costo por día = $258 50

4. No hay ventaja alguna si TCUi(y,„) < TCU2(t7), lo cual se traduce en ninguna 
ventaja si el factor de descuento no excede de 9344%

Conjunto 13.3c

1. Solución obtenida con AMPL/Solver (yi.y2,y3,y4.y5) = (4 42,6 87,4 12,7 2,5 8), 
costo = $568 12,

365A
4. Restricción. X--------s 150

y.

Solución obtenida con Solver/AMPL (yj, >-2, y3, y^) = (155 3, 118.82, 74 36, 
90 09), costo = $54 71

Conjunto 13.4a

1. (a) 500 unidades requeridas di iniciode los periodos 1,4,7 y 10
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Conjunto 13 4b

3. Producir 173 unidades en el periodo 1,180 en el periodo 2,240 en el penodo 3, 
lio en el periodo 4 y 203 en el periodo 5

Conjunto 13.4c

1. (a) No, porque el inventano no debe mantenerse innecesanamente al final del 
horizonte
(b) (i) 0 < < 5,1 ^ Z2 5,0 < Z3 < 4, = 4,1 < j:2 ^ 6,0 < X3 < 4

(u) 5 < Zi < 12,0 < Z2 7.0 ^ 23 4, Vi = 0,0 < X2 ^ 7,0 < jt3 ^ 4

2. (a) zi = 7, Z2 = 0, Z3 = 6, Z4 = 0 Costo total = $33

Conjunto 13.4d

1. Utilizar el inventario inicial para satisfacer toda la demanda del periodo 1 y 4 
unidades del penodo 2, y asi se reduce la demanda en los cuatro penodos a 0,22, 
90 y 67, respectivamente
Solución óptima Pedir 112 unidades en el periodo 2 y 67 unidades en el periodo 
4 Costo total = $632

Conjunto 13.4e

1. Solución Producir 210 unidades en enero, 255 en abril, 210 en julio y 165 en octubre

CAPÍTULO 14 

Conjunto 14.1a

1. (a) 15 y 25, respectivamente (b) 571 (c) 821
2. n > 23
3. n > 253

Conjunto 14.1b

32
4. Sea p = probabilidad de que Liz gane La probabilidad de que John gane es 3/;, la 

cual es Igual a la probabilidad de que Jim gane La probabilidad de que Ann gane 
es 6p Debido a que uno de los cuatro gana,p + 3p + 3p + 3p + 6p = i
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Conjunto 14 1c

3. (a) 375 (b) 6
7. 9545

Conjunto 14 2a

2. (a) a: = 20
3. /’{Demanda ^ 1100| = 3

Conjunto 14.3a

3. (a) /’|50 £ ejemplares vendidos ^ 70} = 6667
(b) Cantidad esperada de ejemplares no vendidos = 2 67
(c) Utilidad neta esperada = $22 33

Conjunto 14 3b

1. Media = 3 667,vananza = 1 556 

Conjunto 14 3c

1. (a) P(x, = 1) = P(x. = 1) = 4./>(x, = 2) = P(v, = 2) = 2,/>(r, = 3) =
P{x. = 3) = 4

(b) No,porque P{v,, Vj) P{x¡)P(x2)

Conjunto 14 4a

2. 0547

Conjunto 14 4b

1. 8646
2. (a) P{n = 0) = 0

(b) /’|/i>(2+l)|,/’i«>3|.l

Conjunto 14 4c

1. A = 12 Ilegadas/min P\t ^ 5 seg) = 63

Conjunto 14 4d

2. 001435
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CAPÍTULO 15 

Conjunto 15.1a

1. Pesos para A, B y C = (.44214, 25184, 30602).

Conjunto 15.1b

2. CR > .1 para todas las matrices excepto A UJy, lü^/) = (.331, .292, .377). Se­
leccionar Maisa.

4. Todas las matrices son consistentes {wa,Wp) = (.502, .498). Seleccionar/í.

Conjunto 15.2a

2. (a) Vea la figura B13
(b) EV(maíz) = —$8250, EV(soya) = $250. Seleccionar la soya.

6. (a) Vea la figura B 14
(b) EV(juego) = — $.025. No participar en el juego.

S30.000

$0

-$35,000

$10,000

$0

-$5000

S3 50 

$1 15 

$90 

-SI 20 

$1 15 

-$120 

-$120 

-$3 30

FIGURAS 13

FIGURAS 14

so



12. Ciclo de mantenimiento Optimo = 8 años Costo por año = $397 50 
15. Tasa de producción óptima = 49 piezas por día 
19. El nivel debe estar entre 99 y 151 galones

Conjunto 15.2b
2. Sea z el evento de tener un artículo defectuoso en una muestra de tamaño 5 

Respuesta: P\A\z\ = 6097, P{B|z) = .3903
4. (a) Ingreso esperado SI usted publica el libro == $196,000 

Ingreso esperado si utiliza un editor = $163,000.
(b) Si la encuesta predice éxito, publique usted el libro, de lo contrano acuda a 

un editor.
7. (b) Envíe el lote a B si ambos artículos están defectuosos, de lo contrano envíe­

lo a/l.

Conjunto 15.2c

1. (a) Valor esperado = $5, por consiguiente no hay ventaja alguna
(b) Para 0 ^ í < 10, U(x) = 0, y para i: = 10, U(x) = 100
(c) Participe en el juego

2. Lotería: U{x) = 100 - 100p,con t/(-$l, 250,000) = 0 y f/($900,000) = 100

Conjunto 15.3a

1. (a) Todos los métodos* Estudiar toda la noche (acción fli).
(b) Todos los métodos: Seleccionar las acciones ü2 o 03.

Conjunto 15.4a

2. (a) Solución de punto de silla en (2,3) Valor del juego = 4
3. (a) 2 < u < 4.

Conjunto 15.4b

1. Cada jugador debe combinar las estrategias 50-50 Valor del juego = 0
2. Matriz de retribución de la policía
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\0Q%A 50%A 50%Z? 100%B

A 

B

100 50 0

0 30 100

Estrategia de la policía Combinar las estrategias 100% A y 100% B al 50-50 
Estrategia de Robín: Combinar las estrategias Ay D vA 50-50. Valor del juego = 
$50 (= multa esperada pagada por Robín).
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Conjunto 15.4c

1. (a) Matriz de retnbuciones para el equipo 1

AB AC AD BC BD CD

AB 0 0 0 0 -1

AC 0 0 0 -l 0

AD 0 0 1 -1 0 0

BC 0 0 -1 l 0 0

BD 0 -1 0 0 1 0

CD -1 0 0 0 0 1

Estrategias óptimas de ambos equipos Combinar AB y CD al 50-50 Valor 
del juego = 0.

2. (a) (m, n) = {Regimientos en el Lugar 1, regimientos en el lugar 2) Cada lugar 
tiene una retribución de 1 si ganó y de — 1 si perdió Por ejemplo, la estrate­
gia de Blotto (1,1) contra la del enemigo (0,3) ganará el lugar 1 y perderá el 
lugar 2, con una retribución neta de 1 + (-1) Matriz de retribuciones para 
el coronel Blotto

3.0 2.1 1.2 0.3
2.0 -1 -1 0 0

U 0 -1 -1 0

0.2 0 0 -1 -1

Estrategia óptima de Blotto Blotto combina las estrategias (2-0) y (1-2) al 
50-50 y el enemigo combina las estrategias (3-0) y (1-2) al 50-50 Valor del 
juego = -5, y Blotto pierde El problema tiene soluciones óptimas alternativas.

CAPÍTULO 16 

Conjunto 16.1a

1. (a) Pedir 1000 unidades siempre que el nivel del inventario se reduzca a 537 uni­
dades

Conjunto 16.1b

2. Solución y* = 317 82 galones, R* = 46 82 galones
3. Solución y* = 316 85 galones, R* = 58 73 galones. En el ejemplo 14 1-2,y* = 319 44 

galones, R* = 93 61 galones. La cantidad de pedido no cambia como en el ejemplo 
14 1-2 pero R* es menor porque la fdp de la demanda tiene una vananza menor
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Conjunto 16.2a

3. .43 < /? < .82
6. 32 abrigos.

Conjunto 16.2b

1. Pedir 9 - .r s¡ .r < 4.53, de lo contrario no pedir

Conjunto 16.3a

2. Pedir 4.61 - x si x < 4.61, de lo contrario no pedir.

CAPÍTULO 17

Conjunto 17.1a

2. SI. Patrulla en vigilancia
S2: Patrulla respondiendo a una llamada 
S3: Patrulla en la escena de la llamada 
S4: Aprehensión realizada 
S5. Transporte a la estación de policía

SI S2 S3 S4 S5

Conjunto 17.2a

2. Probabilidades iniciales:
SI S2 S3 S4 S5

0 0

Cadena de Markov de entrada

SI S2 S3 S4 S5

SI 04 06 0 0 0

S2 01 03 06 0 0

S3 u 1 0 05 04 0

S4 04 0 0 0 06

S5 1 0 0 0 0
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Matriz de transición de salida (2 pasos o 2 patrullajcs) (P2)
SI S2 S3 S4 S5

SI 022 0 42 0.36 0 0

S2 013 015 048 0 24 0

S3 025 0 06 0.25 0.2 0 24

S4 0 76 0 24 0 0 0

S5 04 06 0 0 0

Probabilidades absolutas de 2 pasos = (0010 0)P*

Estado Absoluta (2 pasos)

SI 0.25
S2 0 06
S3 0.25
S4 0.2
S5 0 24

Pjaprehensión,S4, en 2 patrullajcs) = .2 

Conjunto 17.3a

1. (a) Utilizando excelMarkovChoins..xls, la cadena es periódica con periodo de 3. 
(b) Los estados 1,2 y 3 son transitorios, el estado 4 es absorbente.

Conjunto 17.4a

1. (a) Cadena de Markov de entrada.
S C R 

S 08 02 0

C 0.3 OS 0.2

R 0.1 0.1 08

Probabilidades de estado estable:
(77,, 7T2, 773) = (77,, 772, 7r3)P 

7Ti + 772 + 7T3 = 1

Resultados de salida

Eslíulo Estado estable Tiempo de regreso medio

S 0 50 2 0
C 0 25 40
R 025 40

Ingresos esperados = 2 X .5 + 1.6 X .25 + .4 x .25 = $1,500 
(b) Los días soleados regresarán cada ¡jíss — 2 días, es decir dos días sin sol.
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5. (a) Cadena de Markov de entrada:
nunca a veces siempre

Nunca 095 004 OOi

A veces 006 09 004

siempre 0 0 1 09

Resultados de salida

Estado Estado estable Tiempo de regreso medio

nunca 0441175 2.2666728

a veces 0J67646 2 7200089
siempre 0191176 5 2307892

44.12% nunca, 36.76% a veces, 19.11% siempre 
(c) Impuestos recaudados esperados/año = .I2($5000 X .3676 + 12,000 X .1911) X 

70,000,000 = $34,711,641,097.07

Conjunto 17.5a

1. (a) Probabilidades iniciales:

1 2 4 5

■ 0 0 0

Cadena de Markov de entrada:
2 3 5

0 .3333 3333 3333 0

J333 0 .3333 0 3333

.3333 3333 0 0 3333

5 0 0 0 5

0 J333 3333 3333 0

Sslado Absoluto (3 pasos) Estado estable

1 07407 214286
2 2963 214286
3 2963 214286
4 25926 142857
5 .07407 .214286
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(b) as = .07407
(c) TTs = .214286
(d) Mis ~ 4.6666.

(I - N)"‘ Mu
12 3 5

1 2 1 1 6667 4 6666

2 1625 875 3333 3 8333

3 875 1625 3333 3 8333

4 5 5 1 3333 33333

5. (a) Cadena de Markov de entrada:

A 

B 

C

ABC 

75 1 .15

2 75 05

125 125 75

Estado Estado estable

A 394737
B 307018
C 298246

A: 39.5%, B: 30.7%, C: 29.8%

(I
A

- N)"*
C

Mu
D

A 5 71429 3 42857 A 9.14286

C 2 85714 5 71429 C 8 57143

1 2 C
A 5 88235 2 35294 A 8.23529

B 4 70588 5.88235 D i 5882

A ^ 3,9,14 años 
A —> C: 8.23 años
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Conjunto 17.6a

2. (a) Estados: 1 semana, 2 semanas, 3 semanas, biblioteca

1

2

3

hb

Matnz P.

1 2 3 hb

0 0.3 0 0.7

0 0 0.1 0 9

0 0 0 1

0 0 0 1

(b) (I - N)-'

1 2 3
1 I i 03 oT

2 0 l .01

3 0 0 l

Mu

hb

1 1.33

2 1.1

3 1

Conservo el libro 1.33 semanas en promedio.

8. (a)

Main? P:

1 2 3 4 F

1 0.2 08 0 0 0

2 0 0 22 078 0 0

3 0 0 0.25 0.75 0

4 0 0 0 03 07

F 0 0 0 0 1

(I - N)-' Mu

2 3 4 F

I 1 25 1.282 1 333 1 429 1 5 29

2 0 1282 1333 1429 2 4 04

3 0 0 1 333 1.429 3 2 76

4 0 0 0 1429 4 1,43



(c) Para poder llevar e! Cal 11, el estudiante debe terminar en 16 semanas (4 transi­
ciones) o menos Promedio de transiciones necesarias = 5.29. Por consiguiente, 
un estudiante promedio no será capaz de terminar el Cal I a tiempo.

(d) No, de acuerdo con la respuesta en (c).

CAPÍTULO 18

Conjunto 18.1a

1, (a) Productividad = 71%.
(b) Los dos requisitos no pueden satisfacerse al mismo tiempo.

Conjunto 18.2a

1.
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Situación Clicnltt Servidor

(a) Aviun Pista de despegue
(b) Pasajero Taxi
(h) Auto Espacio de estacionamiento

Conjunto 18.3a

1. (b) (i) A = 6 llegadas por hora, tiempo entre llegadas promedio = ^ horas 
(c) (i) = 5 servicios por hora, tiempo de servicio promedio = .2 horas

3. (a) f{t) = 20^"^"', t > 0 
(b) P{í > 15 } = .00674.

7. La retnbución de Jim es de 2 centavos con probabilidad P[l £ 1) = .4866 y — 2 
centavos con probabilidad P{í ^ Ij = .5134. En 8 horas, Jim le paga a Ann = 
17.15 centavos.

10. (a) P|( s 4 minutos) = .4866.
(b) Porcentaje de descuento promedio = 6.208.

Conjunto 18.4a

!• P/iüs(l hora) = .55951

4. (a) p2(í = 7) = .24167.

6. (a) Combinados A = + 1, p,(r = 5) = .219.

Conjunto 18.4b

2- (a) Pt)(¡ = 3) = .00532.
(o) = 1) = .9502.
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5. p„(4) = 37116
8. (a) Tamaño de pedido promedio = 25 - 7 11 = 17 89 arliculob 

(b) po(' = 4) = 00069

Conjunto 18 5a

3. (a) p„si = 4445 
(b) P„s2 = 5555

6. (a) p, = 2,1 = 0,1,2,3,4
(b) Cantidad esperada en el taller = 2 clientes
(c) P4 = 2

Conjunto 18.6a

1. (a) L, = lp6 + 2p, + 3ps = 1917 carros
(b) Ap,.,d,da = 1263 autos por hora Numero promedio perdido en S horas = 1 01

carros s s
(c) Cantidad de espacios vacíos = c - (,L¡ - L^) = c - "^iip,, + 2

»i-0 n“c+I

Conjunto 18.6b

2. (a) Pü= 2
(b) Ingreso mensual promedio = $50 X pt = $375
(c) Pago esperado = $40 X = $128

5. (a) po = 4
(b) Li¡ = 9 autos
(c) HC, - 2 25 min
(d) pn^ii = 0036

6. (d) El numero de espacios es al menos de 13

Conjunto 18 6c

1. (a) po = 3654
(b) W,¡ = 207 horas
(c) Cantidad esperada de espacios vacíos = 4 - = 3 212
(d) p-i = 04812
(e) Una reducción de 40% disminuye a aproximadamente 9 6 minutos (/i = 10 

autos/h)
4. (a) = 6

(b) L(, = 6 34 generadores
(c) La probabilidad de encontrar un espacio vacio no puede exceder de 4 inde­

pendientemente de la capacidad de la banda Esto significa que la mejor uti­
lización dü departamento de ensamble es del 60%
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7. (a) 1 - Ps = 962
(b) Aperdidü = Ap5 = 19 Chentes por hora

Conjunto 18.6d

2. Para c = 2, = 3 446 horas y para c = 4, = 1 681 horas, una mejora de más
de 51%

5. Sea K la cantidad de espacios en la sala de espera Aplicando TORA, po + pi + 
+ p¡^^2 — 999 produce /C S: 10

7. (a) p„£4 = 65772
(e) Promedio de computadoras ociosas = 667 computadoras

Conjunto 18.6e

2. (c) Utilización = 81 8%
(d) Pz + P3 + P4 = 545 

4- (a) P40 = 00014
(b) P30 + P31 + + P39 = 02453
(d) Cantidad esperada de espacios ocupados = L¡ — Lq = 20 043 — 046 « 20.
(f) Probabilidad de no encontrar un espacio de estacionamiento = 1 - p„£29 " 

02467 La cantidad de estudiantes que pueden estacionarse en un penodo de 
8 horas es aproximadamente de 4

Conjunto 18.6f

2. (a) Aproximadamente 7 asientos 
(b) p„^8 = 2911

Conjunto 18.6g

1. (b) Promedio de mecánicos ociosos = 2 01
(d) P(2 o 3 servidores ociosos) = po + Pi = 34492

4. (a) L5 = 1 25 máquinas
(b) po = 33342
(c) Ws = 25 horas

6. A = 2 llamadas por hora por bebé, 5 bebes por hora, R ~ 5,K = 5
(a) Cantidad de bebés despiertos = 5 - = 1 bebé
(b) Ps = 32768
(c) p„^2 = 05792

Conjunto 18.7a

2. (a) £(í} = 14 minutos y varjí} = 12 minutos^ 8672 carros



4. A = 0625 prescnpciones por minuto, E{f} = 15 minutos, varft} = 9.33 minutos"

(a) Pq - -0625
(b) L,¡ = 13 prescripciones
(c) IVj = 132.17 minutos

Conjunto 18.9a

2. Use (A//AÍ/1) (GD/10/10) El costo por hora es de $431 50 para el técnico 1 y de 
$386.50 con el técnico 2.

4. (b) M = A +

(c) Tasa de producción óptima = 2725 piezas por hora
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Conjunto 18.9b

2. (a) El costo por hora es de $86 4 con dos técnicos y de $94 80 con tres
(b) Pérdida por descompostura = $30 x = $121.11 con dos técnicos y de 

$94.62 con tres.
4. Tasa de descomposturas por máquina, A = .36125 por hora, = 10 por hora El 

modelo (A//M3)*(GD/20/20) resulta = .70529 máquinas Ingreso perdido = 
$36.60 y el costo de tres técnicos = $60.

Conjunto 18.9c

1. (a) Números de técnicos en reparaciones ^ 5 
(b) Número de técnicos en reparaciones ^ 4

CAPÍTULO 19 

Conjunto 19.1a

4. (a) P(H) = PfTj = 5.Si 0 < y? < .5, Jim obtiene $10 00 Si 5 < R < 1, Jan obtie­
ne $10 00

7. Muestreo del tiempo de espera: Si 0 s R < 5, L = 1 día Si 5 < R s 1, L = 2 días 
Demanda por día Si 0 :« /? < 2, demanda = 0 unidades Si 2 < R < .9, demanda 
= 1 unidad. Si .9 < /? s 1, demanda = 2 unidades. Use una R para muestrear L 
Si L = 1, use otra R para muestrear la demanda de un día, de lo contrario si L = 2, 
use una R para generar la demanda del día 1 y luego otra R para generar la 
demanda del día 2.

Conjunto 19.2a

1. (a) Discreta
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FIGURA BIS Al A¡
1,..,

.‘>8
... 1 ,108 .138.

” 1 60 1 90

Dj í?2 ^3 ^4 ^5

Conjunto 19.3a

4. Vea la figura B.15

Conjunto 19.3b

1. / = In (1 - A = 4 clientes por hora.

Chente R '(hr) Hcmpo de llegada

1 _ _ 0

2 0 0589 0015176 0 015176

3 0 6733 0 279678 0294855
4 0 4799 0 163434 0 458288

2. t = a + {b — á)R.
4. (a)0 < 7?< .2:íí = 0,.2 < 7? < .5-í¿ == 1,.5 < /í <.9:d = 2, .9 < /?< l:rf = 3. 

9. Si 0 £ 7? s p, entonces x = 0, de lo contrario x = i entero máximo ^ )•

Conjunto 19.3c

1. y = ln{.0589 X .6733 X .4799 X .9486) = .401 horas.
6. í = .Ci + X2 + ^^3 + at4, donde x, = 10 + 107?,, i - 1,2,3,4.

Conjunto 19.4a

1. En el ejemplo 16.4-1, longitud del ciclo = 4. Con los nuevos parámetros el ciclado 
no fue evidente después de que se generaron 50 números aleatorios. La conclu­
sión es que la juiciosa selección de los parámetros es importante.

Conjunto 19.5a

2. (a) Basado en observaciones.
(b) Basado en el tiempo.

3. (a) 1.48 clientes.
(b) 7.4 horas
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Conjunto 19.6a

2. Intervalo de confianza: 15.07 ^ 23.27.

CAPÍTULO 20

Conjunto 20.1a

1. (a) Sin puntos estacionarios.
(b) Mínimo en .r = 0.
(e) Punto de inflexión en r = 0, mínimo en t = .63 y máximo en .r = - 63.

4. (.ri,;c2) = (21,1)0(2,4).

Conjunto 20.2a

1. (b) (axj, 3.1:2) = (2-83, -2.5) 3.1:2

Conjunto 20.2b

3. Condiciones necesarias: = 0,i = 1,2, ,n - 1 Lasoiuciónes

j:, = Vc, i = 1,2, ,n.df = 26 VcF".
6. (b) Soiución (jii, Xz, -rs. -«r) = (“ w ■ "m • W • ff). mínimo.

Conjunto 20.2c

2. Puntos mínimos. (.Vi,.V2,^j) = (~14 4,4.56, - 1.44) y (4 4, 44, .44)

CAPÍTULO 21

Conjunto 21.1a

2. (c) X = 2.5, logrado con A = .000001.
(e) X = 2, logrado con A = .000001.

Conjunto 21.1b

1. De acuerdo con la expansión de Taylor V/(X) = V/(X“) + H(X - X^^). La hes-
siana H es independiente de X porque/(X) es cuadrática Además, la expansión 
dada es exacta porque las derivadas de mayor orden son cero. Por consiguiente 
VfiX) = 0 representa X = X*^ - Debido a que X satisface V/(X) = 0,
X debe ser óptima independientemente de la elección de la X*^ inicial.

Conjunto 21.2a

2. Solución óptima x\ = 0,.V2 = 3,z = 17
4. Seaw;^ = -^/ + 1*7 = l,2,3,Ui = Wi2Ui,V2 = iü,iü3 Entonces,
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Maximizar z = V\ + Vi ~ 2wi — Wi + I

sujeto avi + V2~ 2wi - Wi ^ 9, In Vj - In tüi - In W2 = 0,

In V2 = In w?i — In IÜ3 = 0, todas las variables son no negativas

Conjunto 21.2b

1. Solución Vi = 1, X2 = 0, z = 4
2. Solución xi=0,X2= 4,jv3 = 7,z = - 235

Conjunto 21.2c

1. Maximizar z = x^ + 2x2 + 5x:3
sujeto a 2xi + 3x2 + 5x3 + 1 28>' 10
9x\ + I6x% - / = 0 

7 Vi + 5v2 + X3 ^ 12 
X\,X2, V3,>» > o
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Novena edición

INVESTIGACIÓN
DE Operaciones

Hamdy a. Taha

Esta novena edición del reconocido libro de Taha contiene, de manera más concisa que las anteriores, tanto el 
texto como el software de apoyo, con el fin de que el lector se enfoque de lleno en la puesta en ejecución 
algorítmica y practica de las técnicas de investigación de operaciones

El libro recalca que, si bien el modelado matemático es la piedra angular de la 10, en la decisión final se deben 
tomar en cuenta factores mcuantificables, como el comportamiento humano, asimismo, hace hincapié en que la 
definición correcta de los problemas es la fose mas importante y mas difícil de la 10 Por último, la obra presenta 
vanas aplicaciones que utilizan ejemplos resueltos y problemas específicos

Novedades en esta ediaón
• La nueva sección 3 7 ofrece un marco de trabajo (sin necesidad de utilizar matemáticas) sobre cómo 

implementar los diferentes algontmos de programación lineal (simplex, simplex dual, simplex 
revisado y de punto intenor) en códigos comerciales, con el fin de incrementar la velocidad de 
cómputo y la precisión necesarias para resolver problemas muy grandes

• El nuevo capítulo 10 cubre la heurística y la metaheurística diseñadas para obtener buenas soluciones 
aproximadas a problemas de programación entera y combinatoria

• El nuevo capítulo 11, dedicado al unportante problema del agente viajero, mcluye vanas aplicaciones 
y el desarrollo de algoritmos de solución heurísticos y exactos.

• Todos los-algoritmos de los capítulgs 10 y 11 se codificaron en Excel para una agradable experimen­
tación interactiva con los modelos

• En todos los capítulos se agregaron numerosos problemas nuevos

• También se actualizó el software TORA

Para mayor información, visite 
pearsoneducacíon.net/taha
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Visítenos en:
www.pearsoneducacion.net
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